Assessing the Vulnerability of Farming Households on the Caribbean Island of Hispaniola to Climate Change
Abstract
:1. Introduction
2. Literature Review
2.1. Conceptualizing Vulnerability to Climate Change
2.1.1. Socio-Economic Approach
2.1.2. Biophysical Approach (Impact Assessment)
2.1.3. Integrated Approach
2.2. Methods for Measuring Vulnerability to Climate Change
2.2.1. Econometric Method
2.2.2. Indicator Method
2.3. Factors Influencing Vulnerability
3. Materials and Methods
3.1. Study Areas
3.2. Data Collection
3.3. Development of an Individual Vulnerability Index for Agricultural Households
3.3.1. Choice of Variables for the Vulnerability Assessment of Farming Households
Adaptive Capacity (AC)
Exposure
Sensitivity
3.4. Calculating the Vulnerability Index for Each Farm Household
- V is the vulnerability index;
- AC is the adaptive capacity index (social and economic variable);
- B is the biophysical index (E is exposure and S is sensitivity).
3.5. Determinants of Vulnerability
Choices of Potential Determinants
3.6. Statistical Modeling
4. Results
4.1. Description of the Vulnerability of Farming Households on the Island of Hispaniola
4.1.1. Social Vulnerability
4.1.2. Economic Vulnerability
4.1.3. Environmental (Biophysical) Vulnerability
4.2. Vulnerability of Farming Households to Climate Change
4.3. Factors That Significantly Influence Farm Households’ Vulnerability to Climate Change
4.3.1. Level of Vulnerability of the Country (Haiti vs. Dominican Republic)
4.3.2. Level of Education
4.3.3. Farm Size (TEX)
4.3.4. Access to Credit (ACR)
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Acronym | Level Vulnerability | Facteur Comportement |
---|---|---|---|
Social vulnerability variables | |||
Farming experience | EXP | Less vulnerable | 0.056 |
Vulnerable | 0.171 | ||
Highly Vulnerable | 0.458 | ||
Member of professional agricultural organizations | OPA | Less vulnerable | 2.593 |
vulnerable | 1.071 | ||
Highly Vulnerable | 0.345 | ||
Sources of information on climate and weather trends | SIC | Less vulnerable | 3.557 |
vulnerable | 1.189 | ||
Highly Vulnerable | 0.526 | ||
Level of agricultural training | NFA | Less vulnérable | 5.610 |
vulnerable | 0.793 | ||
Highly vulnerable | 0.002 | ||
Access to social media for information on climate trends and agriculture | NFS | Less vulnerable | |
vulnerable | 1.929 | ||
Highly vulnerable | 2.326 | ||
Household size | MEN | Less vulnerable | 0.040 |
vulnerable | 0.266 | ||
Highly Vulnerable | 0.012 | ||
Economic vulnerability variables | |||
Phytosanitary treatments | THP | Less vulnerable | 2.511 |
vulnerable | 1.363 | ||
Highly Vulnerable | 2.056 | ||
Extra-agricultural income | REA | Less vulnerable | 3.583 |
vulnerable | 1.149 | ||
Highly vulnerable | 0.515 | ||
Land status | SFO | Less vulnerable | 1.171 |
vulnerable | 0.478 | ||
Highly vulnerable | 0.690 | ||
Crop insurance | ARE | Less vulnerable | 5.894 |
Vulnerable | 1.393 | ||
Highly vulnerable | 2.559 | ||
Livestock owner | PRB | Less Vulnérable | 1.689 |
Vulnérable | 0.625 | ||
High vulnérable | 0.980 | ||
Land irrigated | IRR | Less vulnerable | 3.813 |
Highly vulnerable | 1.190 | ||
Vulnerable | 1.709 | ||
Type of fertilization | FER | Less vulnerable | 2.398 |
vulnerable | 1.184 | ||
Highly vulnerable | 2.984 | ||
Agricultural tools | OUT | Less vulnerable | 2.178 |
vulnerable | 0.563 | ||
Highly vulnerable | 0.966 | ||
Agricultural marketing circuit | CC | Less vulnerable | 2.469 |
vulnerable | 1.220 | ||
Highly vulnerable | 0.706 | ||
Biophysical vulnerability variables | |||
Altitude | ALT | Less vulnerable | 1.529 |
vulnerable | 0.345 | ||
Highly vulnerable | 0.006 | ||
Land slope | PEN | Less vulnerable | 0.050 |
vulnerable | 0.458 | ||
Highly vulnerable | 0.744 | ||
Crop diversification | DIV | Less vulnerable | 0.953 |
vulnerable | 0.018 | ||
Highly vulnerable | 1.594 | ||
Climatic hazards | ALC | Less vulnerable | 1.082 |
vulnerable | 1.185 | ||
Highly vulnerable | 0.013 | ||
Telluric hazards | AT | Less vulnerable | 0.161 |
vulnerable | 0.274 | ||
Highly vulnerable | 0.041 | ||
Rainfall variability | VAP | Less vulnerable | 0.831 |
vulnerable | 1.541 | ||
Highly vulnerable | 4.461 | ||
Temperature variability | VAT | Less vulnerable | 0.676 |
vulnerable | 1.598 | ||
Highly vulnerable | 5.123 | ||
Drought | SEC | Less vulnerable | 2.383 |
vulnerable | 1.253 | ||
Highly vulnerable | 0.479 | ||
Flood | INN | Less Vulnerable | 0.616 |
Vulnerable | 2.247 | ||
Highly Vulnerable | 0.689 |
References
- Sultan, B.; Roudier, P.; Traoré, S. Les impacts du changement climatique sur les rendements agricoles en Afrique de l’Ouest. In Les Sociétés Rurales Face aux Changements Climatiques et Environnementaux en Afrique de l’Ouest; Sultan, B., Lalou, R., Oumarou, A., Soumaré, M.A., Sanni, A.M., Eds.; Synthèses; IRD: Marseille, France, 2015; pp. 209–224. ISBN 978-2-7099-2146-6. [Google Scholar] [CrossRef]
- Duvil, J.; Durone, J.-B.; Paul, B. Innovations agricoles en réponse au changement climatique. In Innovations Agricoles et Agroalimentaires en Haïti; Paul, B., Ed.; Presses Universitaires des Antilles, «Espace, Territoires et Sociétés»: Guadeloupe, France, 2023; pp. 131–165. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; 3056p. [Google Scholar] [CrossRef]
- Neset, T.S.; Wiréhn, L.; Opach, T.; Glaas, E.; Linnér, B.O. Evaluation of indicators for agricultural vulnerability to climate change: The case of Swedish agriculture. Eco. Indic. 2019, 105, 571–580. [Google Scholar] [CrossRef]
- Sendhil, R.; Jha, A.; Kumar, A.; Singh, S. Extent of vulnerability in wheat producing agro-ecologies of India: Tracking from indicators of cross-section and multi-dimension data. Eco. Indic. 2018, 89, 771–780. [Google Scholar] [CrossRef]
- Sheller, M.; Leon, Y.M. Uneven socio-ecologies of Hispaniola: Asymmetric capabilities for climate adaptation in Haiti and the Dominican Republic. Geoforum 2016, 73, 32–46. [Google Scholar] [CrossRef]
- Herrera, D.A.; Ault, T.R.; Fasullo, J.T.; Coats, S.J.; Carrillo, C.M.; Cook, B.I.; Williams, A.P. Exacerbation of the 2013–2016 pan-Caribbean drought by anthropogenic warming. Geophys. Res. Lett. 2018, 45, 10–619. [Google Scholar] [CrossRef] [PubMed]
- Herrera, D.A.; Mendez-Tejeda, R.; Centella-Artola, A.; Martínez-Castro, D.; Ault, T.; Delanoy, R. Projected Hydroclimate Changes on Hispaniola Island through the 21st Century in CMIP6 Models. Atmosphere 2020, 12, 6. [Google Scholar] [CrossRef]
- David, E.; Vera, K.; Laura, S. Global Climate Risk Index 2021. In Who Suffers Most from Extreme Weather Events? Germanwatch: Berlin, Germany, 2021; Available online: https://www.germanwatch.org/es/17307 (accessed on 15 September 2023).
- Jules, J.; Paul, B.; Adam, M.; Andrieu, N. Co-conception avec les producteurs de stratégies d’adaptation au changement climatique: Le cas des exploitations agricoles en Haïti. Cah. Agric. 2023, 32, 27. [Google Scholar] [CrossRef]
- Thornton, P.K.; Jones, P.G.; Owiyo, T.; Kruska, R.L.; Herrero, M.; Kristjanson, P.; Notenbaert, A.; Bekele, N.; Omolo, A. Mapping Climate Vulnerability and Poverty in Africa. Report to the Department for International Development; ILRI: Nairobi, Kenya, 2006; p. 171. [Google Scholar]
- Piya, L.; Maharjan, K.L.; Joshi, N.P. Vulnerability of rural households to climate change and extremes: Analysis of Chepang households in the mid-hills of Nepal. In Proceedings of the International Association of Agricultural Economics (IAAE) Triennial Conference, Foz do Iguacu, Brazil, 18–24 August 2012; Available online: https://ageconsearch.umn.edu/record/126191 (accessed on 18 July 2023).
- Tesso, G. Individual level vulnerability to climate change impact among crop dependent communities of western Ethiopia. J. Agric. Econ. Dev. 2013, 2, 356–370. [Google Scholar]
- Berry, P.M.; Rounsevell, M.D.A.; Harrison, P.A.; Audsley, E. Assessing the vulnerability of agricultural land use and species to climate change and the role of policy in facilitating adaptation. Environ. Sci. Policy 2006, 9, 189–204. [Google Scholar] [CrossRef]
- Watts, M.J.; Bohle, H.G. The space of vulnerability: The causal structure of hunger and famine. Prog. Hum. Geogr. 1993, 17, 43–67. [Google Scholar] [CrossRef]
- Cutter, S.L. Vulnerability to Environmental Hazards. Prog. Hum. Geogr. 1996, 20, 529–539. [Google Scholar] [CrossRef]
- Woodward, A.; Hales, S.; Weinstein, P. Climate Change and Human Health in the Asia Pacific Region: Who will Be Most Vulnerable? Clim. Res. 1998, 11, 31–38. Available online: https://www.int-res.com/articles/cr/11/c011p031.pdf (accessed on 1 June 2024). [CrossRef]
- Chambers, R. Editorial Introduction: Vulnerability, Coping and Policy. IDS Bull. 1989, 20, 1–7. Available online: https://core.ac.uk/download/pdf/43540545.pdf (accessed on 10 June 2024). [CrossRef]
- Adger, W.N. Approches de la Vulnérabilité au Changement Climatique; Centre for Social and Economic Research on the Global Environment Working Paper GEC 96–05; University of East Anglia and University College London: Norwich, UK, 1996. [Google Scholar]
- Bohle, H.G. Vulnerability and criticality: Perspectives from social geography. IHDP Update 2001, 2, 3–5. [Google Scholar]
- Gbetibouo, G.A.; Ringler, C. Mapping South African Farming Sector Vulnerability to Climate Change and Variability: A Subnational Assessment; IFPRI Discussion Paper 00885; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2009. [Google Scholar]
- GIEC. Bilan 2001 des Changements Climatiques: Conséquences, Adaptation et Vulnérabilité; GIEC: Genève, Switzerland, 1995; 101p, Available online: https://www.observatoireclimat-hautsdefrance.org/Les-ressources/Ressources-documentaires/Bilan-2001-des-changements-climatiques-Consequences-adaptation-et-vulnerabilite (accessed on 24 February 2024).
- Moser, C.O.N. The asset vulnerability framework: Reassessing urban poverty reduction strategies. World Dev. 1998, 26, 1–19. [Google Scholar] [CrossRef]
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H. (Eds.) Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- McCarthy, J.J. (Ed.) Climate Change 2001: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar]
- Füssel, H.-M.; Klein, R.J. Climate change vulnerability assessments: An evolution of conceptual thinking. Clim. Chang. 2006, 75, 301–329. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Luers, A.L.; Lobell, D.B.; Skar, L.S.; Addams, C.L.; Matson, P.A. A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob. Environ. Chang. 2003, 13, 255–267. [Google Scholar] [CrossRef]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Broda, G.K.H.; Kasperson, J.X.; Kasperson, R.E.; et al. Illustrating the coupled human-environment system for vulnerability analysis: Three case studies. Proc. Natl. Acad. Sci. USA 2003, 100, 8080–8085. [Google Scholar] [CrossRef] [PubMed]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob. Environ. Chang. 2005, 15, 151–163. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Villegas-González, P.A.; Ramos-Cañón, A.M.; González-Méndez, M.; González-Salazar Ramón, E.; De Plaza-Solórzano, J.S. Territorial vulnerability assessment frame in Colombia: Disaster risk management. Int. J. Disaster Risk Reduct. 2017, 21, 384–395. [Google Scholar] [CrossRef]
- Füssel, H.-M. Adaptation planning for climate change: Concepts, assessment approaches, and key lessons. Sustain. Sci. 2007, 2, 265–275. [Google Scholar] [CrossRef]
- Deressa, T.; Hassan, R.M.; Ringler, C. Measuring Ethiopian Farmers’ Vulnerability to Climate Change across Regional States. Washington DC (Etats-Unis). Intl. Food Policy Res. Inst. 2008. Available online: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/1392 (accessed on 3 June 2023).
- Murphy, E.; Scott, M. Household vulnerability in rural areas: Results of an index applied during a housing crash, economic crisis and under austerity conditions. Geoforum 2014, 51, 75–86. [Google Scholar] [CrossRef]
- Fatemi, F.; Ardalan, A.; Aguirre, B.; Mansouri, N.; Mohammadfam, I. Social vulnerability indicators in disasters: Findings from a systematic review. Int. J. Disaster Risk Reduct. 2017, 22, 219–227. [Google Scholar] [CrossRef]
- Burton, C.; Rufat, S.; Tate, E. Social vulnerability: Conceptual foundations and geospatial modeling. In Vulnerability and Resilience to Natural Hazards; Fuchs, S., Thaler, T., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 53–81. Available online: https://halshs.archives-ouvertes.fr/hal-02001407 (accessed on 15 May 2024).
- Debra, J.D. Rethinking adaptation: Emotions, evolution, and climate change. Nat. Cult. 2018, 13, 378–402. [Google Scholar] [CrossRef]
- De Sherbinin, A.; Bukvic, A.; Rohat, G.; Gall, M.; McCusker, B.; Preston, B.; Apotsos, A.; Fish, C.; Kienberger, S.; Muhonda, P.; et al. Climate vulnerability mapping: A systematic review and future prospects. WIREs Clim. Chang. 2019, 10, e600. [Google Scholar] [CrossRef]
- Nelson, R.; Kokic, P.; Crimp, S.; Martin, P.; Meinke, H.; Howden, S.M.; de Voil, P.; Nidumolu, U. The vulnerability of Australian rural communities to climate variability and change: Part II—Integrating impacts with adaptive capacity. Environ. Sci. Policy 2010, 13, 18–27. [Google Scholar] [CrossRef]
- Reed Johnson, F.; Lancsar, E.; Marshall, D.; Kilambi, V.; Mühlbacher, A.; Regier, D.A.; Bresnahan, B.W.; Kanninen, B.; Bridges, J.F.P. Constructing experimental designs for discrete-choice experiments: Report of the ISPOR conjoint analysis experimental design good research practices task force. Value Health 2013, 16, 3–13. [Google Scholar] [CrossRef]
- Tzilivakis, J.; Warner, D.J.; Green, A.; Lewis, K.A. Adapting to climate change: Assessing the vulnerability of ecosystem services in Europe in the context of rural development. Mitig. Adapt Strateg. Glob. Chang. 2015, 20, 547–572. [Google Scholar] [CrossRef]
- Rana, I.A.; Routray, J.K. Actual vis-à-vis perceived risk of flood prone urban communities in Pakistan. Int. J. Disaster Risk Reduct. 2016, 19, 366–378. [Google Scholar] [CrossRef]
- Maiti, S.; Jha, S.K.; Garai, S.; Nag, A.; Bera, A.K.; Paul, V.; Upadhaya, R.C.; Deb, S.M. An assessment of social vulnerability to climate change among the districts of Arunachal Pradesh, India. Ecol. Indic 2017, 77, 105–113. [Google Scholar] [CrossRef]
- Zaatra, A. Vulnérabilité des exploitations agricoles et préférences d’adaptation au changement climatique dans le territoire du Pays Haut Languedoc et vignoble (PHLV). In Economies et Finances; Université Montpellier: Montpellier, France, 2021. [Google Scholar]
- Adger, W.N. Social vulnerability to climate change and extremes in coastal Vietnam. World Dev. 1999, 27, 249–269. [Google Scholar] [CrossRef]
- Allen, K. Vulnerability reduction and the community-based approach. In Natural Disasters and Development in a Globalizing World; Pelling, M., Ed.; Routledge: London, UK, 2003; pp. 170–185. [Google Scholar] [CrossRef]
- André, G. Cartographie du risque naturel dans le monde. Etude comparative entre une approche d’ordre social et une approche d’ordre économique de la vulnérabilité. Cybergeo Eur. J. Geogr. 2004, 286, 1–12. Available online: https://cybergeo.revues.org/2614 (accessed on 27 August 2024). [CrossRef]
- Gutu, T.; Bezabih, E.; Mengistu, K. Analysis of vulnerability and resilience to climate change induced shocks in North Shewa, Ethiopia. Scr. J. Agric. Sci. 2012, 3, 871–888. [Google Scholar] [CrossRef]
- Kelly, P.M.; Adger, W.N. Theory and practice in assessing vulnerability to climate change and facilitation adaptation. Clim. Chang. 2000, 47, 925–1352. [Google Scholar] [CrossRef]
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Ann. Assoc. Am. Geogr. 2000, 90, 713–737. [Google Scholar] [CrossRef]
- Sehgal, V.K.; Dhakar, R. Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations. Environ. Monit. Assess. 2016, 188, 197. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Nordhaus, W.; Shaw, D. The impact of global warming on agriculture: A Ricardian analysis. Am. Econ. Rev. 1994, 84, 753–771. [Google Scholar]
- Polsky, C.; Neff, R.; Yarnal, B. Building comparable global change vulnerability assessments: The vulnerability scoping diagram. Glob. Environ. Chang. 2007, 17, 472–485. [Google Scholar] [CrossRef]
- Sanghi, A.; Mendelsohn, R.; Dinar, A. The climate sensitivity of Indian agriculture. In Measuring the Impact of Climate Change on Indian Agriculture; Dinar, A., Mendelsohn, R., Evenson, R., Parikh, J., Sanghi, A., Kumar, K., Mckinsey, J., Lonergan, S., Eds.; World Bank: Washington, DC, USA, 1998. [Google Scholar]
- Adams, R.M. Global climate change and agriculture: An economic perspective. Am. J. Agric. Econ. 1989, 71, 1272–1279. [Google Scholar] [CrossRef]
- Kaiser, H.M.; Riha, S.J.; Wilks, D.S.; Rossiter, D.G.; Sampath, R.K. A farm-level analysis of economic and agronomic impacts of gradual warming. Am. J. Agric. Econ. 1993, 75, 387–398. [Google Scholar] [CrossRef]
- Olsen, J.E.; Bocher, P.K.; Jensen, Y. Comparison of scales of climate and soil data for aggregating simulated yields in winter wheat in Denmark. Agric. Ecosyst. Environ. 2000, 82, 213–228. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Mendelsohn, R. A Ricardian analysis of the impact of climate change on African crop land. CEEPA Discussion Paper 8. In Centre for Environmental Economics and Policy in Africa; University of Pretoria: Pretoria, South Africa, 2006. [Google Scholar]
- Martens, P.; Kovats, R.S.; Nijhof, S.; De Vries, P.; Livermore, M.T.J.; Bradley, D.J.; Cox, J.; McMichael, A.J. Climate change and future populations at risk of malaria. Glob. Environ. Chang. 1999, 9, 89–107. [Google Scholar] [CrossRef]
- Downing, T.E. Assessing Socioeconomic Vulnerability to Famine: Frameworks, Concepts, and Applications; U.S. Agency for International Development: Washington, DC, USA, 1990; 196p. Available online: http://pdf.usaid.gov/pdf_docs/PNABJ875.pdf (accessed on 5 February 2024).
- O’Brien, K.; Leichenko, R.; Kelkar, U.; Venema, H.; Aandahl, G.; Tompkins, H.; Javed, A.; Bhadwal, S.; Barg, S.; Nygaard, L.; et al. Mapping vulnerability to multiple stressors: Climate change and globalization in India. Glob. Environ. Chang. 2004, 14, 303–313. [Google Scholar] [CrossRef]
- Campbell, D.J. Response to drought among farmers and herders in southern Kajiado district, Kenya: A comparison of 1972–1976 and 1994–1995. Hum. Ecol. 1999, 27, 377–415. [Google Scholar] [CrossRef]
- Eriksen, S.H.; Kelly, P.M. Developing credible vulnerability indicators for climate adaptation policy assessment. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 495–524. [Google Scholar] [CrossRef]
- Christiaensen, L.J.; Subbarao, K. Towards an understanding of household vulnerability in rural Kenya. J. Afr. Econ. 2005, 14, 520–558. [Google Scholar] [CrossRef]
- Ligon, E.; Schechter, L. Measuring vulnerability. Econ. J. 2003, 113, 95–102. [Google Scholar] [CrossRef]
- Hoddinott, J.; Quisumbing, M.A.R. Data Sources for Microeconometric Risk and Vulnerability Assessments; World Bank, Social Protection; International Food Policy Research Institute: Washington, DC, USA, 2003; Available online: http://documents.worldbank.org/curated/en/653621468782078702/Data-sources-for-microeconometric-risk-and-vulnerability-assessments (accessed on 1 September 2023).
- Gallopín, G.C. Environmental and sustainability indicators and the concept of situational indicators. A systems approach. Environ. Model. Assess. 1996, 1, 101–117. [Google Scholar] [CrossRef]
- Hinkel, J. Indicators of vulnerability and adaptive capacity”: Towards a clarification of the science–policy interface. Glob. Environ. Chang. 2011, 21, 198–208. [Google Scholar] [CrossRef]
- Becker, D.; Schneiderbauer, S.; Forrester, J.M.; Pedoth, L. Guidelines for Development of Indicators, Indicator Systems and Provider Challenges; CRED: Louvain, Belgique, 2015; 128p, Available online: https://1library.net/document/4yrg5vjq-guidelines-development-indicators-indicator-systems[1]provide-challenges.html (accessed on 1 September 2023).
- Brooks, N. Vulnerability, Risk and Adaptation: A Conceptual Framework; Working Paper 38; Tydall Centre for Climate Change Research, University of East Anglia: Norwich, UK, 2003; 16p. [Google Scholar]
- D’Ercole, R.; Metzger, P. Territorial vulnerability: A new approach of risks in urban areas. Cybergeo Eur. J. Geogr. Doss. Vulnérabilités Urbaines Au Sud 2009, 447, 1–16. [Google Scholar] [CrossRef]
- Moss, R.H.; Brenkert, A.L.; Malone, E.L. Vulnerability to Climate Change: A Quantitative Approach; Research Report Prepared for the U.S. Department of Energy; Springer: Dordrecht, The Netherlands, 2001; pp. 33–49. [Google Scholar]
- Nhemachena, C.; Benhin, J.; Glwadys, G. Vulnerability to climate change and adaptive capacity in South African agriculture. In Proceedings of the IFPRI Workshop, “Food and Water Security Under Global Change: Developing Adaptive Capacity with a Focus on Rural Africa”, Washington, DC, USA, 16–21 October 2006. [Google Scholar]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S.; Hoffman, A.; Giovannini, E. Handbook on Constructing Composite Indicators: Methodology and User Guide; Organisation for Economic Co-Operation and Development: Paris, France, 2008. [Google Scholar]
- Birkmann, J. Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications. Environ. Hazards 2007, 7, 20–31. [Google Scholar] [CrossRef]
- Vincent, K. Uncertainty in adaptive capacity and the importance of scale. Glob. Environ. Chang. 2007, 17, 12–24. [Google Scholar] [CrossRef]
- Binder, C.R.; Feola, G.; Steinberger, J.K. considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- Barnett, J.; Lambert, S.; Fry, I. The hazards of indicators: Insights from the environmental vulnerability index. Ann. Assoc. Am. Geogr. 2008, 98, 102–119. [Google Scholar] [CrossRef]
- Vincent, K. Creating an Index of Social Vulnerability to Climate Change for Africa; Working Paper 56; Tyndall Center for Climate Change Research, University of East Anglia: Norwich, UK, 2004. [Google Scholar]
- United Nations. Living with Risk: A Global Review of Disaster Reduction Initiatives; United Nations: Geneve, Switzerland, 2004; 429p, Available online: https://www.unisdr.org/files/657_lwr1.pdf (accessed on 1 May 2024).
- Duvil, J. Perceptions and Adaptation Strategies of Farmers Facing the Impacts of Climate Change in the Caribbean Region: The Case of Haiti and the Dominican Republic. Master’s Thesis, Université Paris Saclay, Paris, France, 2021. [Google Scholar] [CrossRef]
- Centre National de l’Information Géo-Spatiale (CNIGS). 2024. Available online: http://www.cnigs.ht (accessed on 7 October 2023).
- PNACC-RD. Plan Nacional de Adaptación para el cambio climático en la República Dominicana 2015–2030. Un país Resiliente Frente al Cambio Climático; Ministerio de Medio Ambiente y Recursos Naturales, CNCCMDL, GEF y PNUD: Santo Domingo, Dominican Republic, 2016. [Google Scholar]
- Paul, B.; Fréguin-Gresh, S.; Marzin, J.; Pressoir, G. Diagnostic Agro-Socio-Economique de la Commune de Saint Michel de l’Attalaye (Haïti). Doctoral Dissertation, CIRAD, Université de Quisqueya, Chibas, Port-au-Prince, Haïti, 2021. [Google Scholar] [CrossRef]
- Ouédraogo, M.; Dembélé, Y.; Somé, L. Perceptions et stratégies d’adaptation aux changements des précipitations: Cas des paysans du Burkina Faso. Sécheresse 2010, 21, 87–96. [Google Scholar] [CrossRef]
- Kabore, P.N.; Barbier, B.; Ouoba, P.; Kiema, A.; Some, L.; Ouedraogo, A. Perceptions du Changement Climatique, Impacts Environnementaux et Strategies Endogènes D’adaptation par les Producteurs du Centre-nord du Burkina Faso. VertigO 2019, 19, 23. Available online: https://id.erudit.org/iderudit/1065432ar (accessed on 6 October 2023). [CrossRef]
- Arun, G.C.; et Yeo, J.H. Perception to Adaptation of Climate Change in Nepal: An Emprirical Analysis Using Multivariate Probit Model. Sci 2019, 1, 14. [Google Scholar]
- Sendhil, R.; Jha, A.; Kumar, A.; Singh, S.; Kharub, A.S. Status of vulnerability in wheat and barley producing states of India. J. Wheat Res. 2017, 9, 60–63. [Google Scholar] [CrossRef]
- Vásquez-León, M.; West, C.T.; Finan, T.J. A comparative assessment of climate vulnerability: Agriculture and ranching on both sides of the US–Mexico border. Glob. Environ. Chang. 2003, 13, 159–173. [Google Scholar] [CrossRef]
- Leichenko, R.M.; O’Brien, K.L. The dynamics of rural vulnerability to global change: The case of Southern Africa. Mitig. Adapt. Strateg. Glob. Chang. 2001, 7, 1–18. [Google Scholar] [CrossRef]
- Fritzsche, K.; Schneiderbauer, S.; Bubeck, P.; Kienberger, S.; Buth, M.; Zebisch, M.; Kahlenborn, W. Guide de Référence sur la Vulnérabilité: Concept et Lignes Directrices pour la Conduite D’analyses de Vulnérabilité Standardisées; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ): Bonn, Allemagne, 2015; 178p, Available online: https://www.adaptationcommunity.net/?wpfb_dl=262 (accessed on 3 July 2023).
- Wiréhn, L.; Opach, T.; Neset, T.-S. Assessing agricultural vulnerability to climate change in the Nordic countries—An interactive geovisualization approach. J. Environ. Plann. Manag. 2017, 60, 115–134. [Google Scholar] [CrossRef]
- Lucas, P.L.; Hilderink, H.B.M. The Vulnerability Concept and Its Application to Food Security; Report 550015004/2004; National Institute for Public Health and the Environment (RIVM): Bilthoven, The Netherlands, 2004; 40p, Available online: https://rivm.openrepository.com/bitstream/handle/10029/257643/550015004.pdf?sequence=3&isAllowed=y (accessed on 27 August 2024).
- Engle, N.L. Adaptive capacity and its assessment. Glob. Environ. Chang. 2011, 21, 647–656. [Google Scholar] [CrossRef]
- Nor Diana, M.I.; Zulkepli, N.A.; Siwar, C.; Zainol, M.R. Farmers’ adaptation strategies to climate change in Southeast Asia: A systematic literature review. Sustainability 2022, 14, 3639. [Google Scholar] [CrossRef]
- GIEC. Changements Climatiques 2014: Rapport de Synthèse; GIEC: Genève, Switzerland, 2014; 161p, Available online: http://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_fr.pdf (accessed on 1 September 2023).
- Preston, B.L.; Stafford-Smith, M. Framing Vulnerability and Adaptive Capacity Assessment: Discussion Paper; CSIRO Climate Adaptation National Research Flagship: Aspendale, Australia, 2009; Available online: https://research.csiro.au/climate/wp-content/uploads/sites/54/2016/03/2_Working-Paper2_CAF_PDF-Standard.pdf (accessed on 7 July 2024).
- Handmer, J.; Honda, Y.; Kundzewicz, Z.W.; Arnell, N.; Benito, G.; Hatfield, J.; Mohamed, I.F.; Peduzzi, P.; Wu, S.; Sherstyukov, B.; et al. Changes in impacts of climate extremes: Human systems and ecosystems. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation Special Report of the Intergovernmental Panel on Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA; pp. 231–290.
- Feroze, S.M.; Chouhan, A.K. Performance of dairy self help groups in India: Principal component analysis approach. Indian J. Agric. Econ. 2010, 65, 308–318. [Google Scholar]
- Nelson, R.; Kokic, P.; Elliston, L.; Jo-Anne, K. Structural Adjustment: A Vulnerability Index for Australian Broadacre Agriculture. Aust. Commod. 2005, 12, 171–179. [Google Scholar]
- Filmer, D.; Pritchett, L.H. Estimating wealth effects without expenditure data—Or tears: An application to educational enrollments of India. Demography 2001, 38, 115–132. [Google Scholar]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 243–261. [Google Scholar] [CrossRef]
- Langyintuo, A.S. Maize production systems for Zimbabwe: Setting indicators for impact assessment and targeting. In Research Project on Strengthening Seed Marketing Incentives in Southern Africa to Increase Impact of Maize Breeding; International Maize and Wheat Improvement Center (CIMMYT): Harare, Zimbabwe, 2005. [Google Scholar]
- Vyas, S.; Kumaranayake, L. Constructing socio-economic status indices: How to use principal component analysis. Health Policy Plan. 2006, 21, 459–468. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Dong, Z.; Pan, Z.; An, P.; Wang, L.; Zhang, J.; He, D.; Han, H.; Pan, X. A novel method for quantitatively evaluating agricultural vulnerability to climate change. Ecol. Indic. 2015, 48, 49–54. [Google Scholar] [CrossRef]
- Vogel, E.; Meyer, R. Chapter 3—Climate change, climate extremes, and global food production—Adaptation in the agricultural sector. In Resilience: The Science of Adaptation to Climate Change; Zommers, Z., Alverson, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 31–49. [Google Scholar] [CrossRef]
- Moser, S.C. Entering the period of consequences: The explosive US awakening to the need for adaptation. In Climate Change Adaptation in Developed Nations: From Theory to Practice; Ford, J.D., Berrang-Ford, L., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 33–49. [Google Scholar] [CrossRef]
- Jones, B.; Andrey, J. Vulnerability index construction: Methodological choices and their influence on identifying vulnerable neighbourhoods. Int. J. Emerg. Manag. 2007, 4, 269–295. [Google Scholar] [CrossRef]
- Adger, W.N.; Dessai, S.; Goulden, M.; Hulme, M.; Lorenzoni, I.; Nelson, D.R.; Naess, L.O.; Wolf, J.; Wreford, A. Are there social limits to adaptation to climate change? Clim. Chang. 2009, 93, 335–354. [Google Scholar] [CrossRef]
- Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting agriculture to climate change in Kenya: Household strategies and determinants. J. Environ. Manag. 2013, 114, 26–35. [Google Scholar] [CrossRef]
- Adger, W.N.; Vincent, K. Uncertainty in Adaptive Capacity. C R Geosci. 2005, 337, 399–410. [Google Scholar] [CrossRef]
- Shukla, R.; Sachdeva, K.; Joshi, P.K. Inherent vulnerability of agricultural communities in Himalaya: A village-level hotspot analysis in the Uttarakhand state of India. Appl. Geogr. 2016, 74, 182–198. [Google Scholar] [CrossRef]
- Arunrat, N.; Wang, C.; Pumijumnong, N.; Sereenonchai, S.; Cai, W. Farmers’ intention and decision to adapt to climate change: A case study in the Yom and Nan basins, Phichit province of Thailand. J. Clean. Prod. 2017, 143, 672–685. [Google Scholar] [CrossRef]
- Abdul-Razak, M.; Kruse, S. The adaptive capacity of smallholder farmers to climate change in the Northern Region of Ghana. Clim. Risk Manag. 2017, 17, 104–122. [Google Scholar] [CrossRef]
- Nhemachena, C.; Hassan, R. Micro-Level Analysis of Farmers’ Adaptation to Climate Change in Southern Africa; IFPRI Discussion Paper 00714 August; International Food PolicyResearch Institute: Washington, DC, USA, 2007. [Google Scholar]
- Nabikolo, D.; Bashaasha, B.; Mangheni, M.N.; Majaliwa, J.G.M. Determinants of climate change adaptation among male and female headed farm households in eastern Uganda. Afr. Crop Sci. J. 2012, 20, 203–212. Available online: https://www.ajol.info/index.php/acsj/article/view/81767 (accessed on 10 July 2023).
- Defiesta, G.; Rapera, C. Measuring adaptive capacity of farmers to climate change and variability: Application of a composite index to an agricultural community in the Philippines. J. Environ. Sci. Manag. 2014, 17, 48–62. [Google Scholar] [CrossRef]
- Alauddin, M.; Sarker, M.A.R. Climate change and farm-level adaptation decisions and strategies in drought-prone and groundwater-depleted areas of Bangladesh: An empirical investigation. Ecol. Econ. 2014, 106, 204–213. [Google Scholar] [CrossRef]
- Shewmake, S. Vulnerability and the Impact of Climate Change in South Africa’s Limpopo River Basin; IFPRI Discussion Paper 00804; Environment and Production Technology Division: New York, NY, USA, 2008. [Google Scholar]
Methods | Description | References |
---|---|---|
Vulnerability as Expected Poverty (VEP) |
| [66] |
Vulnerability as a low expected utility |
| [67] |
Vulnerability as uninsured exposure to risk |
| [68] |
Department | Municipalities | Population | Surface Area (Km2) | Geographical Coordinates | Altitude (m) | Survey | |
---|---|---|---|---|---|---|---|
Frequency | % | ||||||
Centre (Haiti) | Hinche | 120,867 | 588.4 | 19°09′ N, 72°01′ O | 237 | 60 | 10.9 |
Cerca-la-source | 56,532 | 345 | 19°10′ N, 71°47′ O | 371 | 60 | 10.9 | |
Cerca-Carvajal | 23,254 | 156.9 | 19°16′ N, 71°57′ O | 459 | 30 | 5.45 | |
Nord’Ouest (Haiti) | Port-de-paix | 185,707 | 351.75 | 19°57′ N, 72°50′ O | 36 | 30 | 5.45 |
Bassin bleu | 57,697 | 214.83 | 19°47′ N, 72°48′ O | 198 | 30 | 5.45 | |
Môle saint Nicolas | 3075 | 227.07 | 19°48′ N, 73°23′ O | 36 | 40 | 7.27 | |
Artibonite en Haïti | Saint Michel de l’Attalaye | 136,876 | 613.74 | 19°17′ N, 72°04′ O | 420 | 30 | 5.45 |
Marmalade | 34,609 | 108.94 | 19°31′ N, 72°21′ O | 759 | 30 | 5.45 | |
Nord (Haiti) | Saint Raphaël | 53,755 | 183 | 19°17′ N, 72°04′ O | 373 | 30 | 5.45 |
Sud (Haiti) | Aux cayes | 151,696 | 191.11 | 18°11′ N, 73°45′ O | 70 | 30 | 5.45 |
Camp perrin | 40,962 | 151.42 | 18°19′ N 73°51′ O | 424 | 30 | 5.45 | |
Tobeck | 78,603 | 201.86 | 18°10′ N, 73°49′ O | 40 | 30 | 5.45 | |
Elias piñas (RD) | Hondo valle | 10,647 | 128.53 | 18°43′ N, 71°42′ O | 890 | 20 | 3.63 |
Santiago (RD) | Santiago de los caballeros | 283,651 | 236.51 | 18°77′ N, 70°44′ O | 199 | 20 | 3.63 |
Dajabón (RD) | Dajabón | 25,983 | 253.4 | 19°33′ N, 71°42′ O | 35 | 20 | 3.63 |
Valverde (RD) | Santa cruz de Mao | 49,475 | 409.66 | 19°34′ N, 75°05 O | 85 | 20 | 3.63 |
Santiago Rodriguez (RD) | Monción | 11,753 | 101.61 | 19°26′ N, 71°10′ O | 372 | 20 | 3.63 |
San Juan | Las matas de Farfán | 70,586 | 636.64 | 18°52′ N 71°31′ O | 415 | 20 | 3.63 |
Variable for Studying the Vulnerability of Agricultural Households | Notes | ID de la Classe | Agricultural Household Number | Level_Vulnerability of Agricultural Households | % of Agricultural Households |
---|---|---|---|---|---|
Variable adaptive capacity | |||||
Variable Social | |||||
Farming experience | |||||
15 to 30 | 1 | EXP1 | 179 | Highly vulnerable | 33.55 |
31–50 | 2 | EXP2 | 318 | Vulnerable | 57.82 |
51 and more | 3 | EXP3 | 53 | Less vulnerable | 9.64 |
Household size | |||||
7 and more | 1 | MEN1 | 315 | Highly vulnerable | 57.27 |
4 to 6 | 2 | MEN2 | 73 | Vulnerable | 29.45 |
1 to 3 | 3 | MEN3 | 162 | Less Vulnerable | 13.27 |
Member of professional agricultural organizations | |||||
1 | 1 | OPA1 | 167 | Highly Vulnerable | 30.36 |
2 | 2 | OPA2 | 224 | vulnerable | 40.72 |
3 and more | 3 | OPA3 | 159 | Less vulnerable | 28.70 |
Access to social media for information on climate trends and agriculture | |||||
No access | 1 | SFN1 | 138 | Highly vulnerable | 25.09 |
Agricultural technology | 2 | SFN2 | 226 | Vulnerable | 41.09 |
Above Bac +4 | 3 | SFN3 | 186 | Less vulnerable | 33.82 |
Sources of information on climate and weather trends | |||||
Sign and change in the environment | 1 | SIC1 | 233 | Highly vulnerable | 42.36 |
Mutual aid between farmers | 2 | SIC2 | 213 | Vulnerable | 38.73 |
Scientific documents (books, articles, etc.) | 3 | SIC3 | 104 | Less vulnerable | 18.91 |
Level of agricultural training | |||||
No training | 1 | NFA1 | 91 | Highly vulnerable | 73.04 |
Agricultural technology | 2 | NFA2 | 401 | Vulnerable | 16.58 |
Higher than Bac +4 | 3 | NFA3 | 57 | Less vulnerable | 10.38 |
Variable economic | |||||
Off-farm income | |||||
No access | 1 | REA1 | 237 | Highly vulnerable | 43.09 |
Sometimes | 2 | REA2 | 173 | Vulnerable | 31.45 |
Very often | 3 | REA3 | 140 | Less vulnerable | 25.45 |
Land status | |||||
FVI > 50% | 1 | SFO1 | 220 | Highly vulnerable | 40 |
FVI < 50% | 2 | SFO2 | 118 | Vulnerable | 21.45 |
The earth belongs to me | 3 | SFO3 | 212 | Less vulnerable | 38.55 |
Crop insurance | |||||
No crop insurance | 1 | ARE1 | 444 | Highly vulnerable | 80.73 |
Single-risk insurance | 2 | ARE2 | 43 | Vulnerable | 7.82 |
Multi-risk insurance | 3 | ARE3 | 63 | Less vulnerable | 11.45 |
Livestock owner | |||||
No livestock | 1 | PRB1 | 169 | Highly vulnerable | 21.45 |
Less than 3 livestock units | 2 | PRB2 | 118 | Vulnerable | 30.73 |
Own more than 3 livestock units | 3 | PRB3 | 263 | Less vulnerable | 47.82 |
Irrigation | |||||
No Irrigation, dry surface | IRR1 | 274 | Highly vulnerable | 49.82 | |
Yes, surface irrigated | IRR2 | 134 | Vulnerable | 24.36 | |
Yes, irrigated area | IRR3 | 142 | Less vulnerable | 25.82 | |
Phytosanitary treatments | |||||
No treatment | 1 | TPH1 | 189 | Highly vulnerable | 34.36 |
Systemic | 2 | TPH2 | 285 | Vulnerable | 51.82 |
Reasoned and preventive | 3 | TPH3 | 76 | Less vulnerable | 13.82 |
Type of fertilization | |||||
No fertilization | 1 | FER1 | 189 | Highly vulnerable | 34.36 |
Chemical | 2 | FER2 | 250 | Vulnerable | 45.45 |
Organic | 3 | FER3 | 111 | Less vulnerable | 11.18 |
Farming tools | |||||
Less than 3 farm implements | 1 | OUT1 | 221 | Highly vulnerable | 40.18 |
3 to 5 farming tools | 2 | OUT2 | 144 | Vulnerable | 26.18 |
More than 5 farm implements | 3 | OUT3 | 185 | Less vulnerable | 33.64 |
Marketing channel | |||||
Local market | 1 | CC1 | 148 | Highly vulnerable | 26.91 |
Communal market | 2 | CC2 | 347 | Vulnerable | 63.09 |
National and international markets | 3 | CC3 | 55 | Less vulnerable | 10 |
Variable for Studying the Vulnerability of Agricultural Households | Notes | ID de la Classe | Agricultural Household Number | Level_Vulnerability of Agricultural Households | % of Agricultural Households |
---|---|---|---|---|---|
Variable exposure (Biophysics) | |||||
Temperature variability | |||||
High variability | 1 | VAT1 | 86 | Highly vulnerable | 13.64 |
Low variability | 2 | VAT2 | 427 | Vulnerable | 77.64 |
Very low variability | 3 | VAT3 | 37 | Lessly vulnerable | 6.73 |
Rainfall variability | |||||
High variability | 1 | VAP1 | 91 | Highly vulnerable | 16.55 |
Low variability | 2 | VAP2 | 424 | Vulnerable | 77.09 |
Very low variability | 3 | VAP3 | 35 | Less vulnerable | 6.36 |
Variable for Studying the Vulnerability of Agricultural Households | Notes | ID de la Classe | Agricultural Household Number | Level_Vulnerability of Agricultural Households | % of Agricultural Households |
---|---|---|---|---|---|
Variable environnementale (Biophysique) | |||||
Ground slope | |||||
Less than 10% slope | 1 | PEN1 | 162 | Highly vulnerable | 26.91 |
Slopes from 10 to 25% | 2 | PEN2 | 255 | Vulnerable | 63.09 |
Slope greater than 25% | 3 | PEN3 | 133 | Less vulnerable | 10 |
Production diversity | |||||
Monoculture | 1 | DIV1 | 210 | Highly vulnerable | 38.19 |
Two main crops | 2 | DIV2 | 110 | Vulnerable | 20 |
Several main crops | 3 | DIV3 | 230 | Less vulnerable | 41.81 |
Climatic hazards (cyclones) | |||||
>4 hazards | 1 | ALC1 | 168 | Highly vulnerable | 30.55 |
2 to 3 hazards | 2 | ALC2 | 168 | Vulnerable | 30.55 |
<2 hazards | 3 | ALC3 | 214 | Less vulnerable | 38.91 |
Telluric hazards | |||||
>4 hazards | 1 | AT1 | 378 | Highly vulnerable | 68.73 |
2 to 3 hazards | 2 | AT2 | 83 | Vulnerable | 15.09 |
<2 hazards | 3 | AT3 | 89 | Less vulnerable | 16.18 |
Altitude | |||||
Low | 1 | ALT1 | 200 | Highly vulnerable | 36.36 |
Mean | 2 | ALT2 | 284 | Vulnerable | 51.64 |
High | 3 | ALT3 | 66 | Less vulnerable | 12 |
Drought | |||||
High sensitivity | 1 | SEC1 | 344 | Highly vulnerable | 62.55 |
Mean sensitivity | 2 | SEC2 | 200 | Vulnerable | 36.36 |
Low sensitivity | 3 | SEC3 | 6 | Less vulnerable | 1.09 |
Flood | |||||
High sensitivity | 1 | INN1 | 71 | Highly vulnerable | 12.91 |
Mean sensitivity | 2 | INN2 | 184 | vulnerable | 33.45 |
Low sensitivity | 3 | INN3 | 295 | Less vulnerable | 53.64 |
Class | Scale | Intervals | Description | Ca. Normalized | Label | Vulnerability Categorization |
---|---|---|---|---|---|---|
15–30 | 0–3 | 0–0.33 | Low adaptive capacity | 0.165 | EXP1 | Highly vulnerable |
31–50 | 4–7 | 0.33–0.66 | Mean adaptive capacity | 0.495 | EXP2 | Vulnerable |
51 and more | 7–10 | 0.66–1 | Highly adaptive capacity | 0.83 | EXP3 | Less vulnerable |
Variables of Social Vulnerability and Their Effect on Vulnerability Level | ||
---|---|---|
Social Vulnerability Variables | Percentage (%) | Contribution to Vulnerability Level |
Age: person over 45 | 61.08 | + |
Sex: Head women household | 29.69 | − |
Household size: Households of more than 4 people | 70.54 | + |
Level to agricultural formation: No access to farmer extension | 73.04 | + |
Level and access to agricultural extension information: No access to farmer extension | 10.38 | − |
Access to indigenous early warning information: Having no access | 18.90 | − |
Farming experience: Lack of farming experience of <15 years | 32.54 | − |
Agricultural network: no member of institutions or associations | 57.27 | + |
Social network: Who has access at least to the internet, radio, or television | 32.78 | − |
Variables of economic vulnerability and their effect on vulnerability level | ||
Economic Vulnerability Variables | Percentage (%) | Contribution to vulnerability level |
Non-farm or sometime income, diversity of income sources: Have no non-farm income or sometime | 74.54 | + |
Ownership of livestock: Own less than 3 units of tropical livestock | 47.82 | − |
Land status: FVI < 50% | 40 | − |
Land under irrigation: No access to irrigation at all | 74.18 | + |
Land cultivated with commercial fertilizer: Having no access to fertilizer at all | 34.36 | − |
Insecticide and pesticide supply: Having no access to use insecticide and pesticide supply | 34.36 | − |
Access to credit: Having no access to credit | 79.28 | + |
Farm tools: Own more than 5 farm tools | 33.64 | − |
Crop assurance: Having access to crop assurance | 88.55 | + |
Commercialization circuit: At least part of the product is sold on the local market | 26.91 | − |
Environmental vulnerability indicators and their effect on vulnerability level | ||
Environmental vulnerability variables (measures of sensitivity and exposure) | Percentage | Contribution to vulnerability level |
Rainfall: People facing exposure to a moderate and high rainfall variability | 93.64 | + |
High temperature: People facing exposure to a moderate and high temperature variability | 91.28 | + |
Land topography: Slope > 25% | 26.91 | − |
Crop diversity: Less than 50% of the 2 main crops grown in the area | 63.09 | + |
Fertility level: Low fertility (cannot produce without using much fertilizer) | 25.09 | − |
Frequency of hazards teluric: People facing less than 2 natural hazards per year | 16.18 | − |
Frequency of cyclones: People facing less than 2 natural hazards per year | 69.46 | + |
Frequency of drought: People facing a high and moderate sensibility per year | 98.91 | + |
Frequency of flood: People facing a high and moderate sensibility per year | 66.36 | + |
Altitude: People with plots at high altitude | 36.36 | − |
Country | Vulnerability Index | Vulnerability Level | Number Farmers of the Vulnerability Level | Percentage of HHs (%) |
---|---|---|---|---|
Haïti | <33e percentile | Highly vulnerable | 158 | 36,74 |
>33e <66e percentiles | Vulnerable | 157 | 36,51 | |
>66e percentile | Less vulnerable | 115 | 26,75 | |
Total | 430 | 100 | ||
Dominican Republic | <33e percentile | Highly vulnerable | 24 | 20 |
>33e <66e percentiles | Vulnerable | 24 | 20 | |
>66e percentile | Less vulnerable | 72 | 60 | |
Total | 120 | 100 |
Variables | Variable Level | Odds_Ratio | Lower_CI | Upper_CI | p_Value |
---|---|---|---|---|---|
Level of vulnerability | Less vulnerable|Very vulnerable | 0.44 | 0.23 | 0.81 | p < 0.05 |
Level of vulnerability | Very vulnerable|Vulnerable | 1.99 | 1.08 | 3.66 | p < 0.05 |
Country | Haiti | 9.49 | 4.30 | 20.93 | p < 0.001 |
Level of education | Secondary | 0.37 | 0.16 | 0.86 | p < 0.05 |
Level of education | University | 0.05 | 0.01 | 0.17 | p < 0.001 |
Farm size | Operator Medium | 11.35 | 4.16 | 30.93 | p < 0.001 |
Farm size | Small operator | 8.38 | 3.31 | 21.18 | p < 0.001 |
Access to credit | Very accessible | 0.15 | 0.05 | 0.45 | p < 0.001 |
Country: Level of education | Haïti: University | 10.96 | 3.04 | 39.44 | p < 0.001 |
Country: Farm size | Haïti: Operator Medium | 0.13 | 0.04 | 0.40 | p < 0.001 |
Country: Farm size | Haïti: Small operator | 0.16 | 0.05 | 0.47 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duvil, J.; Feuillet, T.; Emmanuel, E.; Paul, B. Assessing the Vulnerability of Farming Households on the Caribbean Island of Hispaniola to Climate Change. Climate 2024, 12, 138. https://doi.org/10.3390/cli12090138
Duvil J, Feuillet T, Emmanuel E, Paul B. Assessing the Vulnerability of Farming Households on the Caribbean Island of Hispaniola to Climate Change. Climate. 2024; 12(9):138. https://doi.org/10.3390/cli12090138
Chicago/Turabian StyleDuvil, Jacky, Thierry Feuillet, Evens Emmanuel, and Bénédique Paul. 2024. "Assessing the Vulnerability of Farming Households on the Caribbean Island of Hispaniola to Climate Change" Climate 12, no. 9: 138. https://doi.org/10.3390/cli12090138
APA StyleDuvil, J., Feuillet, T., Emmanuel, E., & Paul, B. (2024). Assessing the Vulnerability of Farming Households on the Caribbean Island of Hispaniola to Climate Change. Climate, 12(9), 138. https://doi.org/10.3390/cli12090138