Historic Changes and Future Projections in Köppen–Geiger Climate Classifications in Major Wine Regions Worldwide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Köppen’s Climate Classification
2.3. Study Areas
3. Results
3.1. Wine Region KG Climate Types 1970–2000
3.2. Climate Change Projections for the KG Climate Classification System
3.3. Relationship between Climate Change Projections for KG Classes and Wine Regions
3.4. Impacts of Climate Change Projections in Emerging Cool Climate Wine Regions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Climate Type | Description |
---|---|
A Tropical | Af Tropical rainforest Am Tropical monsoon Aw Tropical savanna with dry winter As Tropical savanna with a dry summer |
B Dry | BWh Arid hot (Desert) BWk Arid cold (Desert) BSh Semi-arid hot (Steppe) BSk Semi-arid cold (Steppe) |
C Temperate | Cfa Humid subtropical Cfb Temperate oceanic Cfc Subpolar oceanic Cwa Monsoon-influenced humid subtropical Cwb Subtropical highland climate or monsoon-influenced temperate oceanic Cwc Cold subtropical highland climate or monsoon-influenced subpolar oceanic climate Csa Hot-summer Mediterranean climate Csb Warm-summer Mediterranean climate Csc Cold-summer Mediterranean climate |
D Continental | Dfa Hot-summer humid continental Dfb Warm-summer humid continental climate Dfc Subarctic climate Dfd Extremely cold subarctic Dwa Monsoon-influenced hot-summer humid continental Dwb Monsoon-influenced warm-summer humid continental Dwc Monsoon-influenced subarctic climate Dwd Monsoon-influenced extremely cold subarctic Dsa Mediterranean-influenced hot-summer humid continental Dsb Mediterranean-influenced warm-summer humid continental climate Dsc Mediterranean-influenced subarctic climate Dsd Mediterranean-influenced extremely cold subarctic climate |
E Polar | ET Tundra EF Icecap |
Climate | Description | Criteria |
---|---|---|
A Tropical or Equatorial Tmin 1 ≥ +18 °C | Af Tropical rainforest, fully humid Am Tropical monsoon As Equatorial savannah with a dry summer Aw Equatorial savannah with dry winter | Pmin ≥ 60 mm Pa ≥ 25(100 − Pmin) Pmin < 60 mm in summer Pmin < 60 mm in winter |
B Dry or Arid Pa < 10 Pth | BW Desert BS Semi-arid or steppe | Pa > 5 Pth Pa ≤ 5 Pth |
C Temperate or Warm temperate −3 °C < Tmin < +18 °C | Cs Warm temperate (or Mediterranean) with dry summer Cw Warm temperate (or Mediterranean) with dry winter Cf Warm temperate (or Mediterranean) fully humid | Psmin < Pwmin, Pwmax > 3 Psmin and Psmin < 40 mm Pwmin < Psmin and Psmax > 10 Pwmin neither Cs nor Cw |
D Continental or Cold Tmin ≤ −3 °C | Ds Continental with dry summer Dw Continental with dry winter Df Continental, fully humid | Psmin < Pwmin, Pwmax > 3 Psmin and Psmin < 40 mm Pwmin < Psmin and Psmax > 10 Pwmin neither Ds nor Dw |
E Polar Tmax < +10 °C | ET Tundra EF Ice cap or frost | 0 °C ≤ Tmax < +10 °C Tmax < 0 °C |
h | hot steppe or desert | Ta ≥ +18 °C |
k | Cold steppe or desert | Ta < +18 °C |
a | Hot summer | Tmax ≥ +22 °C |
b | Warm summer | Not a and at least 4 Tmin ≥ +10 °C |
c | Cold summer and cold winter | Not b and Tmin > −38 °C |
d | Extremely continental | Like c but Tmin ≤ −38 °C |
Vineyards | ET | BSh | BSk | BWh | BWk | Af | Am | As | Aw | Csa | Csb | Csc | Cwa | Cwb | Cwc | Cfa | Cfb | Cfc | Dsa | Dsb | Dsc | Dfa | Dfb | Dwa | Dwb | Dwc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
70–00 | 0.68 | 1.9 | 16.6 | 1.3 | 3.4 | 2.6 | 0.17 | 10.3 | 9.47 | 0.19 | 1.07 | 1.7 | 0.10 | 12.9 | 30.08 | 0.47 | 0.05 | 0.95 | 0.44 | 0.93 | 0.2 | 0.4 | 4.05 | 0.14 | ||
41–60 SSP2 | 0.12 | 18.0 | 5.2 | 6.9 | 2.2 | 2.9 | 0.12 | 2.1 | 0.14 | 17.4 | 1.39 | 0.01 | 2.72 | 0.5 | 0.02 | 34.2 | 5.95 | 0.01 | 0.12 | |||||||
41–60 SSP5 | 0.11 | 18.1 | 5.3 | 6.9 | 2.2 | 2.6 | 0.12 | 2.2 | 0.13 | 17.8 | 1.18 | 0.01 | 2.78 | 0.48 | 0.01 | 34.2 | 5.76 | 0.12 |
KG (%) | ET | EF | BSh | BSk | BWh | BWk | Af | Am | As | Aw | Csa | Csb | Csc | Cwa | Cwb | Cwc |
∆1 | −4.55 | −3.82 | 1.27 | 0.52 | 1.40 | 0.07 | −0.41 | 0.16 | 1.19 | 0.31 | −1.09 | −0.86 | −0.01 | −0.23 | −0.20 | −0.01 |
∆2 | −4.58 | −3.86 | 1.29 | 0.63 | 1.40 | 0.03 | −0.46 | 0.14 | 1.24 | 0.38 | −1.07 | −0.86 | −0.01 | −0.21 | −0.20 | −0.01 |
KG (%) | Cfa | Cfb | Cfc | Dsa | Dsb | Dsc | Dsd | Dfa | Dfb | Dfc | Dfd | Dwa | Dwb | Dwc | Dwd | |
∆1 | 2.78 | −1.30 | −0.20 | 0.03 | 0.30 | −0.10 | 0.00 | 5.92 | −0.23 | −7.34 | −0.74 | 1.02 | −0.18 | −0.62 | −0.34 | |
∆2 | 2.91 | −1.29 | −0.20 | 0.04 | 0.32 | −0.14 | 0.00 | 6.06 | −0.44 | −7.52 | −0.74 | 1.06 | −0.17 | −0.67 | −0.34 |
Vineyards EU | 70–00 | 41–60 SSP2 | 41–60 SSP5 | Vineyards NH | 70–00 | 41–60 SSP2 | 41–60 SSP5 | Vineyards SH | 70–00 | 41–60 SSP2 | 41–60 SSP5 |
---|---|---|---|---|---|---|---|---|---|---|---|
ET | 0.02% | ET | 0.03% | ET | 1.37% | 0.25% | 0.23% | ||||
BSh | 8.82% | 9.09% | BSh | 1.17% | 10.43% | 10.09% | BSh | 3.39% | 27.07% | 27.30% | |
BSk | 4.85% | 5.25% | 5.89% | BSk | 17.22% | 12.07% | 11.73% | BSk | 23.24% | 1.70% | 1.65% |
BWh | 0.12% | 0.10% | BWh | 3.80% | 9.01% | 9.21% | BWh | 0.79% | 9.82% | 9.77% | |
BWk | BWk | 4.50% | 3.56% | 3.45% | BWk | 4.83% | 2.76% | 2.74% | |||
Af | Af | Af | 6.08% | 5.57% | |||||||
Am | Am | Am | 0.24% | 0.25% | |||||||
As | As | As | 5.40% | 4.46% | 4.50% | ||||||
Aw | Aw | Aw | 0.36% | 0.30% | 0.27% | ||||||
Csa | 21.11% | 24.87% | 25.22% | Csa | 10.85% | 34.30% | 35.55% | Csa | 3.64% | 4.63% | 4.58% |
Csb | 7.77% | Csb | 27.56% | 5.59% | 4.69% | Csb | 1.53% | 0.10% | 0.10% | ||
Csc | Csc | 0.67% | 0.06% | 0.06% | Csc | 0.07% | |||||
Cwa | Cwa | 2.60% | 5.37% | 5.82% | Cwa | 0.96% | 2.94% | 2.87% | |||
Cwb | Cwb | Cwb | 3.50% | 1.05% | 0.99% | ||||||
Cwc | Cwc | Cwc | 0.21% | 0.04% | 0.03% | ||||||
Cfa | 14.93% | 60.28% | 59.33% | Cfa | 2.43% | 18.45% | 18.45% | Cfa | 16.92% | 26.90% | 27.62% |
Cfb | 47.46% | 0.66% | 0.37% | Cfb | 3.52% | 0.68% | 0.45% | Cfb | 32.89% | 11.65% | 11.52% |
Cfc | Cfc | 0.17% | Cfc | 0.90% | 0.01% | 0.01% | |||||
Dsa | Dsa | 0.17% | Dsa | ||||||||
Dsb | Dsb | 4.00% | Dsb | ||||||||
Dsc | Dsc | 1.87% | Dsc | ||||||||
Dfa | Dfa | 3.94% | 0.48% | 0.50% | Dfa | ||||||
Dfb | Dfb | 0.81% | Dfb | ||||||||
Dwa | Dwa | 1.73% | Dwa | ||||||||
Dwb | 3.54% | Dwb | 12.83% | Dwb | |||||||
Dwc | 0.32% | Dwc | 0.13% | Dwc |
Vineyards EU | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
70–00 | ET | BSh | BSk | BWh | Csa | Csb | Cfa | Cfb | Dwb | Dwc |
AT | 98.33% | 1.67% | ||||||||
BU | 0.27% | 41.67% | 55.65% | 2.41% | ||||||
CR | 12.12% | 0.61% | 14.55% | 71.52% | 1.20% | |||||
CZ | 100.00% | |||||||||
DE | 100.00% | |||||||||
ES | 33.77% | 32.46% | 16.23% | 4.85% | 12.69% | |||||
FR | 13.74% | 5.19% | 0.50% | 80.57% | ||||||
GR | 2.21% | 68.01% | 16.54% | 5.15% | 8.09% | |||||
HR | 0.00% | 100.00% | ||||||||
IT | 0.14% | 2.85% | 47.08% | 10.04% | 28.36% | 10.99% | 0.14% | 0.40% | ||
PT | 50.26% | 49.74% | ||||||||
RO | 27.59% | 53.58% | 17.64% | 1.19% | ||||||
SK | 92.93% | 7.07% | ||||||||
SL | 2.50% | 95.00% | 2.50% | |||||||
41–60 SSP2 | ET | BSh | BSk | BWh | Csa | Csb | Cfa | Cfb | Dwb | Dwc |
AT | 98.33% | 1.67% | ||||||||
BU | 0.82% | 0.82% | 0.54% | 96.73% | 1.09% | |||||
CR | 13.29% | 86.71% | ||||||||
CZ | 2.56% | 97.44% | ||||||||
DE | 100.00% | |||||||||
ES | 50.47% | 12.24% | 0.75% | 30.14% | 6.40% | |||||
FR | 0.17% | 19.83% | 80.00% | |||||||
GR | 11.43% | 78.10% | 10.47% | |||||||
HR | 100.00% | |||||||||
IT | 9.89% | 0.62% | 56.16% | 31.96% | 1.37% | |||||
PT | 100.00% | |||||||||
RO | 19.41% | 78.86% | 1.73% | |||||||
SK | 100.00% | |||||||||
SL | 100.00% | |||||||||
41–60 SSP5 | ET | BSh | BSk | BWh | Csa | Csb | Cfa | Cfb | Dwb | Dwc |
AT | 0.000% | 100.00% | ||||||||
BU | 1.36% | 2.17% | 0.54% | 94.84% | 1.09% | |||||
CR | 15.38% | 84.62% | ||||||||
CZ | 100.00% | |||||||||
DE | 100.00% | |||||||||
ES | 51.43% | 12.84% | 0.19% | 29.68% | 5.86% | |||||
FR | 0.17% | 20.51% | 79.32% | |||||||
GR | 11.42% | 78.10% | 10.48% | |||||||
HR | 100.00% | |||||||||
IT | 10.50% | 0.46% | 57.84% | 29.98% | 1.22% | |||||
PT | 100.00% | |||||||||
RO | 22.07% | 77.53% | 0.40% | |||||||
SK | 100.00% | |||||||||
SL | 100.00% |
Vineyards NH | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
70–00 | ET | BSh | BSk | BWh | BWk | Csa | Csb | Csc | Cwa | Cfa | Cfb | Cfc | Dsa | Dsb | Dsc | Dsd | Dfa | Dfb | Dwb | Dwc |
CH | 96.15% | 3.85% | ||||||||||||||||||
GE | 60.00% | 34.29% | 5.71% | |||||||||||||||||
US | 0.03% | 1.37% | 16.81% | 4.45% | 2.19% | 12.69% | 32.25% | 0.79% | 2.16% | 2.91% | 0.20% | 0.20% | 4.68% | 2.19% | 2.03% | 14.95% | 0.10% | |||
CN | 22.22% | 20.48% | 20.26% | 30.72% | 6.32% | |||||||||||||||
41–60 SSP2 | ET | BSh | BSk | BWh | BWk | Csa | Csb | Csc | Cwa | Cfa | Cfb | Cfc | Dsa | Dsb | Dsc | Dsd | Dfa | Dfb | Dwb | Dwc |
CH | 76.92% | 23.08% | ||||||||||||||||||
GE | 97.14% | 2.86% | ||||||||||||||||||
US | 11.66% | 10.70% | 10.54% | 0.07% | 40.08% | 6.54% | 0.07% | 19.78% | 0.56% | |||||||||||
CN | 3.56% | 22.89% | 27.56% | 42.21% | 3.78% | |||||||||||||||
41–60 SSP5 | ET | BSh | BSk | BWh | BWk | Csa | Csb | Csc | Cwa | Cfa | Cfb | Cfc | Dsa | Dsb | Dsc | Dsd | Dfa | Dfb | Dwb | Dwc |
CH | 80.77% | 19.23% | ||||||||||||||||||
GE | 2.86% | 94.28% | 2.86% | |||||||||||||||||
US | 11.46% | 10.50% | 10.77% | 0.07% | 41.55% | 5.48% | 0.07% | 19.78% | 0.32% | |||||||||||
CN | 2.00% | 21.55% | 26.67% | 45.78% | 4.00% |
Vineyards SH | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
70–00 | ET | BSh | BSk | BWh | BWk | Af | Am | As | Aw | Csa | Csb | Csc | Cwa | Cwb | Cwc | Cfa | Cfb | Cfc | Dwc |
AR | 2.43% | 8.18% | 67.39% | 10.23% | 5.50% | 4.60% | 0.64% | 0.90% | 0.13% | ||||||||||
AU | 0.89% | 28.83% | 0.18% | 7.03% | 2.36% | 1.98% | 1.34% | 13.71% | 43.30% | 0.38% | |||||||||
BR | 9.35% | 27.41% | 1.83% | 41.81% | 19.60% | ||||||||||||||
CL | 11.89% | 12.36% | 30.83% | 1.10% | 33.02% | 2.35% | 8.45% | ||||||||||||
NZ | 0.59% | 91.36% | 7.61% | 0.44% | |||||||||||||||
ZA | 5.68% | 48.30% | 16.19% | 19.03% | 1.42% | 9.38% | |||||||||||||
UY | 89.30% | 10.70% | |||||||||||||||||
41–60 SSP2 | ET | BSh | BSk | BWh | BWk | Af | Am | As | Aw | Csa | Csb | Csc | Cwa | Cwb | Cwc | Cfa | Cfb | Cfc | Dwc |
AR | 0.51% | 51.41% | 11.76% | 25.96% | 7.42% | 1.92% | 0.90% | 0.12% | |||||||||||
AU | 32.61% | 6.57% | 0.53% | 2.56% | 10.25% | 2.07% | 36.06% | 9.35% | |||||||||||
BR | 21.34% | 29.93% | 0.07% | 16.69% | 1.48% | 30.35% | 0.14% | ||||||||||||
CL | 2.21% | 11.04% | 4.26% | 18.30% | 21.61% | 22.87% | 11.67% | 0.47% | 4.26% | 3.31% | |||||||||
NZ | 21.22% | 78.78% | |||||||||||||||||
ZA | 43.71% | 0.30% | 52.40% | 3.59% | |||||||||||||||
UY | 2.50% | 97.50% | |||||||||||||||||
41–60 SSP5 | ET | BSh | BSk | BWh | BWk | Af | Am | As | Aw | Csa | Csb | Csc | Cwa | Cwb | Cwc | Cfa | Cfb | Cfc | Dwc |
AR | 0.51% | 51.66% | 11.64% | 26.21% | 7.16% | 1.92% | 0.90% | ||||||||||||
AU | 32.97% | 6.04% | 0.56% | 2.73% | 10.15% | 2.07% | 36.35% | 9.13% | |||||||||||
BR | 21.62% | 27.68% | 0.07% | 16.55% | 1.34% | 32.60% | 0.14% | ||||||||||||
CL | 1.89% | 11.04% | 3.94% | 19.87% | 21.77% | 22.08% | 11.05% | 0.32% | 4.57% | 3.47% | |||||||||
NZ | 21.83% | 78.17% | |||||||||||||||||
ZA | 43.42% | 0.30% | 52.69% | 3.59% | |||||||||||||||
UY | 0.50% | 99.50% |
Latitude | Longitude | Location | 70–00 | 41–60 SSP2 | 41–60 SSP5 |
---|---|---|---|---|---|
57.7° N | 12.0° E | Gothenburg, Sweden | Cfb | Cfa | Cfa |
51.6° N | 15.5° E | Zilona Góra, Poland | Cfb | Cfa | Cfa |
57.1° N | 9.9° E | Aalborg, Denmark | Cfb | Cfb | Cfb |
54.0° N | 1.1° W | York, Britain | Cfb | Cfb | Cfb |
50.9° N | 5.7° E | Maastricht, Netherlands | Cfb | Cfa | Cfa |
50.7° N | 120.4° W | Kamloops, British Colombia, Canada | Dwb | BSk | BSk |
46.4° N | 79.9° W | Lake Te, Timagami, Ontario, Canada | Dwb | Dwa | Dwa |
46.4° N | 71.4° W | Quebec City, Quebec, Canada | Dwb | Dwa | Dwa |
45.4° N | 65.5° W | Sussex, New Brunswick, Canada | Dwb | Cfa | Cfa |
45.2° N | 85.5° W | Leelanau Peninsula, Michigan, USA | Dwb | Cfa | Cfa |
45.2° N | 65.2° W | Annapolis Valley, Nova Scotia, Canada | Dwb | Cfa | Cfa |
45.6° S | 69.1° W | Sarmiento, Argentina | Bwk | Bwk | Bwk |
45.3° S | 169.4° E | Alexandra, New Zealand | Cfb | Cfb | Cfb |
43.3° S | 147.3° E | Bruny Island, Tasmania, Australia | Cfb | Cfb | Cfb |
42.7° S | 73.8° W | Chiloe Island, Chile | Cfb | Cfb | Cfb |
References
- Belda, B.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate classification revisited: From Köppen to Trewartha. Clim. Res. 2014, 59, 1–13. [Google Scholar] [CrossRef]
- Köppen, W. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol. Z. 2011, 20, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Bryson, R.A. Air Masses, Streamlines, and the Boreal Forest. Geogr. Bull. 1966, 8, 228–269. [Google Scholar]
- Thornwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Holdridge, L.R. Determination of world plant formations from simple climatic data. Science 1947, 105, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Köppen, W. Klassifikation der Klimate nach Temperatur, Niederschlag und Jahreslauf. Petermanns Geogr. Mitteilungen 1918, 64, 193–203, 243–248. [Google Scholar]
- Köppen, W. Das geographische System der Klimate. In Handbuch der Klimatologie; Borntraeger: Berlin, Germany, 1936; Volume 1. [Google Scholar]
- Geiger, R.F. Klassifikation der Klimate nach W. Köppen; Landolt-Börnstein—Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie; Springer: Berlin/Heidelberg, Germany, 1954; Volume 3, pp. 603–607. [Google Scholar]
- Trewartha, G.T. An Introduction to Climate; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Trewartha, G.T.; Horn, L.H. Introduction to Climate, 5th ed.; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Köppen, W. Grundiss der Klimakunde, 2nd ed.; Walter de Gruyter & Co.: Berlin, Germany, 1931. [Google Scholar]
- de Blij, H.J. Geography of viticulture: Rationale and resource. J. Geogr. 1983, 82, 112–121. [Google Scholar] [CrossRef]
- Anderson, K.; Nelgen, S. Which Winegrape Varieties Are Grown Where?, Revised ed.; University of Adelaide Press: Adelaide, Australia, 2020; p. 962. ISBN 978-1925261868. [Google Scholar]
- Jones, G.V.; Reid, R.; Vilks, A. Climate, Grapes, and Wine: Structure and Suitability in a Variable and Changing Climate. In The Geography of Wine: Regions, Terroir, and Techniques; Dougherty, P., Ed.; Springer Press: Dordrecht, The Netherlands, 2012; pp. 109–133. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Chan, D.; Wu, Q. Significant anthropogenic-induced changes of climate classes since 1950. Sci. Rep. Nat. Res. 2015, 5, 13487. [Google Scholar] [CrossRef]
- Chen, D.; Chen, H.W. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Mahlstein, I.; Daniel, J.S.; Solomon, S. Pace of shifts in climate regions increases with global temperature. Nat. Clim. Chang. 2013, 3, 739–743. [Google Scholar] [CrossRef]
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 2010, 19, 135–141. [Google Scholar] [CrossRef]
- Wang, M.; Overland, J.E. Detecting Arctic climate change using Köppen climate classification. Clim. Chang. 2004, 67, 43–62. [Google Scholar] [CrossRef]
- Feng, S.; Ho, C.H.; Hu, Q.; Oglesby, R.J.; Jeong, S.J.; Kim, B.M. Evaluating observed and projected future climate changes for the Artic using the Köppen-Trewartha climate classification. Clim. Dyn. 2012, 38, 1359–1373. Available online: https://www.jstor.org/stable/e24897565 (accessed on 21 January 2023). [CrossRef]
- Diaz, H.F.; Eischeid, J.K. Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys. Res. Lett. 2007, 34, L18707. [Google Scholar] [CrossRef]
- de Castro, M.; Gallardo, C.; Jylha, K.; Tuomenvirta, H. The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Clim. Chang. 2007, 81, 329–341. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Kurtural, S.K. Global warming and wine quality: Are we close to the tipping point? OENO One 2021, 55, 353–361. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Hijmans, R.J. Climate change, wine, and conservation. Biol. Sci. 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [PubMed]
- Sgubin, G.; Swingedouw, D.; Mignot, J.; Gambetta, G.A.; Bois, B.; Loukos, H.; Noël, T.; Pieri, P.; García de Cortázar-Atauri, I.; Ollat, N.; et al. Non-linear loss of suitable wine regions over Europe in response to increasing global warming. Glob. Chang. Biol. 2023, 29, 808–826. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Santos, J.A.; Yang, C.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.M.; Dinis, L.; Correia, C.M.; Moriondo, M.; Bindi, M.; Leolini, L.; et al. Long-term adaptation of European viticulture to climate change: An overview from the H2020 Clim4Vitis action. IVES Tech. Rev. Vine Wine 2021. [Google Scholar] [CrossRef]
- Santos, J.A.; Yang, C.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.M.; Dinis, L.; Correia, C.M.; Moriondo, M.; Bindi, M.; Leolini, L.; et al. Short-term adaptation of European viticulture to climate change: An overview from the H2020 Clim4Vitis action. IVES Tech. Rev. Vine Wine 2021. [Google Scholar] [CrossRef]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013, 119, 825–839. [Google Scholar] [CrossRef]
- World Wine Production Outlook. Wine Production—OIV First Estimates; International Organization of Vine and Wine: Dijon, France, 2022; Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.oiv.int/sites/default/files/documents/OIV_World_Wine_Production_Outlook_2023.pdf&ved=2ahUKEwiNh4ac5fuGAxU-AtsEHe4GD20QFnoECBQQAQ&usg=AOvVaw0BxkIobYX0LNebJLer5E2T (accessed on 21 January 2023).
- Swart, N.M.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Jiao, Y.; et al. CCCma CanESM5 Model Output Prepared for CMIP6 ScenarioMIP; Earth System Grid Federation, 2019; Available online: https://esgf.llnl.gov/ (accessed on 21 January 2023). [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Sixth Assessment Report (IPCC, AR6), AR6 Synthesis Report: Climate Change. 2023. Available online: https://www.ipcc.ch/assessment-report/ar6/ (accessed on 21 January 2023).
- Köppen, W.; Geiger, R. Handbuch der Klimatologie; Gebrüder Bornträger: Berlin, Germany, 1930. [Google Scholar]
- Andrade, C.; Contente, J. Köppen’s climate classification projections for the Iberian Peninsula. Clim. Res. 2020, 81, 71–80. [Google Scholar] [CrossRef]
- Kottek, M.J.; Grieser, C.; Beck, B.; Rudolf, R.F. World map of the Köppen–Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Bois, B.; Blais, A.; Moriondo, M.; Jones, G.V. High resolution climate spatial analysis of European winegrowing regions. In Proceedings of the 9th International Terroir Congress, Reims, France, 25–29 June 2012; Volume 1, pp. 217–220. [Google Scholar]
- European Environment Agency. CLC2006 Technical Guidelines; EEA Technical Report 17/2007; Office for Official Publications of the European Communities: Luxembourg, 2007. [Google Scholar]
- Bois, B.; Gavrilescu, C.; Moriondo, M.; Jones, G.V. Wine growing region global climate analysis. In Proceedings of the 11th International Terroir Congress 2016, McMinnville, OR, USA, 10–14 July 2016; pp. 9–14. [Google Scholar]
- Gavrilescu, C.; Bois, B. Chardonnay wines climate plasticity: A worldwide geographical approach. BIO Web Conf. 2016, 7, 01013. [Google Scholar] [CrossRef]
- Bois, B.; Zito, S.; Calonnec, A. Climate vs. grapevine pests and diseases worldwide: The first results of a global survey. OENO One 2017, 51, 133–139. [Google Scholar] [CrossRef]
- Jones, G.V.; Schultz, H.R. Climate change and emerging cool climate wine regions. Wine Vitic. J. 2016, 31, 51–53. [Google Scholar]
- Cramer, W.P.; Leemans, R. Assessing impacts of climate change on vegetation using climate classification systems. In Vegetation Dynamics and Global Change; Solomon, A.M., Shugart, H.H., Eds.; Springer: Boston, MA, USA, 1993; pp. 190–217. [Google Scholar]
- Rohli, R.V.; Joyner, T.A.; Reynolds, S.J.; Ballinger, T.J. Overlap of global Köppen–Geiger climates, biomes, and soil orders. Phys. Geogr. 2015, 36, 158–175. [Google Scholar] [CrossRef]
- Sohoulande, C.D. Vegetation and water resource variability within the Köppen-Geiger global climate classification scheme: A probabilistic interpretation. Theor. Appl. Climatol. 2024, 155, 1081–1092. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.S.; Dourado-Neto, D.; Timm, L.C.; Reichardt, K.; Sartori, F.F.; Felisberto, G. Climate analysis for agricultural improvement of the Economic Community of West African States according to Köppen and Thornthwaite. Afr. J. Agric. Res. 2018, 13, 1198–1212. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; García de Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Chang. 2018, 8, 29–37. [Google Scholar] [CrossRef]
- Morales-Castilla, I.; García de Cortázar-Atauri, I.; Cook, B.I.; Lacombe, T.; Parker, A.; van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity buffers winegrowing regions from climate change losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef]
- Puga, G.; Anderson, K.; Jones, G.; Tchatoka, F.D.; Umberger, W. A climatic classification of the world’s wine regions. OENO One 2022, 56, 165–177. [Google Scholar] [CrossRef]
- Labbé, T.; Pfister, C.; Brönnimann, S.; Rousseau, D.; Franke, J.; Bois, B. The longest homogeneous series of grape harvest dates, Beaune 1354–2018, and its significance for the understanding of past and present climate. Clim. Past 2019, 15, 1485–1501. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Adaptive capacity of winegrape varieties cultivated in Greece to climate change: Current trends and future projections. OENO One 2020, 54, 1201–1219. [Google Scholar] [CrossRef]
- Bécart, V.; Lacroix, R.; Puech, C.; García de Cortázar-Atauri, I. Assessment of changes in Grenache grapevine maturity in a Mediterranean context over the last half-century. OENO One 2022, 56, 53–72. [Google Scholar] [CrossRef]
- Schultz, H.R. Global climate change, sustainability, and some challenges for grape and wine production. J. Wine Econ. 2016, 11, 181–200. [Google Scholar] [CrossRef]
- Dinis, L.T.; Bernardo, S.; Yang, C.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Mediterranean viticulture in the context of climate change. Ciência Téc. Vitiv. 2022, 37, 139–158. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Stock, M.; Gerstengarbe, F.W.; Kartschall, T.; Werner, P.C. Reliability of climate change impact assessments for viticulture. In Proceedings of the VII International Symposium on Grapevine Physiology and Biotechnology, Davis, CA, USA, 21–25 July 2004; Volume 689, pp. 29–40. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santaos, T.; Regalado, A.P.; Rodriges, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef]
- Flexas, J.; Galmés, J.; Gallé, A.; Gulías, J.; Pou, A.; Ribas-Carbo, M.; Tomás, M.; Medrano, H. Improving water use efficiency in grapevines: Potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res. 2010, 16, 106–121. [Google Scholar] [CrossRef]
- Skalák, P.; Farda, A.; Zahradníček, P.; Trnka, M.; Hlásny, T.; Štěpánek, P. Projected shift of Köppen–Geiger zones in the central Europe: A first insight into the implications for ecosystems and the society. Int. J. Climatol. 2018, 38, 3595–3606. [Google Scholar] [CrossRef]
- Williams, A.P.; Abatzoglou, J.T.; Gershunov, A.; Guzman-Morales, J.; Bishop, D.A.; Balch, J.K.; Lettenmaier, D.P. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Futur. 2019, 7, 892–910. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Dayon, G.; García de Cortázar-Atauri, I.; Ollat, N.; Pagé, C.; van Leeuwen, C. The risk of tardive frost damage in French vineyards in a changing climate. Agric. For. Meteorol. 2018, 250–251, 226–242. [Google Scholar] [CrossRef]
- Lamichhane, J.R. Rising risks of late-spring frosts in a changing climate. Nat. Clim. Chang. 2021, 11, 554–555. [Google Scholar] [CrossRef]
- Mira de Orduña, R. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- White, M.A.; Diffenbaugh, N.S.; Jones, G.V.; Pal, J.S.; Giorgi, F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 2006, 103, 11217–11222. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Pijl, A.; Tarolli, P. Future climate-zone shifts are threatening steep-slope agriculture. Nat. Food 2022, 3, 193–196. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
Geographical Sector | Countries (Acronym) |
---|---|
European Union (EU) | Italy (IT), France (FR), Spain (ES), Germany (DE), Portugal (PT), Romania (RO), Hungary (HU), Austria (AT), Greece (GR), Bulgaria (BG), Slovenia (SL), Czechia (CZ), Slovakia (SK), and Luxembourg (LU) |
Outside the EU Northern Hemisphere (NH) | USA (US), China (CN), Georgia (GE), and Switzerland (CH) |
Southern Hemisphere (SH) | Chile (CL), Australia (AU), Argentina (AR), South Africa (ZA), Brazil (BR), New Zealand (NZ), and Uruguay (UY) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, C.; Fonseca, A.; Santos, J.A.; Bois, B.; Jones, G.V. Historic Changes and Future Projections in Köppen–Geiger Climate Classifications in Major Wine Regions Worldwide. Climate 2024, 12, 94. https://doi.org/10.3390/cli12070094
Andrade C, Fonseca A, Santos JA, Bois B, Jones GV. Historic Changes and Future Projections in Köppen–Geiger Climate Classifications in Major Wine Regions Worldwide. Climate. 2024; 12(7):94. https://doi.org/10.3390/cli12070094
Chicago/Turabian StyleAndrade, Cristina, André Fonseca, João A. Santos, Benjamin Bois, and Gregory V. Jones. 2024. "Historic Changes and Future Projections in Köppen–Geiger Climate Classifications in Major Wine Regions Worldwide" Climate 12, no. 7: 94. https://doi.org/10.3390/cli12070094
APA StyleAndrade, C., Fonseca, A., Santos, J. A., Bois, B., & Jones, G. V. (2024). Historic Changes and Future Projections in Köppen–Geiger Climate Classifications in Major Wine Regions Worldwide. Climate, 12(7), 94. https://doi.org/10.3390/cli12070094