Projecting Climate Change Impact on Precipitation Patterns during Different Growth Stages of Rainfed Wheat Crop in the Pothwar Plateau, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.2.1. Observed Data
2.2.2. Model Data
2.3. Bias Correction of GCMs Data
2.4. Wheat Crop Growth Stages in the Pothwar Plateau
2.5. Data Analysis
3. Results
3.1. Variations of Precipitation during the Different Growth Stages
3.2. Historical Changes in the Precipitation Patterns
3.3. Changes in the Projected Precipitation across the Pothwar Plateau
3.3.1. Trend Analysis of Projected Precipitation
3.3.2. Relative Change in Projected Precipitation with Reference to the Baseline Period
4. Discussion
5. Conclusions
- Historically, the annual average precipitation across the Pothwar Plateau varied from 589 to 1682 mm (1985–2014). Future projections showed a decreased precipitation, with expected ranges of 549–1531 mm under SSP2-4.5 and 556–1528 mm under SSP5-8.5.
- During the past three decades, the Pothwar Plateau has experienced a considerable decline in annual average precipitation, at the rate of −9.75 mm/decade. The decline was particularly significant during the wheat-growing (rabi) season, at a rate of −20.47 mm/decade. These changes in the historical data highlight the need for adaptive strategies to mitigate the effects of reduced precipitation on wheat production.
- During the baseline period, the precipitation amount in the first three growth stages decreased at the rates of 2.28 mm/decade, 7.13 mm/decade, and 1.24 mm/decade, respectively. However, the precipitation increased, at a rate of 14.68 mm/decade, in the fourth stage. The assessment of stage-specific variation in precipitation is very important for creating tailored interventions to help rainfed wheat growth during the most susceptible stages.
- The future predictions under the SSP2-4.5 scenario showed a combination of different patterns. Although the ACCESS-CM2 and MPI-ESM1-2-LR models indicated an increase in yearly precipitation, the majority of other models exhibited a declining trend in future precipitation. More precisely, the ensembled percentage for the rabi season showed a decline of 4.29%, emphasizing the necessity for continuous monitoring and adaptation measures.
- According to the SSP5-8.5 scenario, while two GCMs (EC-EARTH3-CC and NESM-3) predicted a general increase in yearly precipitation, the combined predictions from multiple models suggested a decrease of 4.28% in the rabi season. This shows that the rabi season wheat crop may still have water shortages despite increased annual precipitation, stressing the necessity for effective water management.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernández Ayala, J.J.; Méndez Tejeda, R. Examining the Spatiotemporal Changes in the Annual, Seasonal, and Daily Rainfall Climatology of Puerto Rico. Climate 2023, 11, 225. [Google Scholar] [CrossRef]
- Salnikov, V.; Talanov, Y.; Polyakova, S.; Assylbekova, A.; Kauazov, A.; Bultekov, N.; Musralinova, G.; Kissebayev, D.; Beldeubayev, Y. An Assessment of the Present Trends in Temperature and Precipitation Extremes in Kazakhstan. Climate 2023, 11, 33. [Google Scholar] [CrossRef]
- Gamal, G.; Nejedlik, P.; El Kenawy, A.M. Assessing Future Precipitation Patterns, Extremes and Variability in Major Nile Basin Cities: An Ensemble Approach with CORDEX CORE Regional Climate Models. Climate 2024, 12, 9. [Google Scholar] [CrossRef]
- Waseem, M.; Khurshid, T.; Abbas, A.; Ahmad, I.; Javed, Z. Impact of meteorological drought on agriculture production at different scales in Punjab, Pakistan. J. Water Clim. Change 2022, 13, 113–124. [Google Scholar] [CrossRef]
- Ali, S.; Liu, Y.; Ishaq, M.; Shah, T.; Abdullah; Ilyas, A.; Din, I. Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan. Foods 2017, 6, 39. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.J.; Koch, M.; Tahir, A.A. Impacts of climate change on thewater availability, seasonality and extremes in the Upper Indus Basin (UIB). Sustainability 2020, 12, 1283. [Google Scholar] [CrossRef]
- Anyamba, A.; Small, J.L.; Britch, S.C.; Tucker, C.J.; Pak, E.W.; Reynolds, C.A.; Crutchfield, J.; Linthicum, K.J. Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns. PLoS ONE 2014, 9, e92538. [Google Scholar] [CrossRef] [PubMed]
- Kotz, M.; Levermann, A.; Wenz, L. The effect of rainfall changes on economic production. Nature 2022, 601, 223–227. [Google Scholar] [CrossRef]
- Nie, H.; Qin, T.; Li, C.; Tang, Y.; Weng, B.; Wang, Y. Trend analysis of effective precipitation in different growth stages of winter wheat in Huaihe River Plain. Theor. Appl. Climatol. 2019, 138, 2043–2056. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; Araus, J.L.; Park, R.; Calderini, D.; Miralles, D.; Shen, T.; Zhang, J.; Parry, M.A.J. Prospects of doubling global wheat yields. Food Energy Secur. 2013, 2, 34–48. [Google Scholar] [CrossRef]
- Araya, A.; Prasad, P.V.V.; Gowda, P.H.; Djanaguiraman, M.; Kassa, A.H. Potential impacts of climate change factors and agronomic adaptation strategies on wheat yields in central highlands of Ethiopia. Clim. Change 2020, 159, 461–479. [Google Scholar] [CrossRef]
- Azmat, M.; Ilyas, F.; Sarwar, A.; Huggel, C.; Vaghefi, S.A.; Hui, T.; Qamar, M.U.; Bilal, M.; Ahmed, Z. Impacts of climate change on wheat phenology and yield in Indus Basin, Pakistan. Sci. Total Environ. 2021, 790, 148221. [Google Scholar] [CrossRef] [PubMed]
- Bannayan, M.; Eyshi Rezaei, E. Future production of rainfed wheat in Iran (Khorasan province): Climate change scenario analysis. Mitig. Adapt. Strateg. Glob. Change 2014, 19, 211–227. [Google Scholar] [CrossRef]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Song, Y.; Wang, C.; Linderholm, H.W.; Tian, J.; Shi, Y.; Xu, J.; Liu, Y. Agricultural adaptation to global warming in the tibetan plateau. Int. J. Environ. Res. Public Health 2019, 16, 3686. [Google Scholar] [CrossRef]
- Abbas, S.; Kousar, S.; Khan, M.S. The role of climate change in food security; empirical evidence over Punjab regions, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 53718–53736. [Google Scholar] [CrossRef] [PubMed]
- Abbas, F.; Rehman, I.; Adrees, M.; Ibrahim, M.; Saleem, F.; Ali, S.; Rizwan, M.; Salik, M.R. Prevailing trends of climatic extremes across Indus-Delta of Sindh-Pakistan. Theor. Appl. Climatol. 2017, 131, 1101–1117. [Google Scholar] [CrossRef]
- Saleem, F.; Zeng, X.; Hina, S.; Omer, A. Regional changes in extreme temperature records over Pakistan and their relation to Pacific variability. Atmos. Res. 2021, 250, 105407. [Google Scholar] [CrossRef]
- Ghanim, A.A.J.; Anjum, M.N.; Rasool, G.; Saifullah; Irfan, M.; Alyami, M.; Rahman, S.; Niazi, U.M. Analyzing Extreme Temperature Patterns in Subtropical Highlands Climates: Implications for Disaster Risk Reduction Strategies. Sustainability 2023, 15, 12753. [Google Scholar] [CrossRef]
- Naheed, G.; Mahmood, A. Water Requirement of Wheat Crop in Pakistan. Pakistan J. Meteorol. 2011, 6, 89–97. [Google Scholar]
- Mahmood, N.; Ahmad, R.N. Determination of Water Requirements and Response of Wheat to Irrigation at Different Soil Moisture Depletion Levels. Int. J. Agric. Biol. 2005, 7, 812–815. [Google Scholar]
- Ahmad, B.; Gaydon, D.; Bhatti, A.A.; Ahmad, M.M.; Ullah, S.; Dahri, Z.H.; Ali, I. Irrigation Scheduling Impact on Yield of Wheat, Pothowar Region, Pakistan. In The SAARC-Australia Project—Developing Capacity in Cropping Systems Modelling for South Asia; SAARC Agriculture Centre (SAC): Dhaka, Bangladesh, 2014; pp. 135–146. ISBN 978-984-33-7469-1. [Google Scholar]
- Hussain, J.; Khaliq, T.; Ahmad, A.; Akhter, J.; Asseng, S. Wheat Responses to Climate Change and Its Adaptations: A Focus on Arid and Semi-arid Environment. Int. J. Environ. Res. 2018, 12, 117–126. [Google Scholar] [CrossRef]
- Ahmad, Q.U.A.; Biemans, H.; Moors, E.; Shaheen, N.; Masih, I. Article the impacts of climate variability on crop yields and irrigation water demand in South Asia. Water 2021, 13, 50. [Google Scholar] [CrossRef]
- Wang, L.; Rohli, R.V.; Lin, Q.; Jin, S.; Yan, X. Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming. Sustainability 2022, 14, 1458. [Google Scholar] [CrossRef]
- Abbas, A.; Ullah, S.; Ullah, W.; Waseem, M.; Dou, X.; Zhao, C.; Karim, A.; Zhu, J.; Hagan, D.F.T.; Bhatti, A.S.; et al. Evaluation and projection of precipitation in Pakistan using the Coupled Model Intercomparison Project Phase 6 model simulations. Int. J. Climatol. 2022, 42, 6665–6684. [Google Scholar] [CrossRef]
- Anjum, M.N.; Ghanim, A.A.J.; Farid, H.U.; Zaman, M.; Niazi, U.M.; Rahman, S.; Alsaiari, M.A.; Irfan, M. Assessment of Climate Change and Its Impacts on the Flows of a Subtropical River Basin in the Hindu-Kush Mountain, South Asia. Pure Appl. Geophys. 2022, 179, 3841–3857. [Google Scholar] [CrossRef]
- Basheer, A.K.; Lu, H.; Omer, A.; Ali, A.B.; Abdelgader, A.M.S. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrol. Earth Syst. Sci. 2016, 20, 1331–1353. [Google Scholar] [CrossRef]
- Diaz-Nieto, J.; Wilby, R.L. A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom. Clim. Change 2005, 69, 245–268. [Google Scholar] [CrossRef]
- Anandhi, A.; Frei, A.; Pierson, D.C.; Schneiderman, E.M.; Zion, M.S.; Lounsbury, D.; Matonse, A.H. Examination of change factor methodologies for climate change impact assessment. Water Resour. Res. 2011, 47, W03501. [Google Scholar] [CrossRef]
- Goodarzi, E.; Bavani, A.R.M.; Dastorani, M.T.; Talebi, A. Evaluating effect of downscaling methods; change-factor and LARS-WG on surface runoff (A case study of Azam-Harat River basin, Iran). Desert 2014, 2, 99–109. [Google Scholar]
- Gaydon, D.S.; Saiyed, I.; Roth, C. The SAARC-Australia Project-Developing Capacity in Cropping Systems Modelling for South Asia; Gaydon, D.S., Saiyed, I., Roth, C., Eds.; SAARC Agriculture Centre (SAC) BARC Campus: Dhaka, Bangladesh, 2014; ISBN 9789843374691. [Google Scholar]
- Ahmad, M. (Ed.) Water Policy in Pakistan: Issues and Options; Springe Nature: Cham, Switzerland, 2023; ISBN 978-3-031-36131-9. [Google Scholar]
- Kamruzzaman, M.; Wahid, S.; Shahid, S.; Alam, E.; Mainuddin, M.; Islam, H.M.T.; Cho, J.; Rahman, M.M.; Chandra Biswas, J.; Thorp, K.R. Predicted changes in future precipitation and air temperature across Bangladesh using CMIP6 GCMs. Heliyon 2023, 9, e16274. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Fan, L. Winter wheat yield potentials and yield gaps in the North China Plain. Field Crops Res. 2013, 143, 98–105. [Google Scholar] [CrossRef]
Sr. No. | Stations | Lat. (°) | Long. (°) | Elevation (m) | Precipitation (mm/year) | Mean Temperature (°C/year) |
---|---|---|---|---|---|---|
1 | CHERAT | 33.82 | 71.88 | 892 | 661 | 17 |
2 | ISLAMABAD | 33.73 | 73.09 | 569 | 1255 | 22 |
3 | JHELUM | 32.94 | 73.37 | 287 | 854 | 24 |
4 | MURREE | 33.92 | 73.38 | 2025 | 1682 | 13 |
5 | CHAKWAL | 32.93 | 72.85 | 522 | 589 | 22 |
6 | RAWALPINDI | 33.59 | 73.04 | 540 | 1239 | 22 |
CMIP6 GCM | Description | Spatial Resolution | Institution | Advantages | Limitations |
---|---|---|---|---|---|
ACCESS-CM-2 | Australian Community Climate and Earth System Simulator-Coupled Model Version 2.0 | 1.25° × 1.875° | Commonwealth Scientific and Industrial Organization (CSIRO), Australia, and Bureau of Meteorology (BOM), Australia. | High level of performance in the simulation of rainfall variability and extremes. | There are some biases in the simulation of tropical storm activity and specific patterns of precipitation. |
EC-Earth3-CC | Earth Consortium-Earth 3 Model | 0.35° × 0.35° | Twenty-seven research institutes from 10 European countries. | Good performance in the representation of regional trends of precipitation and temperature. | Some inaccuracies in modeling ocean circulation and sea surface temperatures. |
MPI-ESM1-2-LR | Max Planck Institute for Meteorology Earth System Model Version 1.2 with lower resolution | 1.50° × 1.50° | Max Planck Institute for Meteorology, Germany | Capable of accurately replicating large-scale climate events like the El Niño-Southern Oscillation (ENSO). | It has a tendency to overestimate the amount of rainfall in tropical regions. |
MRI-ESM2.0 | Meteorological Research Institute Earth System Model Version 2.0 | 1.125° × 1.125° | Meteorological Research Institute, Japan | Strong ability to simulate extreme weather occurrences and monsoon systems. | Some biases in the simulation of climatic variability at high latitudes |
NESM-3 | The NUIST Earth System Model version 3 | 2.00° × 2.00° | Nanjing University of Information Science and Technology, Nanjing, China | High accuracy in simulating temperature extremes and precipitation variability, with a focus on improving monsoon modelling. | Less global validation than other GCMs. |
Growth Stage | S-1 | S-2 | S-3 | S-4 |
---|---|---|---|---|
Emergence | Tillering | Jointing and Booting | Maturity | |
Time | Mid-November–the Start of December | December–January | January–February | March–April |
Location | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Rabi Season | Annual | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | Q | Z | Q | Z | Q | Z | Q | Z | Q | Z | Q | |
Cherat | −1.16 | −0.40 | −1.79 | −0.53 | −0.18 | −0.56 | 2.03 | 20.18 | 0.11 | 2.46 | 1.5 | 54.82 |
Jhelum | −1.40 | −1.05 | −2.16 | −2.13 | 0.32 | 1.54 | 1.07 | 5.00 | −1.21 | −19.74 | −1.18 | −52.05 |
Murree | −1.75 | −4.33 | −1.85 | −9.80 | −0.71 | −9.15 | 1.12 | 16.19 | −1.86 | −96.44 | −2.64 | −210.62 |
Rawalpindi | −1.25 | −2.11 | −2.34 | −7.28 | 0.29 | 1.45 | 1.28 | 13.43 | −0.29 | −9.27 | 0.82 | 55.56 |
Islamabad | −1.20 | −1.47 | −1.61 | −4.49 | 0.29 | 1.63 | 1.57 | 16.94 | −0.01 | −1.34 | 0.68 | −9.75 |
Chakwal | −0.67 | 0.00 | −1.51 | −2.20 | −0.48 | −2.50 | 1.82 | 8.88 | 1.18 | 18.59 | 1.86 | 68.00 |
Pothwar | −1.89 | −2.28 | −2.14 | −7.13 | −0.29 | −1.24 | 1.61 | 14.68 | −0.86 | −20.47 | −0.18 | −9.75 |
GCM | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Rabi Season | Annual | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | Q | Z | Q | Z | Q | Z | Q | Z | Q | Z | Q | |
SSP2-4.5 | ||||||||||||
ACCESS-CM-2 | 1.37 | 2.44 | 0.29 | 1.32 | 0.05 | 0.49 | 0.27 | 3.80 | 0.29 | 14.58 | 0.86 | 49.28 |
EC-Earth3-CC | 0.36 | 0.15 | −1.34 | −4.68 | −0.05 | −0.48 | 0.18 | 0.88 | −0.86 | −48.02 | −1.57 | −104.59 |
MPI-ESMI-2-LR | 0.29 | 0.01 | −0.74 | 0.00 | −0.48 | −0.56 | 0.86 | 1.34 | 1.14 | 42.51 | 0.50 | 44.11 |
MRI-ESM2.0 | 1.64 | 3.60 | −1.14 | −4.04 | 1.50 | 11.29 | −1.82 | −15.11 | −0.36 | −11.14 | −0.11 | −17.44 |
NESM-3 | 0.34 | 0.03 | −0.41 | −0.03 | 0.37 | 2.07 | 0.09 | 0.01 | 0.57 | 22.24 | −0.57 | −54.49 |
MME | 0.78 | 1.22 | −0.66 | −1.47 | 0.25 | 2.456 | 0.02 | 1.81 | 0.17 | 4.34 | −0.16 | −16.26 |
SSP5-8.5 | ||||||||||||
ACCESS-CM-2 | −0.86 | −2.02 | 0.77 | 2.48 | −0.11 | −1.55 | −1.77 | −4.65 | −1.68 | −77.29 | −0.61 | −44.51 |
EC-Earth3-CC | −1.68 | −1.88 | 0.87 | 0.15 | −0.91 | −7.83 | −0.93 | −7.08 | 0.36 | 11.57 | 1.14 | 86.93 |
MPI-ESMI-2-LR | −0.41 | −0.01 | 0.52 | 0.00 | −1.02 | −4.46 | 1.15 | 3.62 | 0.25 | 4.74 | 0.00 | −2.67 |
MRI-ESM2.0 | −0.82 | −1.05 | 0.36 | 0.97 | 0.89 | 8.09 | −0.43 | −4.09 | −0.75 | −15.31 | −1.14 | −90.10 |
NESM-3 | 1.15 | 0.00 | 0.59 | 1.16 | 1.11 | 6.68 | −0.07 | −0.01 | 0.36 | 18.07 | 0.61 | 55.36 |
MME | −0.54 | −1.10 | 0.64 | 0.93 | 0.08 | 0.29 | −0.41 | −2.44 | 0.29 | 2.64 | −0.12 | −2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasool, G.; Anjum, M.N.; Kim, D.Y.; Azam, M.; Hussain, F.; Afzal, A.; Maeng, S.J.; Min, K.C. Projecting Climate Change Impact on Precipitation Patterns during Different Growth Stages of Rainfed Wheat Crop in the Pothwar Plateau, Pakistan. Climate 2024, 12, 110. https://doi.org/10.3390/cli12080110
Rasool G, Anjum MN, Kim DY, Azam M, Hussain F, Afzal A, Maeng SJ, Min KC. Projecting Climate Change Impact on Precipitation Patterns during Different Growth Stages of Rainfed Wheat Crop in the Pothwar Plateau, Pakistan. Climate. 2024; 12(8):110. https://doi.org/10.3390/cli12080110
Chicago/Turabian StyleRasool, Ghulam, Muhammad Naveed Anjum, Da Ye Kim, Muhammad Azam, Fiaz Hussain, Arslan Afzal, Seung Jin Maeng, and Kim Chin Min. 2024. "Projecting Climate Change Impact on Precipitation Patterns during Different Growth Stages of Rainfed Wheat Crop in the Pothwar Plateau, Pakistan" Climate 12, no. 8: 110. https://doi.org/10.3390/cli12080110
APA StyleRasool, G., Anjum, M. N., Kim, D. Y., Azam, M., Hussain, F., Afzal, A., Maeng, S. J., & Min, K. C. (2024). Projecting Climate Change Impact on Precipitation Patterns during Different Growth Stages of Rainfed Wheat Crop in the Pothwar Plateau, Pakistan. Climate, 12(8), 110. https://doi.org/10.3390/cli12080110