Explosive Cyclone Impact on the Power Distribution Grid in Rio Grande do Sul, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. ERA5 Reanalysis
2.2.2. Multi-Source Weighted-Ensemble Precipitation
2.2.3. Power Outages
2.3. EC Definition
3. Results
3.1. Satellite Imageries
3.2. Atmospheric and Oceanic Conditions
- Mean Sea Level Pressure and 10 m winds
- 2.
- 850 hPa specific humidity and vertical motion
- 3.
- 850 hPa temperature transportation and 500 hPa geopotential height
- 4.
- Upper-level winds
- 5.
- Precipitation
- 6.
- Sea Surface Temperature
- 7.
- Latent Heat Flux
3.3. Emergency in the Power Sector
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reboita, M.S.; Gan, M.A.; da Rocha, R.P.; Ambrizzi, T. Regimes de Precipitação Na América Do Sul: Uma Revisão Bibliográfica. Rev. Bras. Meteorol. 2010, 25, 185–204. [Google Scholar] [CrossRef]
- Sanders, F.; Gyakum, J.R. Synoptic-Dynamic Climatology of the “Bomb”. Mon. Weather Rev. 1980, 108, 1589–1606. [Google Scholar] [CrossRef]
- Allen, J.T.; Pezza, A.B.; Black, M.T. Explosive Cyclogenesis: A Global Climatology Comparing Multiple Reanalyses. J. Clim. 2010, 23, 6468–6484. [Google Scholar] [CrossRef]
- Bitencourt, D.P.; Fuentes, M.V.; Cardoso, C.D.S. Climatologia de Ciclones Explosivos Para a Área Ciclogenética da América do Sul. Rev. Bras. Meteorol. 2013, 28, 43–56. [Google Scholar] [CrossRef]
- Reale, M.; Liberato, M.L.R.; Lionello, P.; Pinto, J.G.; Salon, S.; Ulbrich, S. A Global Climatology of Explosive Cyclones Using a Multi-Tracking Approach. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2019, 71, 1611340. [Google Scholar] [CrossRef]
- Sanders, F. Explosive Cyclogenesis over the West-Central North Atlantic Ocean, 1981–1984. Part II. Evaluation of LFM Model Performance. Mon. Weather Rev. 1986, 114, 2207–2218. [Google Scholar] [CrossRef]
- Seiler, C.; Zwiers, F.W. How Will Climate Change Affect Explosive Cyclones in the Extratropics of the Northern Hemisphere? Clim. Dyn. 2016, 46, 3633–3644. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, G.; Lu, C.; Liu, J. Characteristics of Explosive Cyclones over the Northern Pacific. J. Appl. Meteorol. Climatol. 2017, 56, 3187–3210. [Google Scholar] [CrossRef]
- Fortunato de Faria, L.; Reboita, M.S.; Mattos, E.V.; Carvalho, V.S.B.; Martins Ribeiro, J.G.; Capucin, B.C.; Drumond, A.; Paes dos Santos, A.P. Synoptic and Mesoscale Analysis of a Severe Weather Event in Southern Brazil at the End of June 2020. Atmosphere 2023, 14, 486. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Campos, R.M.; Guedes Soares, C.; Camargo, R. de Extreme Waves Generated by Cyclonic Winds in the Western Portion of the South Atlantic Ocean. Ocean. Eng. 2020, 213, 107745. [Google Scholar] [CrossRef]
- Ávila, A.; Justino, F.; Wilson, A.; Bromwich, D.; Amorim, M. Recent Precipitation Trends, Flash Floods and Landslides in Southern Brazil. Environ. Res. Lett. 2016, 11, 114029. [Google Scholar] [CrossRef]
- Loredo-Souza, A.M.; Lima, E.G.; Vallis, M.B.; Rocha, M.M.; Wittwer, A.R.; Oliveira, M.G.K. Downburst Related Damages in Brazilian Buildings: Are They Avoidable? J. Wind Eng. Ind. Aerodyn. 2019, 185, 33–40. [Google Scholar] [CrossRef]
- Oliveira, M.I.; Puhales, F.S.; Nascimento, E.L.; Anabor, V. Integrated Damage, Visual, Remote Sensing, and Environmental Analysis of a Strong Tornado in Southern Brazil. Atmos. Res. 2022, 274, 106188. [Google Scholar] [CrossRef]
- Pereira Filho, A.J.; Pezza, A.B.; Simmonds, I.; Lima, R.S.; Vianna, M. New Perspectives on the Synoptic and Mesoscale Structure of Hurricane Catarina. Atmos. Res. 2010, 95, 157–171. [Google Scholar] [CrossRef]
- Gobato, R.; Heidari, A. Cyclone Bomb Hits Southern Brazil in 2020. J. Atmos. Sci. Res. 2020, 3, 8–12. [Google Scholar] [CrossRef]
- De Avila, V.D.; Nunes, A.B.; Alves, R.D.C.M. Comparing Explosive Cyclogenesis Cases of Different Intensities Occurred in Southern Atlantic. An. Acad. Bras. Cienc. 2021, 93. [Google Scholar] [CrossRef] [PubMed]
- Reboita, M.S.; Crespo, N.M.; Torres, J.A.; Reale, M.; Porfírio da Rocha, R.; Giorgi, F.; Coppola, E. Future Changes in Winter Explosive Cyclones over the Southern Hemisphere Domains from the CORDEX-CORE Ensemble. Clim. Dyn. 2021, 57, 3303–3322. [Google Scholar] [CrossRef]
- Marengo, J.A.; Ambrizzi, T.; Reboita, M.S.; Costa, M.H.; Dereczynski, C.; Alves, L.M.; Cunha, A.P. Climate Variability and Change in Tropical South America. In Tropical Marine Environments of Brazil: Spatio-Temporal Heterogeneities and Responses to Climate Changes; Springer: Cham, Switzerland, 2023; pp. 15–44. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-Hourly 0.25° Global Gridded Precipitation (1979–2015) by Merging Gauge, Satellite, and Reanalysis Data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- ANEEL. Módulo 8—Qualidade Da Energia Elétrica. Available online: https://antigo.aneel.gov.br/documents/656827/14866914/M%C3%B3dulo8_Revisao_8/9c78cfab-a7d7-4066-b6ba-cfbda3058d19 (accessed on 19 February 2024).
- Seluchi, M.E.; Saulo, A.C.; Nicolini, M.; Satyamurty, P. The Northwestern Argentinean Low: A Study of Two Typical Events. Mon. Weather. Rev. 2003, 131, 2361–2378. [Google Scholar] [CrossRef]
- Saulo, A.C.; Seluchi, M.E.; Nicolini, M. A Case Study of a Chaco Low-Level Jet Event. Mon. Weather Rev. 2004, 132, 2669–2683. [Google Scholar] [CrossRef]
- Seiler, C.; Zwiers, F.W. How Well Do CMIP5 Climate Models Reproduce Explosive Cyclones in the Extratropics of the Northern Hemisphere? Clim. Dyn. 2016, 46, 1241–1256. [Google Scholar] [CrossRef]
- Watson, P.L.; Spaulding, A.; Koukoula, M.; Anagnostou, E. Improved Quantitative Prediction of Power Outages Caused by Extreme Weather Events. Weather Clim. Extrem. 2022, 37, 100487. [Google Scholar] [CrossRef]
Variable | Unit |
---|---|
10 m wind | m/s |
Mean sea level pressure | hPa |
Specific humidity at 850 hPa | g/kg |
Temperature at 850 hPa | °C |
Geopotential height at 500 hPa | m |
Vertical upward motion at 500 hPa | hPa/s |
Wind at 850 hPa and 200 hPa | m/s |
Sea surface temperature | °C |
Latent heat flux at the surface | W/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sondermann, M.; Chou, S.C.; Martins, R.G.; Amaro, L.C.; Gomes, R.d.O. Explosive Cyclone Impact on the Power Distribution Grid in Rio Grande do Sul, Brazil. Climate 2024, 12, 29. https://doi.org/10.3390/cli12030029
Sondermann M, Chou SC, Martins RG, Amaro LC, Gomes RdO. Explosive Cyclone Impact on the Power Distribution Grid in Rio Grande do Sul, Brazil. Climate. 2024; 12(3):29. https://doi.org/10.3390/cli12030029
Chicago/Turabian StyleSondermann, Marcely, Sin Chan Chou, Renata Genova Martins, Lucas Costa Amaro, and Rafael de Oliveira Gomes. 2024. "Explosive Cyclone Impact on the Power Distribution Grid in Rio Grande do Sul, Brazil" Climate 12, no. 3: 29. https://doi.org/10.3390/cli12030029
APA StyleSondermann, M., Chou, S. C., Martins, R. G., Amaro, L. C., & Gomes, R. d. O. (2024). Explosive Cyclone Impact on the Power Distribution Grid in Rio Grande do Sul, Brazil. Climate, 12(3), 29. https://doi.org/10.3390/cli12030029