Farmers Feel the Climate Change: Variety Choice as an Adaptation Strategy of European Potato Farmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Setup and Data Collection
2.2. Survey Participants: Key Characteristics
3. Results
3.1. Growing Conditions Reported by Surveyed Potato Farmers
3.2. Climate Change Related Difficulties for European Potato Farmers
3.3. Adaptation Strategies to Climate Change of European Potato Farmers
3.4. Variety Choice as an Adaptation Measure
4. Discussion
4.1. European Potato Farmers often Grow Potatoes under Sub-Optimal Conditions
4.2. European Potato Farmers Encounter Multiple Climate-Change-Related Difficulties When Growing Potato
4.3. European Potato Farmers Prefer Variety Choice as an Adaptation Strategy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Meterological Organisation. State of the Global Climate 2020; World Meterological Organisation: Geneva, Switzerland, 2021. [Google Scholar]
- United Nations Office for Disaster Risk Reduction. The Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019); United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2020; p. 30. [Google Scholar]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T.R. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef]
- Zolina, O.; Simmer, C.; Gulev, S.K.; Kollet, S. Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. 2014, 119, 12500–12512. [Google Scholar] [CrossRef]
- Christidis, N.; Gareth, S.J.; Stott, P.A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Chang. 2015, 5, 46–50. [Google Scholar] [CrossRef]
- Stagge, J.H.; Kingston, D.G.; Tallaksen, L.M.; Hannah, D.M. Observed drought indices show increasing divergence across Europe. Sci. Rep. 2017, 7, 14045. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.-I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Rakovec, O.; Samaniego, L.; Hari, V.; Markonis, Y.; Moravec, V.; Thober, S.; Hanel, M.; Kumar, R. The 2018–2020 Multi-Year Drought Sets a New Benchmark in Europe. Earth’s Future 2022, 10, e2021EF002394. [Google Scholar] [CrossRef]
- Dolničar, P. Importance of Potato as a Crop and Practical Approaches to Potato Breeding. Methods Mol. Biol. 2021, 2354, 3–20. [Google Scholar] [CrossRef] [PubMed]
- International Potato Center. Potatos Facts and Figures. Available online: https://cipotato.org/potato/potato-facts-and-figures/ (accessed on 26 June 2023).
- FAO. Crops and Livestocks Products Database, License: CC BY-NC-SA 3.0 IGO. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 26 June 2023).
- Eurostat. The EU Potato Sector-Statistics on Production, Prices and Trade. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=The_EU_potato_sector_-_statistics_on_production,_prices_and_trade#Potato_production_in_the_EU_is_highly_concentrated (accessed on 26 June 2023).
- FAO. Chapter 2: Crop Water Needs. Available online: https://www.fao.org/3/s2022e/s2022e02.htm (accessed on 26 June 2023).
- FAO. Crop Information: Potato. Available online: https://www.fao.org/land-water/databases-and-software/crop-information/potato/en (accessed on 26 June 2023).
- Haverkort, A.J.; Verhagen, A. Climate Change and Its Repercussions for the Potato Supply Chain. Potato Res. 2008, 51, 223–237. [Google Scholar] [CrossRef]
- Rykaczewska, K. The Effect of High Temperature Occurring in Subsequent Stages of Plant Development on Potato Yield and Tuber Physiological Defects. Am. J. Potato Res. 2015, 92, 339–349. [Google Scholar] [CrossRef]
- Levy, D.; Veilleux, R.E. Adaptation of potato to high temperatures and salinity—A review. Am. J. Potato Res. 2007, 84, 487–506. [Google Scholar] [CrossRef]
- Singh, B.; Kukreja, S.; Goutam, U. Impact of heat stress on potato (Solanum tuberosum L.): Present scenario and future opportunities. J. Hortic. Sci. Biotechnol. 2019, 95, 407–424. [Google Scholar] [CrossRef]
- Aliche, E.B.; Oortwijn, M.; Theeuwen, T.P.J.M.; Bachem, C.W.B.; Visser, R.G.F.; van der Linden, C.G. Drought response in field grown potatoes and the interactions between canopy growth and yield. Agric. Water Manag. 2018, 206, 20–30. [Google Scholar] [CrossRef]
- Obidiegwu, J.E.; Bryan, G.J.; Jones, H.G.; Prashar, A. Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 2015, 6, 542. [Google Scholar] [CrossRef] [PubMed]
- Elad, Y.; Pertot, I. Climate Change Impacts on Plant Pathogens and Plant Diseases. J. Crop Improv. 2014, 28, 99–139. [Google Scholar] [CrossRef]
- Yang, Y.; Achaerandio, I.; Pujola, M. Classification of potato cultivars to establish their processing aptitude. J. Sci. Food Agric. 2016, 96, 413–421. [Google Scholar] [CrossRef]
- Goffart, J.P.; Haverkort, A.; Storey, M.; Haase, N.; Martin, M.; Lebrun, P.; Ryckmans, D.; Florins, D.; Demeulemeester, K. Potato Production in Northwestern Europe (Germany, France, the Netherlands, United Kingdom, Belgium): Characteristics, Issues, Challenges and Opportunities. Potato Res. 2022, 65, 503–547. [Google Scholar] [CrossRef]
- George, T.S.; Taylor, M.A.; Dodd, I.C.; White, P.J. Climate Change and Consequences for Potato Production: A Review of Tolerance to Emerging Abiotic Stress. Potato Res. 2018, 60, 239–268. [Google Scholar] [CrossRef]
- Fumia, N.; Pironon, S.; Rubinoff, D.; Khoury, C.K.; Gore, M.A.; Kantar, M.B. Wild relatives of potato may bolster its adaptation to new niches under future climate scenarios. Food Energy Secur. 2022, 11, e360. [Google Scholar] [CrossRef]
- Pradel, W.; Gatto, M.; Hareau, G.; Pandey, S.K.; Bhardway, V. Adoption of potato varieties and their role for climate change adaptation in India. Clim. Risk Manag. 2019, 23, 114–123. [Google Scholar] [CrossRef]
- Kroschel, J.; Mujica, N.; Okonya, J.; Alyokhin, A. Insect Pests Affecting Potatoes in Tropical, Subtropical, and Temperate Regions. In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Springer: Cham, Switzerland, 2020; pp. 251–306. [Google Scholar]
- Hijmans, R.J. The effect of climate change on global potato production. Am. J. Potato Res. 2003, 80, 271–279. [Google Scholar] [CrossRef]
- Adavi, Z.; Moradi, R.; Saeidnejad, A.H.; Tadayon, M.R.; Mansouri, H. Assessment of potato response to climate change and adaptation strategies. Sci. Hortic. 2018, 228, 91–102. [Google Scholar] [CrossRef]
- Daccache, A.; Keay, C.; Jones, R.J.A.; Weatherhead, E.K.; Stalham, M.A.; Knox, J.W. Climate change and land suitability for potato production in England and Wales: Impacts and adaptation. J. Agric. Sci. 2011, 150, 161–177. [Google Scholar] [CrossRef]
- Daccache, A.; Weatherhead, E.K.; Stalham, M.A.; Knox, J.W. Impacts of climate change on irrigated potato production in a humid climate. Agric. For. Meteorol. 2011, 151, 1641–1653. [Google Scholar] [CrossRef]
- Fierros-González, I.; López-Feldman, A. Farmers’ Perception of Climate Change: A Review of the Literature for Latin America. Front. Environ. Sci. 2021, 9, 672399. [Google Scholar] [CrossRef]
- Simelton, E.; Quinn, C.H.; Batisani, N.; Dougill, A.J.; Dyer, J.C.; Fraser, E.D.G.; Mkwambisi, D.; Sallu, S.; Stringer, L.C. Is rainfall really changing? Farmers’ perceptions, meteorological data, and policy implications. Clim. Dev. 2013, 5, 123–138. [Google Scholar] [CrossRef]
- Grothmann, T.; Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Chang. 2005, 15, 199–213. [Google Scholar] [CrossRef]
- Woods, B.A.; Nielsen, H.Ø.; Pedersen, A.B.; Kristofersson, D. Farmers’ perceptions of climate change and their likely responses in Danish agriculture. Land Use Policy 2017, 65, 109–120. [Google Scholar] [CrossRef]
- Sorvali, J.; Kaseva, J.; Peltonen-Sainio, P. Farmer views on climate change—A longitudinal study of threats, opportunities and action. Clim. Chang. 2021, 164, 50. [Google Scholar] [CrossRef]
- Li, Y.; Johnson, E.J.; Zaval, L. Local warming: Daily temperature change influences belief in global warming. Psychol. Sci. 2011, 22, 454–459. [Google Scholar] [CrossRef]
- Weber, E.U.; Stern, P.C. Public understanding of climate change in the United States. Am. Psychol. 2011, 66, 315–328. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Nelson, R.L.; Higgins, S.; Brunner, J.; Grove, G.; Boydston, R.; Whiting, M.; Kruger, C. Assessment of climate change impact on Eastern Washington agriculture. Clim. Chang. 2010, 102, 77–102. [Google Scholar] [CrossRef]
- Zarzyńska, K.; Boguszewska-Mańkowska, D.; Nosalewicz, A. Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant Soil Environ. 2017, 63, 159–164. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2012, 3, 52–58. [Google Scholar] [CrossRef]
- Trnka, M.; Eitzinger, J.; DubrovskÝ, M.; SemerÁDovÁ, D.; ŠTĚPÁNek, P.; Hlavinka, P.; Balek, J.; SkalÁK, P.; Farda, A.; Formayer, H.; et al. Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. J. Agric. Sci. 2010, 148, 639–656. [Google Scholar] [CrossRef]
- Brás, T.A.; Jägermeyr, J.; Seixas, J. Exposure of the EU-28 food imports to extreme weather disasters in exporting countries. Food Secur. 2019, 11, 1373–1393. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef]
- Fleisher, D.H.; Timlin, D.J.; Reddy, V.R. Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use, and productivity. Agric. For. Meteorol. 2008, 148, 1109–1122. [Google Scholar] [CrossRef]
- Jaggard, K.W.; Qi, A.; Ober, E.S. Possible changes to arable crop yields by 2050. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2835–2851. [Google Scholar] [CrossRef]
- Raymundo, R.; Asseng, S.; Robertson, R.; Petsakos, A.; Hoogenboom, G.; Quiroz, R.; Hareau, G.; Wolf, J. Climate change impact on global potato production. Eur. J. Agron. 2018, 100, 87–98. [Google Scholar] [CrossRef]
- Jennings, S.A.; Koehler, A.-K.; Nicklin, K.J.; Deva, C.; Sait, S.M.; Challinor, A.J. Global Potato Yields Increase Under Climate Change With Adaptation and CO2 Fertilisation. Front. Sustain. Food Syst. 2020, 4, 519324. [Google Scholar] [CrossRef]
- Webber, H.; Zhao, G.; Wolf, J.; Britz, W.; Vries, W.d.; Gaiser, T.; Hoffmann, H.; Ewert, F. Climate change impacts on European crop yields: Do we need to consider nitrogen limitation? Eur. J. Agron. 2015, 71, 123–134. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Struik, P.C. Yield levels of potato crops: Recent achievements and future prospects. Field Crops Res. 2015, 182, 76–85. [Google Scholar] [CrossRef]
- Supit, I.; van Diepen, C.A.; de Wit, A.J.W.; Wolf, J.; Kabat, P.; Baruth, B.; Ludwig, F. Assessing climate change effects on European crop yields using the Crop Growth Monitoring System and a weather generator. Agric. For. Meteorol. 2012, 164, 96–111. [Google Scholar] [CrossRef]
- Micu, M.M.; Dinu, T.A.; Fintineru, G.; Tudor, V.C.; Stoian, E.; Dumitru, E.A.; Stoicea, P.; Iorga, A. Climate Change—Between “Myth and Truth” in Romanian Farmers’ Perception. Sustainability 2022, 14, 8689. [Google Scholar] [CrossRef]
- Jantke, K.; Hartmann, M.J.; Rasche, L.; Blanz, B.; Schneider, U.A. Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers. Land 2020, 9, 130. [Google Scholar] [CrossRef]
- Poeplau, C.; Schroeder, J.; Gregorich, E.; Kurganova, I. Farmers’ Perspective on Agriculture and Environmental Change in the Circumpolar North of Europe and America. Land 2019, 8, 190. [Google Scholar] [CrossRef]
- Macholdt, J.; Honermeier, B. Variety choice in crop production for climate change adaptation. Outlook Agric. 2016, 45, 117–123. [Google Scholar] [CrossRef]
- Macholdt, J.; Honermeier, B. Impact of Climate Change on Cultivar Choice: Adaptation Strategies of Farmers and Advisors in German Cereal Production. Agronomy 2016, 6, 40. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Summary for Policymakers; International Panel on Climate Change: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, L. Alternative Strategies for Controlling Wireworms in Field Crops: A Review. Agriculture 2021, 11, 436. [Google Scholar] [CrossRef]
- Pulatov, B.; Jönsson, A.M.; Wilcke, R.A.I.; Linderson, M.-L.; Hall, K.; Bärring, L. Evaluation of the phenological synchrony between potato crop and Colorado potato beetle under future climate in Europe. Agric. Ecosyst. Environ. 2016, 224, 39–49. [Google Scholar] [CrossRef]
- Romero, A.P.; Alarcon, A.; Valbuena, R.I.; Galeano, C.H. Physiological Assessment of Water Stress in Potato Using Spectral Information. Front. Plant Sci. 2017, 8, 1608. [Google Scholar] [CrossRef]
- Burke, M.; Lobell, D. Food Security and Adaptation to Climate Change: What Do We Know? In Climate Change and Food Security; Advances in Global Change Research; Springer: Berlin/Heidelberg, Germany, 2010; pp. 133–153. [Google Scholar]
- Turner, R.J.; Davies, G.; Moore, H.; Grundy, A.C.; Mead, A. Organic weed management: A review of the current UK farmer perspective. Crop Prot. 2007, 26, 377–382. [Google Scholar] [CrossRef]
- Skaalsveen, K.; Ingram, J.; Urquhart, J. The role of farmers’ social networks in the implementation of no-till farming practices. Agric. Syst. 2020, 181, 102824. [Google Scholar] [CrossRef]
- Rust, N.A.; Stankovics, P.; Jarvis, R.M.; Morris-Trainor, Z.; de Vries, J.R.; Ingram, J.; Mills, J.; Glikman, J.A.; Parkinson, J.; Toth, Z.; et al. Have farmers had enough of experts? Environ. Manag. 2022, 69, 31–44. [Google Scholar] [CrossRef]
(a) Soil Water Retention Capacity (n = 553) | (b) Medium Annual Precipitation (n = 553) | (c) Possibility of Irrigation (n = 553) | |||||||||||
n | % | n | % | n | % | ||||||||
low | 43 | 7.8 | <300 mm | 10 | 1.8 | yes | 192 | 34.7 | |||||
low–medium | 110 | 19.9 | 300–500 mm | 115 | 20.8 | no | 273 | 49.4 | |||||
medium | 245 | 44.3 | 500–700 mm | 196 | 35.4 | partially | 88 | 15.9 | |||||
medium–high | 105 | 19.0 | 700–900 mm | 146 | 26.4 | ||||||||
high | 37 | 6.7 | >900 mm | 46 | 8.3 | ||||||||
unsure | 13 | 2.4 | unsure | 40 | 7.2 | ||||||||
(d) probability of maximum temperature >26 °C for more than 7 consecutive days during growing period (n = 553) | (e) Probability of maximum temperature >30 °C for more than 7 consecutive days during growing period (n = 553) | ||||||||||||
n | % | n | % | ||||||||||
high | 361 | 65.3 | high | 175 | 31.6 | ||||||||
medium | 162 | 29.3 | medium | 252 | 45.6 | ||||||||
low | 17 | 3.1 | low | 108 | 19.5 | ||||||||
unsure | 13 | 2.4 | unsure | 18 | 3.3 |
Last 10 Years (n = 493) | Future (n = 553) | |||
---|---|---|---|---|
n | % | n | % | |
drought | 431 | 87.4 | 438 | 79.2 |
heat | 407 | 82.6 | 405 | 73.2 |
pests and pathogens induced by climatic conditions | 263 | 53.3 | 285 | 51.5 |
heavy precipitation | 210 | 42.6 | 208 | 37.6 |
late spring frosts | 76 | 15.4 | 56 | 10.1 |
flash floods | 62 | 12.6 | 55 | 9.9 |
soil erosion | 47 | 9.5 | 50 | 9.0 |
others | 33 | 6.7 | 38 | 6.9 |
early autumn frosts | 6 | 1.2 | 9 | 1.6 |
n = 553 | n | % |
---|---|---|
planting an adapted variety | 405 | 73.2 |
irrigation | 248 | 44.8 |
change of planting and harvesting date | 247 | 44.7 |
tillage | 243 | 43.9 |
change in crop rotation | 177 | 32.0 |
planting an adapted genetically modified or genome edited variety | 137 | 24.8 |
others | 24 | 4.3 |
n | 1—Very Relevant | 2 | 3 | 4—Not Relevant | Unsure | |
---|---|---|---|---|---|---|
yield stability | 543 | 63.9 | 27.8 | 5.9 | 2.2 | 0.2 |
heat tolerance | 543 | 56.7 | 33.0 | 7.2 | 2.6 | 0.6 |
disease resistance | 546 | 62.5 | 27.1 | 7.0 | 2.9 | 0.5 |
drought tolerance | 541 | 53.2 | 35.9 | 8.1 | 2.2 | 0.6 |
yield potential | 545 | 51.9 | 34.9 | 10.8 | 2.0 | 0.4 |
pest resistance | 536 | 56.2 | 27.4 | 12.3 | 3.4 | 0.7 |
dormancy and storability | 539 | 40.6 | 40.1 | 13.9 | 4.8 | 0.6 |
time of maturity | 530 | 19.2 | 46.0 | 27.0 | 6.2 | 1.5 |
tuber shape | 531 | 16.8 | 42.7 | 26.4 | 13.0 | 1.1 |
skin and flesh color | 524 | 18.3 | 29.4 | 26.9 | 24.4 | 1.0 |
starch content | 526 | 14.1 | 32.7 | 35.9 | 15.2 | 2.1 |
sugar content | 505 | 5.7 | 25.7 | 39.8 | 24.4 | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Gehren, P.; Bomers, S.; Tripolt, T.; Söllinger, J.; Prat, N.; Redondo, B.; Vorss, R.; Teige, M.; Kamptner, A.; Ribarits, A. Farmers Feel the Climate Change: Variety Choice as an Adaptation Strategy of European Potato Farmers. Climate 2023, 11, 189. https://doi.org/10.3390/cli11090189
von Gehren P, Bomers S, Tripolt T, Söllinger J, Prat N, Redondo B, Vorss R, Teige M, Kamptner A, Ribarits A. Farmers Feel the Climate Change: Variety Choice as an Adaptation Strategy of European Potato Farmers. Climate. 2023; 11(9):189. https://doi.org/10.3390/cli11090189
Chicago/Turabian Stylevon Gehren, Philipp, Svenja Bomers, Tanja Tripolt, Josef Söllinger, Noémie Prat, Berta Redondo, Romans Vorss, Markus Teige, Anita Kamptner, and Alexandra Ribarits. 2023. "Farmers Feel the Climate Change: Variety Choice as an Adaptation Strategy of European Potato Farmers" Climate 11, no. 9: 189. https://doi.org/10.3390/cli11090189
APA Stylevon Gehren, P., Bomers, S., Tripolt, T., Söllinger, J., Prat, N., Redondo, B., Vorss, R., Teige, M., Kamptner, A., & Ribarits, A. (2023). Farmers Feel the Climate Change: Variety Choice as an Adaptation Strategy of European Potato Farmers. Climate, 11(9), 189. https://doi.org/10.3390/cli11090189