Wind and Humidity Nexus over Uganda in the Context of Past and Future Climate Volatility
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Description of Study Area
2.2. Data and Methods
2.2.1. Data Sources and Pre-Processing
Historical Wind and Humidity Data
Future Windspeed and Humidity Data
Model | Downscaled Resolution | Variables | Scenario | Reference |
---|---|---|---|---|
ACCESS-ESM1-5 | 25 × 25 km | Windspeed and RH | SSP245 and SSP585 | [50] |
CanESM5 | 25 × 25 km | Windspeed and RH | SSP245 and SSP585 | [51] |
HadGEM3-GC31-MM | 25 × 25 km | Windspeed and RH | SSP245 and SSP585 | [52] |
GFDL-CM4-grl | 25 × 25 km | Windspeed and RH | SSP245 and SSP585 | [53] |
GFDL-ESM4 | 25 × 25 km | Windspeed and RH | SSP245 and SSP585 | [54] |
IPSL-CM6A-LR | 25 × 25 km | Windspeed and RH | SSP245 and SSP585 | [55] |
UKESM1-0-LL | 25 × 25 km | Windspeed and RH | SSP245 and SSP585 | [56] |
2.2.2. Spatiotemporal Variability and Trend Analysis
2.2.3. Spatiotemporal Correlation Analysis
3. Results
3.1. Historical and Future Climatology of Windspeed over Uganda
3.2. Historical and Future Climatology of Humidity over Uganda
3.3. Trends in Humidity and Windspeeds
3.3.1. Long-Term Trends in Humidity
3.3.2. Long-Term Trends in Windspeeds
3.4. Wind–Humidity Nexus over Uganda
4. Discussion
4.1. Uganda Windspeed Climatology and Future Dynamics
4.2. Uganda Humidity Climatology and Future Dynamics
4.3. The Wind–Humidity Nexus over Uganda
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfrey, J.S.; Beljaars, A.C.M. On the turbulent fluxes of buoyancy, heat and moisture at the air-sea interface at low wind speeds. J. Geophys. Res. 1991, 96, 22043–22048. [Google Scholar] [CrossRef]
- Asaeda, T.; Ca, V.T. The subsurface transport of heat and moisture and its effect on the environment: A numerical model. Boundary-Layer Meteorol. 1993, 65, 159–179. [Google Scholar] [CrossRef]
- Yang, H.; Dai, H. Effect of wind forcing on the meridional heat transport in a coupled climate model: Equilibrium response. Clim. Dyn. 2015, 45, 1451–1470. [Google Scholar] [CrossRef]
- Balagizi, C.M.; Kasereka, M.M.; Cuoco, E.; Liotta, M. Science of the Total Environment Influence of moisture source dynamics and weather patterns on stable isotopes ratios of precipitation in Central-Eastern Africa. Sci. Total Environ. 2018, 628–629, 1058–1078. [Google Scholar] [CrossRef] [PubMed]
- Lentini, G.; Cristofanneli, P.; Duchi, R.; Marinoni, A.; Verza, G.; Vuillermoz, E.; Toffolon, R.; Bonasoni, P. Mount Rwenzori (4750 m a.s.l., Uganda): Meteorological characterization and air-mass transport analysis. Geogr. Fis. Din. Quat. 2011, 34, 183–193. [Google Scholar] [CrossRef]
- Nkpordee, L.; Osayomore, I. Utilizing Support Vector Machine (SVM) to predict relative humidity in selected Ugandan cities. J. Appl. Sci. Inf. Comput. 2024, 5, 81–93. [Google Scholar] [CrossRef]
- Hao, L.; Huang, X.; Qin, M.; Liu, Y.; Li, W. Ecohydrological Processes Explain Urban Dry Island Effects in a Wet Region, Southern China. Am. Geophys. Union 2018, 54, 6757–6771. [Google Scholar] [CrossRef]
- Kabano, P.; Lindley, S. Spatiotemporal dynamics of urban climate during the wet-dry season transition in a tropical African city. Int. J. Biometeorol. 2022, 66, 385–396. [Google Scholar] [CrossRef]
- Ngarukiyimana, J.P.; Fu, Y.; Yang, Y.; Ogwang, A.B.; Ongoma, V.; Ntwali, D. Dominant atmospheric circulation patterns associated with abnormal rainfall events over Rwanda, East Africa. Int. J. Climatol. 2018, 38, 187–202. [Google Scholar] [CrossRef]
- Xi, X. Revisiting the Recent Dust Trends and Climate Drivers Using Horizontal Visibility and Present Weather Observations. J. Geophys. Res. Atmos. 2021, 126, 1–23. [Google Scholar] [CrossRef]
- Mwiinde, A.M.; Siankwilimba, E.; Sakala, M.; Banda, F.; Michelo, C. Climatic and Environmental Factors Influencing COVID-19 Transmission—An African Perspective. Trop. Med. Infect. Dis. 2022, 7, 433. [Google Scholar] [CrossRef] [PubMed]
- Basalirwa, C.P.K. Delineation of Uganda into climatological rainfall zones using the method of principal component analysis. Int. J. Climatol. 1995, 15, 1161–1177. [Google Scholar] [CrossRef]
- Nsubuga, F.W.N.; Olwoch, J.M.; Rautenbach, C.J.d.W. Climatic Trends at Namulonge in Uganda: 1947–2009. J. Geogr. Geol. 2011, 3, 119–131. [Google Scholar] [CrossRef]
- BakamaNume, B.; Bamutaze, Y.; Buyinza, M.; Lwasa, S.; Nyakaana, B.J.; Matete, N.; Nakileza, B.; Sengendo, H.; Tumwine, F. A Contemporary Geography of Uganda, 1st ed.; Mkuki na Nyota Publishers Limited: Dar es Salam, Tanzania, 2015. [Google Scholar]
- Ayanlade, A.; Atai, G.; Olusolape, M. Variability in atmospheric aerosols and effects of humidity, wind and InterTropical discontinuity over different ecological zones in Nigeria. Atmos. Environ. 2019, 201, 369–380. [Google Scholar] [CrossRef]
- Elminir, H.K. Dependence of urban air pollutants on meteorology. Sci. Total Environ. 2005, 350, 225–237. [Google Scholar] [CrossRef]
- Al-obaidi, I.; Rayburg, S.; Półrolniczak, M.; Neave, M. Assessing the Impact of Wind Conditions on Urban Heat Islands in Large Australian Cities. J. Ecol. Eng. 2021, 22, 1–15. [Google Scholar] [CrossRef]
- Emekwuru, N.; Ejohwomu, O. Temperature, Humidity and Air Pollution Relationships during a Period of Rainy and Dry Seasons in Lagos, West Africa. Climate 2023, 11, 113. [Google Scholar] [CrossRef]
- Ogwang, B.A.; Guirong, T.; Haishan, C. (Droughts) Experienced in the Years. Pakistan J. Meteorol. 2012, 9, 11–24. [Google Scholar]
- Ngoma, H.; Wen, W.; Ayugi, B.; Karim, R.; Makula, E.K. Mechanisms associated with September to November (SON) rainfall over Uganda during the recent decades. Geogr. Pannonica 2021, 25, 10–23. [Google Scholar] [CrossRef]
- Jury, M.R. Uganda rainfall variability and prediction. Theor. Appl. Clim. 2018, 132, 905–919. [Google Scholar] [CrossRef]
- Mugume, I.; Basalirwa, C.; Waiswa, D.; Ngailo, T. Spatial Variation of WRF Model Rainfall Prediction over Uganda. Int. J. Sci. Eng. Technol. 2017, 11, 630–634. [Google Scholar]
- Majaliwa, J.G.; Tenywa, M.; Bamanya, D.; Majagu, W.; Isabirye, P.; Nandozi, C.; Nampijja, J.; Musinguzi, P.; Nimusiima, A.; Luswata, K.C.; et al. Characterization of Historical Seasonal and Annual Rainfall and Temperature Trends in Selected Climatological Homogenous Rainfall Zones of Uganda. Glob. J. Sci. Front. Res. H Environ. Earth Sci. 2015, 15, 21–40. [Google Scholar]
- Mubialiwo, A.; Onyutha, C.; Abebe, A. Historical Rainfall and Evapotranspiration Changes over Mpologoma Catchment in Uganda. Adv. Meteorol. 2020, 2020, 8870935. [Google Scholar] [CrossRef]
- Ssembajwe, R.; Mulinde, C.; Ddumba, S.D.; Kagezi, G.H.; Opio, R.; Kobusinge, J.; Mugagga, F.; Bamutaze, Y.; Gidudu, A.; Arinaitwe, G.; et al. Dynamics and associations of selected agrometeorological variables in Robusta growing regions of Uganda. Agric. Water Manag. 2024, 307, 109257. [Google Scholar] [CrossRef]
- Pallabazzer, R.; Sebbit, A.M. The wind resources in Uganda. Renew. Energy 1998, 13, 41–49. [Google Scholar] [CrossRef]
- Mustafa, M.M. Modelling and Navigation of Solar Electric Power Potential and Generation in the Four Regions of Uganda. Ph.D. Thesis, Kampala International University, Kampala, Uganda, 2021. [Google Scholar]
- Yang, W.; Cummings, M.J.; Bakamutumaho, B.; Kayiwa, J.; Owor, N.; Namagambo, B.; Byaruhanga, T.; Lutwama, J.J.; O’Donnell, M.R.; Shaman, J. Dynamics of influenza in tropical Africa: Temperature, humidity, and co-circulating (sub)types. Influenza Other Respi. Viruses 2018, 12, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Bwayo Masika, F.; Masanza, M.; Aluana, G.; Alexandre Freitas Barrigossi, J.; Kizito, E.B.; Fred Bwayo Masika, C. Abundance, distribution and effects of temperature and humidity on arthropod fauna in different rice ecosystems in Uganda. J. Entomol. Zool. Stud. 2017, 5, 964–973. [Google Scholar]
- Nanjego, W.; Kagezi, G.H.; Kyamanywa, S.; Ronald, S.; Kobusinge, J.; Arinaitwe, G.T. Population Dynamics of the Black Coffee Twig Borer Xylosandrus compactus (Eichhoff) in Robusta Coffee Coffea canephora. Indian J. Entomol. 2024, 86, 732–738. [Google Scholar] [CrossRef]
- Okello, N.; Azman, K.; Gambo, H.; Yunusa, Z.; Abu, T. Modelling the effect of wind forces on landslide occurrence in Bududa District, Uganda. J. Teknol. 2015, 77. [Google Scholar] [CrossRef]
- Twaha, S.; Ramli, M.A.M.; Murphy, P.M.; Mukhtiar, M.U.; Nsamba, H.K. Renewable based distributed generation in Uganda: Resource potential and status of exploitation. Renew. Sustain. Energy Rev. 2016, 57, 786–798. [Google Scholar] [CrossRef]
- Wabukala, B.M.; Otim, J.; Mubiinzi, G.; Adaramola, M.S. Assessing wind energy development in Uganda: Opportunities and challenges. Wind Eng. 2021, 45, 1714–1732. [Google Scholar] [CrossRef]
- Ogwang, B.A.; Ongoma, V.; Gitau, W. Contributions of Atlantic Ocean to June-August rainfall over Uganda and Western Kenya. J. Earth Space Phys. 2016, 41, 131–140. [Google Scholar] [CrossRef]
- Nsubuga, F.W.; Rautenbach, H. Climate change and variability: A review of what is known and ought to be known for Uganda. Int. J. Clim. Change Strateg. Manag. 2018, 10, 752–771. [Google Scholar] [CrossRef]
- Nuwagira, U.; Yasin, I. Review of the Past, Current, and the Future Trend of the Climate Change and its Impact in Uganda. East Afr. J. Environ. Nat. Resour. 2022, 5, 115–126. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wei, Q.; Peng, S.; Yu, Y. Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Eng. 2012, 28, 43–48. [Google Scholar] [CrossRef]
- The MathWorks Inc. MATLAB; The MathWorks Inc.: Natick, MA, USA, 2019; Available online: https://www.mathworks.com (accessed on 18 July 2020).
- Thrasher, B.; Wang, W.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA Global Daily Downscaled Projections, CMIP6. Sci. Data 2022, 9, 262. [Google Scholar] [CrossRef]
- Maurer, E.P.; Hidalgo, H.G. Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci. 2008, 12, 551–563. [Google Scholar] [CrossRef]
- Pourmokhtarian, A.; Driscoll, C.T.; Campbell, J.L.; Hayhoe, K.; Stoner, A.M.K. The effects of climate downscaling technique and observational data set on modeled ecological responses. Ecol. Appl. 2016, 26, 1321–1337. [Google Scholar] [CrossRef]
- Wood, A.W.; Maurer, E.P.; Kumar, A.; Lettenmaier, D.P. Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res. Atmos. 2002, 107, ACL 6-1–ACL 6-15. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, W.; Brandt, M.; Abdi, A.M.; Fensholt, R. Globally Increasing Atmospheric Aridity Over the 21st Century. Earth’s Future 2022, 10, e2022EF003019. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, G.; Li, S.; Hagan, D.F.T.; Ullah, W. The combined effects of VPD and soil moisture on historical maize yield and prediction in China. Front. Environ. Sci. 2023, 11, 1117184. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Bai, H.; Xiao, D.; Wang, B.; Liu, D.L.; Feng, P.; Tang, J. Multi-model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China Plain. Int. J. Climatol. 2020, 41, E171–E186. [Google Scholar] [CrossRef]
- Knutti, R.; Rugenstein, M.; Hegerl, G. Beyond equilibrium climate sensitivity. Nat. Geosci. 2017, 10, 727–736. [Google Scholar] [CrossRef]
- Ziehn, T.; Chamberlain, M.A.; Law, R.M.; Lenton, A.; Bodman, R.W.; Dix, M.; Stevens, L.; Wang, Y.; Srbinovsky, J. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 2020, 70, 193–214. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 5, 4823–4873. [Google Scholar] [CrossRef]
- Andrews, M.B.; Ridley, J.K.; Wood, R.A.; Andrews, T.; Blockley, E.W.; Booth, B.; Burke, E.; Dittus, A.J.; Florek, P.; Gray, L.J.; et al. Historical Simulations With HadGEM3-GC3.1 for CMIP6. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001995. [Google Scholar] [CrossRef]
- Held, I.M.; Guo, H.; Adcroft, A.; Dunne, J.P.; Horowitz, L.W.; Krasting, J. Structure and Performance of GFDL’s CM4.0 Climate Model. J. Adv. Model. Earth Syst. 2019, 11, 3691–3727. [Google Scholar] [CrossRef]
- Dunne, J.P.; Horowitz, L.W.; Adcroft, A.J.; Ginoux, P.; Held, I.M.; John, J.G.; Krasting, J.P.; Malyshev, S.; Naik, V.; Paulot, F.; et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002015. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Bopp, L.; Braconnot, P.; Brockmann, P.; Cadule, P.; Caubel, A.; Davini, P.; et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- Sellar, A.A.; Jones, C.G.; Mulcahy, J.P.; Tang, Y.; Yool, A.; Wiltshire, A.; O’Connor, F.M.; Stringer, M.; Hill, R.; Palmieri, J.; et al. UKESM1: Description and Evaluation of the U.K. Earth System Model. J. Adv. Model. Earth Syst. 2019, 11, 4513–4558. [Google Scholar] [CrossRef]
- Greene, C.A.; Thirumalai, K.; Kearney, K.A.; Delgado, J.M.; Schwanghart, W.; Wolfenbarger, N.S.; Thyng, K.M.; Gwyther, D.E.; Gardner, A.S.; Blankenship, D.D. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst. 2019, 20, 3774–3781. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Yue, S.; Wang, C. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Liu, W.; Sun, F. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. J. Geophys. Res. Atmos. 2016, 121, 8329–8349. [Google Scholar] [CrossRef]
- Drápela, K.; Drápelová, I. Application of Mann-Kendall test and the Sen’s slope estimates for trend detection in deposition data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997–2010. Beskydy 2011, 4, 133–146. [Google Scholar]
- Solaimani, K.; Bararkhanpour Ahmadi, S. Evaluation of TerraClimate gridded data in investigating the changes of reference evapotranspiration in different climates of Iran. J. Hydrol. Reg. Stud. 2024, 52, 101678. [Google Scholar] [CrossRef]
- Mohapatra, S.; Weisshaar, J.C. Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells. BMC Bioinform. 2018, 19, 428. [Google Scholar] [CrossRef]
- Ssebuggwawo, V.; Kitamirike, J. Hydraulic Conditions of the Ugandan Portion of Lake Victoria; Water Resources Management Department, Directorate of Water Development: Entebbe, Uganda, 2005.
- Odongo, R.; Alex Ogwang, B.; Kisembe, J.; Ngoma Nadoya, H.; Inguula Odongo, R.; Ngoma, H.N. An observational study of Lake Breeze over the Victoria basin in Uganda. N. Am. Acad. Res. 2022, 5, 109–123. [Google Scholar] [CrossRef]
- Nakyonyi, A. Maritime Safety on Lake Victoria Analysis of the Legal and Regulatory Framework. Master’s Thesis, University of Oslo, Oslo, Norway, 2011. [Google Scholar]
- Peterson, A.T. Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect. Dis. 2009, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Kobusinge, J.; Twesigye, C.K.; Kagezi, G.H.; Ssembajwe, R.; Arinaitwe, G. Soil Moisture Content Suitability for Coffee Growing under Climate Change Scenarios in Uganda. East Afr. Sch. J. Agric. Life Sci. 2024, 7, 165–179. [Google Scholar] [CrossRef]
- Ssembajwe, R.; Kagezi, H.G.; Arinaitwe, G.; Gidudu, A. Spatiotemporal analysis of Heat stress in East Africa: A high resolution historical (1990–2023) and future (2030–2060) perspective. In Proceedings of the Climate and Health Africa International Conference 2024, Harare, Zimbabwe, 29–31 October 2024; p. 1. [Google Scholar]
- MacMillan, K.; Monaghan, A.J.; Apangu, T.; Griffith, K.S.; Mead, P.S.; Acayo, S.; Acidri, R.; Moore, S.M.; Mpanga, J.T.; Enscore, R.E.; et al. Climate predictors of the spatial distribution of human plague cases in the West Nile region of Uganda. Am. J. Trop. Med. Hyg. 2012, 86, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Csavina, J.; Field, J.; Félix, O.; Corral-Avitia, A.Y.; Sáez, A.E.; Betterton, E.A. Effect of Wind Speed and Relative Humidity on Atmospheric Dust Concentrations in Semi-Arid Climates. Sci. Total Environ. 2014, 487, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, N.H.; Salleh, S.A.; Asmat, A.; Chan, A.; Isa, N.A.; Hazali, N.A.; Islam, M.A. Analysis of Wind Speed, Humidity and Temperature: Variability and Trend in 2017. IOP Conf. Ser. Earth Environ. Sci. 2020, 489, 012013. [Google Scholar] [CrossRef]
- Siloko, I.U.; Uddin, O.O. A statistical study of wind speed and its connectivity with relative humidity and temperature in Ughelli, Delta State, Nigeria. Sci. World J. 2023, 18, 404–413. [Google Scholar] [CrossRef]
- Müller, K.; Von Der Gathen, P.; Rex, M. Air mass transport to the tropical western Pacific troposphere inferred from ozone and relative humidity balloon observations above Palau. Atmos. Chem. Phys. 2024, 24, 4693–4716. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ssembajwe, R.; Twah, A.; Nakabugo, R.; Katende, S.; Mulinde, C.; Ddumba, S.D.; Bamutaze, Y.; Voda, M. Wind and Humidity Nexus over Uganda in the Context of Past and Future Climate Volatility. Climate 2025, 13, 86. https://doi.org/10.3390/cli13050086
Ssembajwe R, Twah A, Nakabugo R, Katende S, Mulinde C, Ddumba SD, Bamutaze Y, Voda M. Wind and Humidity Nexus over Uganda in the Context of Past and Future Climate Volatility. Climate. 2025; 13(5):86. https://doi.org/10.3390/cli13050086
Chicago/Turabian StyleSsembajwe, Ronald, Amina Twah, Rhoda Nakabugo, Sharif Katende, Catherine Mulinde, Saul D. Ddumba, Yazidhi Bamutaze, and Mihai Voda. 2025. "Wind and Humidity Nexus over Uganda in the Context of Past and Future Climate Volatility" Climate 13, no. 5: 86. https://doi.org/10.3390/cli13050086
APA StyleSsembajwe, R., Twah, A., Nakabugo, R., Katende, S., Mulinde, C., Ddumba, S. D., Bamutaze, Y., & Voda, M. (2025). Wind and Humidity Nexus over Uganda in the Context of Past and Future Climate Volatility. Climate, 13(5), 86. https://doi.org/10.3390/cli13050086