Tropical Sea Surface Temperature and Sea Level as Candidate Predictors for Long-Range Weather and Climate Forecasting in Mid-to-High Latitudes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Mean surface air temperature in the Eastern European region (45–60° N, 20–60° E) in summer | |
Mean surface air temperature in the Arctic in autumn | |
Mean sea surface temperature anomaly in the Tropical North Atlantic (5.5–23.5° N, 15–57.5° N); | |
Mean sea level at Manila South Harbour (14.5° N, 120.97° E) in autumn | |
Time (in years) | |
Summer season | |
Autumn season | |
R | Multiple regression coefficient |
A (%) | Forecast accuracy on the dependent sample with an acceptable error of 0.674 standard deviation of the predictor |
E (%) | Forecast efficiency on the dependent sample |
Detrended multiple regression coefficient (trends removed from predictors and predictant) |
References
- Lorenz, E.N. The Nature and Theory of the General Circulation of the Atmosphere; World Meteorological Organization: Geneva, Switzerland, 1967; 161p. [Google Scholar]
- Golitsyn, G.S. A similarity approach to the general circulation of planetary atmospheres. Icarus 1970, 13, 1–24. [Google Scholar] [CrossRef]
- Hartmann, D.L. Global Physical Climatology; Academic Press: San Diego, CA, USA, 1994; 411p. [Google Scholar]
- Dymnikov, V.P.; Filatov, A.N. Mathematics of Climate Modeling; Birkhauser: Boston, MA, USA, 1997; 264p. [Google Scholar]
- Randall, D. An Introduction to the Global Circulation of the Atmosphere; Princeton University Press: Cambridge, MA, USA, 2015; 456p. [Google Scholar]
- Gulev, S.K.; Latif, M.; Keenlyside, N.; Park, W.; Koltermann, K.P. North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 2013, 499, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, R.W. The ocean’s role in climate. Oceanography 2018, 31, 32–40. [Google Scholar] [CrossRef]
- Polonsky, A. The Ocean’s Role in Climate Change; Cambridge Scholars Publishing: Cambridge, UK, 2019; 294p. [Google Scholar]
- Williams, R.G.; Ceppi, P.; Roussenov, V.; Katavouta, A.; Meijers, A.J. The role of the Southern Ocean in the global climate response to carbon emissions. Phil. Trans. R. Soc. A 2023, 381, 20220062. [Google Scholar] [CrossRef]
- Ruprich-Robert, Y.; Moreno-Chamarro, E.; Levine, X.; Bellucci, A.; Cassou, C.; Castruccio, F.; Davini, P.; Eade, R.; Gastineau, G.; Hermanson, L.; et al. Impacts of Atlantic multidecadal variability on the tropical Pacific: A multi-model study. npj Clim. Atmos. Sci. 2021, 4, 33. [Google Scholar] [CrossRef]
- Årthun, M.; Eldevik, T.; Viste, E.; Drange, H.; Furevik, T.; Johnson, H.L.; Keenlyside, N.S. Skillful prediction of northern climate provided by the ocean. Nat. Commun. 2017, 8, 15875. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.M.; Eade, R.; Scaife, A.A.; Caron, L.-P.; Danabasoglu, G.; DelSole, T.M.; Delworth, T.; Doblas-Reyes, F.J.; Dunstone, N.J.; Hermanson, L.; et al. Robust skill of decadal climate predictions. npj Clim. Atmos. Sci. 2019, 2, 13. [Google Scholar] [CrossRef]
- Hoerling, M.P.; Hurrell, J.W.; Xu, T. Tropical origins for recent North Atlantic climate change. Science 2001, 292, 90–92. [Google Scholar] [CrossRef]
- Årthun, M.; Eldevik, T. On anomalous ocean heat transport toward the Arctic and associated climate predictability. J. Clim. 2016, 29, 689–704. [Google Scholar] [CrossRef]
- Alekseev, G.V.; Glok, N.I.; Vyazilova, A.E.; Kharlanenkova, N.E.; Kulakov, M.Y. Influence of SST in low latitudes on the Arctic Warming and sea ice. J. Mar. Sci. Eng. 2021, 9, 1145. [Google Scholar] [CrossRef]
- Wettstein, J.J.; Deser, C. Internal variability in projections of twenty-first-century Arctic sea ice loss: Role of the large-scale atmospheric circulation. J. Clim. 2014, 27, 527–550. [Google Scholar] [CrossRef]
- Ye, K.; Wu, R.; Liu, Y. Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s. J. Geophys. Res. Atmos. 2015, 120, 2738–2753. [Google Scholar] [CrossRef]
- Ding, Q.; Wallace, J.M.; Battisti, D.S.; Steig, E.J.; Gallant, A.J.E.; Kim, H.-J.; Geng, L. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 2014, 509, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Goss, M.; Feldstein, S.B.; Lee, S. Stationary wave interface and its relation to tropical convection and Arctic warming. J. Clim. 2016, 16, 1369–1389. [Google Scholar] [CrossRef]
- Yoo, C.; Feldstein, S.B.; Lee, S. The impact of Madden-Julian Oscillation trend on the Arctic amplification ofsurface air temperature during 1979–2008 boreal winter. Geopjys. Res. Lett. 2011, 3, L24804. [Google Scholar]
- Yoo, C.; Lee, S.; Feldstein, S.B. Arctic response to an MJO-like tropical heating in an idealized GCM. J. Atmos. Sci. 2012, 69, 2379–2393. [Google Scholar] [CrossRef]
- Hou, Y.; Johnson, N.C.; Chang, C.; Sun, W.; Man, K.; Miao, Y.; Li, X. Cold Springs Over Mid-Latitude North America Induced by Tropical Atlantic Warming. Geophys. Res. Lett. 2023, 50, e2023GL104180. [Google Scholar] [CrossRef]
- Meehl, G.A.; Chung, C.T.Y.; Arblaster, J.M.; Holland, M.M.; Bitz, C.M. Tropical decadal variability and the rate of Arctic sea ice decrease. Geopjys. Res. Lett. 2018, 45, 11326–11333. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, S.; Vihma, T.; Ding, S.; Sui, C.; Sun, B. The IPWP as a capacitor for autumn sea ice loss in Northeastern Canada. npj Clim. Atmos. Sci. 2024, 7, 259. [Google Scholar] [CrossRef]
- Alekseev, G.V.; Vyazilova, A.E.; Glok, N.I.; Ivanov, N.E.; Kharlanenkova, N.E. The effect of water temperature anomalies at low latitudes of the ocean on Arctic climate variations and their predictability. Arct. Ecol. Econ. 2019, 3, 73–83. [Google Scholar] [CrossRef]
- Alekseev, G.; Kuzmina, S.; Bobylev, L.; Urazgildeeva, A.; Gnatiuk, N. Impact of atmospheric heat and moisture transport on the Arctic warming. Int. J. Climatol. 2019, 39, 3582–3592. [Google Scholar] [CrossRef]
- Nesterov, E.S. North Atlantic Oscillation: Atmosphere and Ocean; Hydrometcenter Publishing: Moscow, Russia, 2013; 144p. [Google Scholar]
- Semenov, V.A.; Shelekhova, E.A.; Mokhov, I.I.; Zuev, V.V.; Koltermann, K.P. The influence of the Atlantic long-period oscillation on the formation of anomalous climatic regimes in the regions of northern Eurasia according to model calculations. Proc. Acad. Sci. 2014, 459, 742–745. [Google Scholar]
- De Deckker, P. The Indo-Pacific Waem Pool: Critical to world oceanography and world climate. Geosci. Lett. 2016, 3, 20. [Google Scholar] [CrossRef]
- Nesterov, E.S. Variability of atmospheric and ocean characteristics in the Atlantic-European region during El Niño and La Niña events. Meteorol. Hydrol. 2000, 8, 74–83. [Google Scholar]
- Mokhov, I.I.; Smirnov, D.A. Study of the mutual influence of the El Niño-Southern Oscillation and the North Atlantic and Arctic Oscillations. Proc. Acad. Sci. 2006, 42, 650–667. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC, 2021: Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; 2391p. [Google Scholar]
- Malinin, V.N.; Smirnov, M.A. Variability of the sea level in the tropical zone of the Pacific Ocean and El Niño-Southern Oscillation. Hydrometeorol. Ecol. 2022, 68, 463–477. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- The NCEP/NCAR Reanalysis Project at the NOAA Physical Sciences Laboratory. Available online: https://psl.noaa.gov/data/reanalysis/reanalysis.shtml (accessed on 20 January 2021).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- ECMWF Reanalysis—Interim (ERA—Interim). Available online: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-interim (accessed on 21 January 2021).
- Hadley Centre Sea Ice and Sea Surface Temperature Data Set (HadISST). Available online: https://www.metoffice.gov.uk/hadobs/hadisst (accessed on 21 January 2021).
- Permanent Service for Mean Sea Level (PSMSL) Data. Available online: https://psmsl.org/data/ (accessed on 20 February 2024).
- All-Russian Research Institute of Hydrometeorological Information—World Data Centre. Available online: http://meteo.ru/data/ (accessed on 10 February 2024).
- Enfield, D.B.; Mestas-Nuñez, A.M.; Mayer, D.A.; Cid-Serrano, L. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures. J. Geophys. Res. Ocean 1999, 104, 7841–7848. [Google Scholar] [CrossRef]
Sea Level Anomaly | Average Seasonal Surface Air Temperature | Data Source | ||
---|---|---|---|---|
45–60° N, 20–60° E, Eastern Europe | 70–90° N Arctic | 70–90° N, 120–180° E Eastern Arctic | ||
“TNA”, autumn | 0.56 (+2) summer | 0.74 (+4) autumn | 0.66 (+3) autumn | HadlSST, NCEP 1950–2023 |
Key West SL, autumn | 0.60 (+3) summer | 0.77 (+4) autumn | 0.77 (+3) autumn | PMSL, NCEP 1950–2023 |
Manila sea level, autumn | 0.72 (+6) summer | 0.84 (+6) autumn | 0.81 (+5) autumn | PMSL, NCEP 1950–2023 |
Sea Level Anomaly | Average Seasonal Surface Air Temperature | Data Source | ||
---|---|---|---|---|
45–60° N, 20–60° E, Eastern Europe | 70–90° N Arctic | 70–90° N, 120–180° E Eastern Arctic | ||
“TNA”, autumn | 0.60 (+2) summer | 0.74 (+4) autumn | 0.72 (+3) autumn | HadlSST, ERA5 1950–2023 |
Key West SL, autumn | 0.54 (+3) summer | 0.79 (+4) autumn | 0.73 (+3) autumn | PMSL, ERA5 1950–2023 |
Manila sea level, autumn | 0.83 (+6) summer | 0.83 (+6) autumn | 0.77 (+5) autumn | PMSL, ERA5 1950–2023 |
Regression Equations | Characteristics | |||
---|---|---|---|---|
R | A (%) | E (%) | ||
0.74 | 76 | 31 | 0.20 | |
0.91 | 98 | 28 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alekseev, G.; Soldatenko, S.; Glok, N.; Kharlanenkova, N.; Angudovich, Y.; Smirnov, M. Tropical Sea Surface Temperature and Sea Level as Candidate Predictors for Long-Range Weather and Climate Forecasting in Mid-to-High Latitudes. Climate 2025, 13, 84. https://doi.org/10.3390/cli13050084
Alekseev G, Soldatenko S, Glok N, Kharlanenkova N, Angudovich Y, Smirnov M. Tropical Sea Surface Temperature and Sea Level as Candidate Predictors for Long-Range Weather and Climate Forecasting in Mid-to-High Latitudes. Climate. 2025; 13(5):84. https://doi.org/10.3390/cli13050084
Chicago/Turabian StyleAlekseev, Genrikh, Sergei Soldatenko, Natalia Glok, Natalia Kharlanenkova, Yaromir Angudovich, and Maksim Smirnov. 2025. "Tropical Sea Surface Temperature and Sea Level as Candidate Predictors for Long-Range Weather and Climate Forecasting in Mid-to-High Latitudes" Climate 13, no. 5: 84. https://doi.org/10.3390/cli13050084
APA StyleAlekseev, G., Soldatenko, S., Glok, N., Kharlanenkova, N., Angudovich, Y., & Smirnov, M. (2025). Tropical Sea Surface Temperature and Sea Level as Candidate Predictors for Long-Range Weather and Climate Forecasting in Mid-to-High Latitudes. Climate, 13(5), 84. https://doi.org/10.3390/cli13050084