Bamboo as a Nature-Based Solution (NbS) for Climate Change Mitigation: Biomass, Products, and Carbon Credits
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Carbon Sinks in Bamboo Forest Ecosystems
3.1.1. Bamboo as a Carbon Sink
Source | Species | Region | Biomass (t/ha) | Note |
---|---|---|---|---|
(L. Cao et al. [28]) | Phyllostachys pubescens | Jiangsu, China | 173.47 ± 43.16 | AGB; Intensive management |
Phyllostachys pubescens | Jiangsu, China | 67.61 ± 13.10 | AGB; Extensive management | |
(de Campos Gorgulho Padgurschi et al. [54]) | Merostachys neesii | São Paulo, Brazil | 12.10 | AGB; Dominant species |
(Isagi et al. [55]) | Phyllostachys pubescens | Kyoto, Japan | 182.50 | AGB + BGB |
(Kumar et al. [56]) | Dendrocalamus giganteus | Terai, India | 270.97 | AGB + BGB; Natural forest |
Bambusa nutans | Terai, India | 127.21 | AGB + BGB; Natural forest | |
Melocanna baccifera | Terai, India | 16.31 | AGB + BGB; Natural forest | |
(Leksungnoen [57]) | Thyrsostachys siamensis | Nakhon Ratchasima, Thailand | 34.80 | ABG; Natural more than 10 years (same below) |
Mix | Nakhon Ratchasima, Thailand | 43.60 | Dendrocalamus membranaceus and Thyrsostachys siamensis | |
(Nigatu et al. [58]) | Yushania alpina | West Amhara, Ethiopia | 108.70 ± 1.80 | AGB + BGB; Five dominant niches |
(Teng et al. [42]) | Dendrocalamus latiflorus | China | 58.56 | AGB + BGB; National scale |
Dendrocalamus membranaceus | China | 49.91 | AGB + BGB; National scale | |
Bambusa textilis | China | 57.18 | AGB + BGB; National scale | |
Dendrocalamopsis oldhami | China | 82.67 | AGB + BGB; National scale | |
Bambusa burmanica | China | 65.59 | AGB + BGB; National scale | |
Bambusa chungii | China | 78.75 | AGB + BGB; National scale | |
Neosinocalamus affinis | China | 74.03 | AGB + BGB; National scale | |
Dendrocalamus giganteus | China | 103.60 | AGB + BGB; National scale | |
(Xayalath et al. [59]) | Bambusa tulda | Luang Prabang, Laos | 25.85 | AGB; Fallow forests dominated by bamboo |
Cephalostachyum vigatum | Luang Prabang, Laos | 11.54 | AGB; Fallow forests dominated by bamboo | |
Dendrocalamus membranaceus | Luang Prabang, Laos | 25.17 | AGB; Fallow forests dominated by bamboo | |
Gigantochloa sp. | Luang Prabang, Laos | 21.21 | AGB; Fallow forests dominated by bamboo | |
Indosasa sinica | Luang Prabang, Laos | 59.87 | AGB; Fallow forests dominated by bamboo |
Source | Species | Region | Carbon Storage (tC/ha) | Note |
---|---|---|---|---|
(de Campos Gorgulho Padgurschi et al. [54]) | Merostachys neesii | São Paulo, Brazil | 5.20 | AGC; Dominant species |
(Keren et al. [61]) | Dendrocalamus strictus | Madhya Pradesh, India | 5.02 | AGC; Plantations in the Ladkui range of Sehore forest division |
(Leksungnoen [57]) | Thyrsostachys siamensis | Nakhon Ratchasima, Thailand | 16.80 | AGC; Natural more than 10 years (same below) |
Mix | Nakhon Ratchasima, Thailand | 20.50 | Dendrocalamus membranaceus and Thyrsostachys siamensis | |
(C. Li et al. [62]) | Phyllostachys pubescens | Zhejiang, China | 14.71 | AGC; Transplanted in groups of three plants in excellent site conditions |
(Liu et al. [63]) | Mix | Zhejiang, China | 13.1–17.13 | AGC; All bamboo forests in Zhejiang |
(Nath & Das [30]) | Mix | Assam, India | 9.00 | AGC |
(Nfornkah et al. [64]) | Oxytenanthera abyssinica | Cameroon | 13.13 | AGC; Agro-ecological zones |
Phyllostachys aurea | Cameroon | 67.78 | AGC; Agro-ecological zones | |
Bambusa vulgaris | Cameroon | 29.62 | AGC; Agro-ecological zones | |
(Prayogo et al. [60]) | Gigantochloa apus | Malang, Indonesia | 105.38 | AGC; Bamboo riparian forest |
Dendrocalamus asper | Malang, Indonesia | 189.84 | AGC; Bamboo riparian forest | |
Schizostachyum zollingeri | Malang, Indonesia | 63.96 | AGC; Bamboo riparian forest | |
Gigantochloa atter | Malang, Indonesia | 85.22 | AGC; Bamboo riparian forest | |
(Singnar et al. [65]) | Pseudostachyum polymorphum | Assam, India | 29.00 | AGC + BGC; Allometric modeling with R/S ratios |
Melocanna baccifera | Assam, India | 60.50 | AGC + BGC; Allometric modeling with R/S ratios | |
Schizostachyum dullooa | Assam, India | 69.70 | AGC + BGC; Allometric modeling with R/S ratios | |
Dendrocalamus hamiltonii | Assam, India | 168.20 | AGC + BGC; Allometric modeling with R/S ratios | |
(Sohel et al. [53]) | Bambusa vulgaris | Moulvibazar, Bangladesh | 52.96 | AGC + BGC; Plantations in a degraded tropical forest |
(Tang et al. [41]) | Phyllostachys pubescens | Hubei, China | 30.21 | AGC; Management with the application of herbicide |
(Teng et al. [42]) | Dendrocalamus latiflorus | China | 27.61 | AGB + BGB; National scale |
Dendrocalamus membranaceus | China | 23.81 | AGB + BGB; National scale | |
Bambusa textilis | China | 26.20 | AGB + BGB; National scale | |
Dendrocalamopsis oldhami | China | 38.93 | AGB + BGB; National scale | |
Bambusa burmanica | China | 30.82 | AGB + BGB; National scale | |
Bambusa chungii | China | 37.68 | AGB + BGB; National scale | |
Neosinocalamus affinis | China | 34.88 | AGB + BGB; National scale | |
Dendrocalamus giganteus | China | 47.82 | AGB + BGB; National scale |
3.1.2. Factors Affecting the Bamboo Carbon Sinks
Abiotic Factors
Management Practices
3.2. Carbon Storage in Bamboo Products
3.3. Carbon Credits in Bamboo Projects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Intergovernmental Panel on Climate Change: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- United Nations Decade of Action to Deliver the Global Goals. Available online: https://www.un.org/sustainabledevelopment/decade-of-action/ (accessed on 3 January 2023).
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef]
- United Nations Environment Programme; International Union for Conservation of Nature. Nature-Based Solutions for Climate Change Mitigation; United Nations Environment Programme: Nairobi, Kenya; International Union for Conservation of Nature: Gland, Switzerland, 2021. [Google Scholar]
- Kuehl, W.Y.; Henley, G.; Yiping, L.; Benton, E.A. The Climate Change Challenge and Bamboo: Mitigation and Adaptation; International Network of Bamboo and Rattan: Beijing, China, 2011. [Google Scholar]
- Food and Agriculture Organization. Global Forest Resources Assessment 2020: Main Report; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar]
- Ministry of Commerce of China China’s Total Forest Vegetation Carbon Stock Has Reached 9.2 Billion Tons. Available online: http://www.mofcom.gov.cn/article/i/jyjl/j/202101/20210103031020.shtml (accessed on 3 January 2023).
- Zhou, G.; Shi, Y.; Pan, C. Bamboo Forest Exploration, 1st ed.; Popular Science Press: Beijing, China, 2020; ISBN 978-7-110-10150-6. [Google Scholar]
- Jin, J.; Jiang, H.; Xu, J.; Peng, W.; Zhang, L.; Zhang, X.; Wang, Y. Predicting the Potential Distribution of Bamboo with Species Distribution Models. In Proceedings of the 2012 20th International Conference on Geoinformatics, Hong Kong, China, 15–17 June 2012; pp. 1–4. [Google Scholar]
- Zhang, M.; Keenan, T.F.; Luo, X.; Serra-Diaz, J.M.; Li, W.; King, T.; Cheng, Q.; Li, Z.; Andriamiarisoa, R.L.; Raherivelo, T.N.A.N.; et al. Elevated CO2 Moderates the Impact of Climate Change on Future Bamboo Distribution in Madagascar. Sci. Total Environ. 2022, 810, 152235. [Google Scholar] [CrossRef]
- Lou, Y.; Li, Y.; Kathleen, B.; Giles, H.; Guomo, Z. Bamboo and Climate Change Mitigation; International Network of Bamboo and Rattan: Beijing, China, 2010. [Google Scholar]
- Terefe, R.; Jian, L.; Kunyong, Y. Role of Bamboo Forest for Mitigation and Adaptation to Climate Change Challenges in China. J. Sci. Res. Rep. 2019, 24, 1–7. [Google Scholar] [CrossRef]
- China State Forestry Bureau. Bamboo Products Classification; China State Forestry Bureau: Beijing, China, 2016; Available online: https://www.baidu.com/link?url=UdVfx7cW6oYob_XZHUoq0D_EDQGbIKCq71BPT8yuAK6WpA4AGLSWASi9PdQT-dzg_2Lo9jQZbl-rNFN4_HrWNZJtuWBgyqHA7yLXWdXt87fCscOxt4qC1AMcbjq6j4Z5evjlCLZrPsHAv31W_9GTqq&wd=&eqid=c7d6f0d90006680d0000000664e6b872 (accessed on 20 August 2023).
- van der Lugt, P.; Vogtländer, J.G.; van der Vegte, J.H.; Brezet, J.C. Environmental assessment of industrial bamboo products—life cycle assessment and carbon sequestration. In Proceedings of the 10th World Bamboo Congress, Damyang, Republic of Korea, 17–22 September 2015. [Google Scholar]
- Yuen, J.Q.; Fung, T.; Ziegler, A.D. Carbon Stocks in Bamboo Ecosystems Worldwide: Estimates and Uncertainties. For. Ecol. Manag. 2017, 393, 113–138. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Kumar, A.; Baredar, P.; Prakash, O. Bamboo as a Complementary Crop to Address Climate Change and Livelihoods—Insights from India. For. Policy Econ. 2019, 102, 66–74. [Google Scholar] [CrossRef]
- Kirchhof, E. Carbon Sinks of Steel: Exploring Bamboo’s Use to Combat Climate Change. Consilience 2021, 24, 1–8. [Google Scholar]
- Lobovikov, M.; Schoene, D.; Yping, L. Bamboo in Climate Change and Rural Livelihoods. Mitig. Adapt. Strateg. Glob. Chang. 2012, 17, 261–276. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; Jiang, H.; Yu, S.; Fu, J.; Li, W.; Wang, W.; Ma, Z.; Peng, C. Carbon Sequestration by Chinese Bamboo Forests and Their Ecological Benefits: Assessment of Potential, Problems, and Future Challenges. Environ. Rev. 2011, 19, 418–428. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Ranaei, F.; Ahmad, Z. Application of Bamboo Plants in Nine Aspects. Sci. World J. 2020, 2020, 7284203. [Google Scholar] [CrossRef] [PubMed]
- Aromataris, E.; Pearson, A. The systematic review: An overview. Am. J. Nurs. 2014, 114, 53–58. [Google Scholar] [CrossRef]
- Khan, K.S.; Kunz, R.; Kleijnen, J.; Antes, G. Five Steps to Conducting a Systematic Review. J. R. Soc. Med. 2003, 96, 118–121. [Google Scholar] [CrossRef] [PubMed]
- United Nations What Is the Kyoto Protocol? Available online: https://unfccc.int/kyoto_protocol (accessed on 3 January 2023).
- Covidence Better Systematic Review Management. Available online: https://www.covidence.org/ (accessed on 3 January 2023).
- Woolf, N.H.; Silver, C. Qualitative Analysis Using NVivo: The Five-Level QDA® Method, 1st ed.; Routledge: London, UK, 2017; ISBN 978-1-315-18166-0. [Google Scholar]
- Nowell, L.S.; Norris, J.M.; White, D.E.; Moules, N.J. Thematic Analysis: Striving to Meet the Trustworthiness Criteria. Int. J. Qual. Methods 2017, 16, 160940691773384. [Google Scholar] [CrossRef]
- Braun, V.; Clarke, V. Using Thematic Analysis in Psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef]
- Cao, L.; Coops, N.C.; Sun, Y.; Ruan, H.; Wang, G.; Dai, J.; She, G. Estimating Canopy Structure and Biomass in Bamboo Forests Using Airborne LiDAR Data. ISPRS J. Photogramm. Remote Sens. 2019, 148, 114–129. [Google Scholar] [CrossRef]
- Fu, C.; Zhu, Q.; Yang, G.; Xiao, Q.; Wei, Z.; Xiao, W. Influences of Extreme Weather Conditions on the Carbon Cycles of Bamboo and Tea Ecosystems. Forests 2018, 9, 629. [Google Scholar] [CrossRef]
- Nath, A.J.; Das, A.K. Ecological Implications of Village Bamboo as Global Climate Change Mitigation Strategy: A Case Study in Barak Valley, Assam, North East India. Int. J. Clim. Chang. Strateg. Manag. 2012, 4, 201–215. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Zhou, G.; Yang, S.; Chen, J. Estimation of CO2 fluxes and its seasonal variations from the effective management lei bamboo (Phyllostachys violascens). Acta Ecol. Sin. 2013, 33, 3434–3444. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Zhou, G.; Mao, F.; Du, H.; Xu, X.; Li, P.; Li, X. Diurnal and Seasonal Variations in Carbon Fluxes in Bamboo Forests during the Growing Season in Zhejiang Province, China. J. For. Res. 2019, 30, 657–668. [Google Scholar] [CrossRef]
- Das, M.C.; Nath, A.J.; Das, A.K. Carbon Storage in Bamboo (Schizostachyum dullooa) Forest of Barak Valley, Southern Assam, India. Curr. Sci. 2019, 116, 1631–1633. [Google Scholar]
- Li, C.; Shi, Y.; Zhou, G.; Zhou, Y.; Xu, L.; Tong, L.; Liu, X. Effects of Different Management Approaches on Soil Carbon Dynamics in Moso Bamboo Forest Ecosystems. CATENA 2018, 169, 59–68. [Google Scholar] [CrossRef]
- Mazumder, A.F.; Das, A.K.; Nath, A.J. Biomass Storage and Carbon Sequestration in Priority Bamboo Species in Relation to Village Physiography. Int. J. Ecol. Environ. Sci. 2019, 45, 85–95. [Google Scholar]
- Jijeesh, C.M.; Seethalakshmi, K.K. Potential Role of Bamboo Plantations in Afforestation/Reforestation CDM (Clean Development Mechanism). Evergreen 2009, 61–62, 8–10. [Google Scholar]
- Cao, Z.; Zhou, G.; Wen, G.; Jiang, P.; Zhuang, S.; Qin, H.; Wong, M. Bamboo in Subtropical China: Efficiency of Solar Conversion into Biomass and CO2 Sequestration. Bot. Rev. 2011, 77, 190–196. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Y.; Jiang, P.; Chang, S.X.; Song, Z.; Liu, J.; Zhou, G. Long-Term Intensive Management Increased Carbon Occluded in Phytolith (PhytOC) in Bamboo Forest Soils. Sci. Rep. 2015, 4, 3602. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, Y.; Li, Y.; Henley, G. Impacts of Selective Harvest on the Carbon Sequestration Potential in Moso Bamboo (Phyllostachys Pubescens) Plantations. For. Trees Livelihoods 2013, 22, 1–18. [Google Scholar] [CrossRef]
- Nath, A.J.; Sileshi, G.W.; Das, A.K. Bamboo Based Family Forests Offer Opportunities for Biomass Production and Carbon Farming in North East India. Land Use Policy 2018, 75, 191–200. [Google Scholar] [CrossRef]
- Tang, X.; Fan, S.; Qi, L.; Liu, G.; Guan, F.; Du, M.; Shen, C. Effect of Different Managements on Carbon Storage and Carbon Allocation in Moso Bamboo Forest ( Phyllostachys pubescen). Acta Agric. Univ. Jiangxiensis 2012, 34, 736–742. [Google Scholar]
- Teng, J.; Xiang, T.; Huang, Z.; Wu, J.; Jiang, P.; Meng, C.; Li, Y.; Fuhrmann, J.J. Spatial Distribution and Variability of Carbon Storage in Different Sympodial Bamboo Species in China. J. Environ. Manag. 2016, 168, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zhou, G.; Shi, Y.; Lv, Y.; Shen, Z. Net Carbon Sinks in the Initial Stages of Moso Bamboo Stands. J. Zhejiang A&F Univ. 2016, 33, 807–815. [Google Scholar] [CrossRef]
- Cai, C.; Yang, Z.; Liu, L.; Lai, Y.; Lei, J.; Fan, S.; Tang, X. Consistent Effects of Canopy vs. Understory Nitrogen Addition on Soil Respiration and Net Ecosystem Production in Moso Bamboo Forests. Forests 2021, 12, 1427. [Google Scholar] [CrossRef]
- Li, C.; Zhou, G.; Shi, Y.; Zhou, Y.; Xu, L.; Fan, Y.; Shen, Z.; Lv, Y. Effects of Different Management Measures on the Net Carbon Sequestration Capacity of Moso Bamboo Forest Ecosystem. Sci. SILVAE Sin. 2017, 53. [Google Scholar]
- Li, X.; Du, H.; Zhou, G.; Mao, F.; Zheng, J.; Liu, H.; Huang, Z.; He, S. Spatiotemporal Dynamics in Assimilated-LAI Phenology and Its Impact on Subtropical Bamboo Forest Productivity. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102267. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, G.; Du, H.; Berninger, F.; Mao, F.; Li, X.; Chen, L.; Cui, L.; Li, Y.; Zhu, D.; et al. Response of Carbon Uptake to Abiotic and Biotic Drivers in an Intensively Managed Lei Bamboo Forest. J. Environ. Manag. 2018, 223, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Jiang, H.; Liu, J.; Sun, C.; Wang, Y.; Jin, J. Comparing Simulated Carbon Budget of a Lei Bamboo Forest with Flux Tower Data. Terr. Atmos. Ocean. Sci. 2014, 25, 359. [Google Scholar] [CrossRef]
- Mao, F.; Du, H.; Li, X.; Ge, H.; Cui, L.; Zhou, G. Spatiotemporal Dynamics of Bamboo Forest Net Primary Productivity with Climate Variations in Southeast China. Ecol. Indic. 2020, 116, 106505. [Google Scholar] [CrossRef]
- Song, X.; Chen, X.; Zhou, G.; Jiang, H.; Peng, C. Observed High and Persistent Carbon Uptake by Moso Bamboo Forests and Its Response to Environmental Drivers. Agric. For. Meteorol. 2017, 247, 467–475. [Google Scholar] [CrossRef]
- Tang, X.; Fan, S.; Qi, L.; Guan, F.; Su, W.; Du, M. A Comparison of Soil Respiration, Carbon Balance and Root Carbon Use Efficiency in Two Managed Moso Bamboo Forests in Subtropical China. Ann. For. Res. 2016, 59, 1. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, S.; Jiang, H.; Peng, C.; Zhang, J.; Zhou, G. The Impact of Intensive Management on Net Ecosystem Productivity and Net Primary Productivity of a Lei Bamboo Forest. Ecol. Model. 2020, 435, 109248. [Google Scholar] [CrossRef]
- Sohel, M.S.I.; Alamgir, M.; Akhter, S.; Rahman, M. Carbon Storage in a Bamboo (Bambusa vulgaris) Plantation in the Degraded Tropical Forests: Implications for Policy Development. Land Use Policy 2015, 49, 142–151. [Google Scholar] [CrossRef]
- de Campos Gorgulho Padgurschi, M.; Soares Reis, T.; Ferreira Alves, L.; Aparecida Vieira, S.; Alfredo Joly, C. Outcomes of a Native Bamboo on Biomass and Carbon Stocks of a Neotropical Biodiversity Hotspot. Acta Oecol. 2021, 111, 103734. [Google Scholar] [CrossRef]
- Isagi, Y.; Kawahara, T.; Kamo, K.; Ito, H. Net Production and Carbon Cycling in a Bamboo Phyllostachys Pubescens Stand. Plant Ecol. 1997, 130, 41–52. [Google Scholar] [CrossRef]
- Kumar, P.S.; Shukla, G.; Nath, A.J.; Chakravarty, S. Soil Properties, Litter Dynamics and Biomass Carbon Storage in Three-Bamboo Species of Sub-Himalayan Region of Eastern India. Water Air Soil Pollut. 2022, 233, 12. [Google Scholar] [CrossRef]
- Leksungnoen, N. Physiological Traits Contributing to Carbon Storage Variation in Monastery Bamboo and Pai Liang in Northeastern Thailand. Songklanakarin J. Sci. Technol. 2017, 39, 215–223. [Google Scholar]
- Nigatu, A.; Wondie, M.; Alemu, A.; Gebeyehu, D.; Workagegnehu, H. Productivity of Highland Bamboo (Yushania Alpina) across Different Plantation Niches in West Amhara, Ethiopia. For. Sci. Technol. 2020, 16, 116–122. [Google Scholar] [CrossRef]
- Xayalath, S.; Hirota, I.; Tomita, S.; Nakagawa, M. Aboveground Biomass and Seasonal Patterns of Aboveground Net Primary Productivity in Five Bamboo Species in Northern Laos. J. Plant Ecol. 2020, 13, 150–156. [Google Scholar] [CrossRef]
- Prayogo, C.; Muthahar, C.; Ishaq, R.M. Allometric Equation of Local Bamboo for Estimating Carbon Sequestration of Bamboo Riparian Forest. IOP Conf. Ser. Earth Environ. Sci. 2021, 905, 012002. [Google Scholar] [CrossRef]
- Keren, G.A.; Chaudhry, P.; Sharma, A.; Singh, S. Comparison of the Carbon Sequestration Potential of Young Tectona Grandis L. f. (Teak) and Dendrocalamus Strictus (Roxb.) Nees (Bamboo) Plantations in the Landscape of Central India. Ecol. Quest. 2019, 30, 1. [Google Scholar] [CrossRef]
- Li, C.; Cai, Y.; Xiao, L.; Gao, X.; Shi, Y.; Du, H.; Zhou, Y.; Zhou, G. Effects of Different Planting Approaches and Site Conditions on Aboveground Carbon Storage along a 10-Year Chronosequence after Moso Bamboo Reforestation. For. Ecol. Manag. 2021, 482, 118867. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, F.; Li, X.; Xing, L.; Du, L.; Zheng, J.; Zhang, M.; Du, H. Spatiotemporal Dynamic Simulation on Aboveground Carbon Storage of Bamboo Forest and Its Influence Factors in Zhejiang Province, China. Chin. J. Appl. Ecol. 2019, 30, 1743–1753. [Google Scholar]
- Nfornkah, B.N.; Rene, K.; Louis, Z.; Martin, T.; Cedric, C.D. Bamboo Diversity and Carbon Stocks of Dominant Species in Different Agro-Ecological Zones in Cameroon. Afr. J. Environ. Sci. Technol. 2020, 14, 290–300. [Google Scholar] [CrossRef]
- Singnar, P.; Sileshi, G.W.; Nath, A.; Nath, A.J.; Das, A.K. Modelling the Scaling of Belowground Biomass with Aboveground Biomass in Tropical Bamboos. Trees For. People 2021, 3, 100054. [Google Scholar] [CrossRef]
- Canavan, S.; Richardson, D.M.; Visser, V.; Roux, J.J.L.; Vorontsova, M.S.; Wilson, J.R.U. The Global Distribution of Bamboos: Assessing Correlates of Introduction and Invasion. AoB Plants 2016, 9, plw078. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, G.; Du, H.; Sun, S.; Gao, G. Interannual variability of Moso bamboo forest GPP and its driving factors: A Case Study of Anji County. Acta Ecol. Sin. 2016, 36, 1636–1644. [Google Scholar] [CrossRef]
- Ge, X.; Zhou, B.; Wang, X.; Li, Q.; Cao, Y.; Gu, L. Imposed Drought Effects on Carbon Storage of Moso Bamboo Ecosystem in Southeast China: Results from a Field Experiment. Ecol. Res. 2018, 33, 393–402. [Google Scholar] [CrossRef]
- Kang, F.; Li, X.; Du, H.; Mao, F.; Zhou, G.; Xu, Y.; Huang, Z.; Ji, J.; Wang, J. Spatiotemporal Evolution of the Carbon Fluxes from Bamboo Forests and Their Response to Climate Change Based on a BEPS Model in China. Remote Sens. 2022, 14, 366. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, Y.; Zhu, D. Simulation of Gross Primary Productivity of Moso Bamboo Forest under Drought Stress Based on A Light Use Efficiency Model. Acta Agric. Univ. Jiangxiensis 2019, 41, 512–520. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, L.; Zhou, Y.; Ji, B.; Zhou, G.; Fang, H.; Yin, J.; Deng, X. Quantifying Driving Factors of Vegetation Carbon Stocks of Moso Bamboo Forests Using Machine Learning Algorithm Combined with Structural Equation Model. For. Ecol. Manag. 2018, 429, 406–413. [Google Scholar] [CrossRef]
- Fang, H.; Ji, B.; Deng, X.; Ying, J.; Zhou, G.; Shi, Y.; Xu, L.; Tao, J.; Zhou, Y.; Li, C.; et al. Effects of Topographic Factors and Aboveground Vegetation Carbon Stocks on Soil Organic Carbon in Moso Bamboo Forests. Plant Soil 2018, 433, 363–376. [Google Scholar] [CrossRef]
- Xu, L.; Fang, H.; Deng, X.; Ying, J.; Lv, W.; Shi, Y.; Zhou, G.; Zhou, Y. Biochar Application Increased Ecosystem Carbon Sequestration Capacity in a Moso Bamboo Forest. For. Ecol. Manag. 2020, 475, 118447. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Chang, S.X.; Jiang, P.; Zhou, G.; Liu, J.; Lin, L. Converting Paddy Fields to Lei Bamboo (Phyllostachys praecox) Stands Affected Soil Nutrient Concentrations, Labile Organic Carbon Pools, and Organic Carbon Chemical Compositions. Plant Soil 2013, 367, 249–261. [Google Scholar] [CrossRef]
- Zhou, G.; Jin, A.W.; He, J.C.; Wang, A.G. The Influence of Cultivation Techniques Used in Covered Protected Plots on the High-Yield Property OfLei Bamboo Plantation for Edible Shoots. J. South Cent. For. Univ. 1999, 19, 52–54. [Google Scholar]
- Li, Z.; Zhang, L.; Deng, B.; Liu, Y.; Kong, F.; Huang, G.; Zou, Q.; Liu, Q.; Guo, X.; Fu, Y.; et al. Effects of Moso Bamboo (Phyllostachys Edulis) Invasions on Soil Nitrogen Cycles Depend on Invasion Stage and Warming. Environ. Sci. Pollut. Res. 2017, 24, 24989–24999. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Yin, J.; Xu, L.; Shi, Y.; Zhou, G.; Li, Y.; Chen, G.; Ye, Y.; Zhang, F.; Zhou, Y.; et al. Effects of Abandonment Management on Soil C and N Pools in Moso Bamboo Forests. Sci. Total Environ. 2020, 729, 138949. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cai, Y.; Xiao, L.; Gao, X.; Shi, Y.; Zhou, Y.; Du, H.; Zhou, G. Rhizome Extension Characteristics, Structure and Carbon Storage Relationships with Culms in a 10-Year Moso Bamboo Reforestation Period. For. Ecol. Manag. 2021, 498, 119556. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Wang, C.-H.; Wu, S. Analyzing Carbon Conversion Factors of Four Species of Taiwanese Bamboo. Taiwan J. For. Sci. 2011, 26, 341–355. [Google Scholar]
- Gu, L.; Zhou, Y.; Mei, T.; Zhou, G.; Xu, L. Carbon Footprint Analysis of Bamboo Scrimber Flooring—Implications for Carbon Sequestration of Bamboo Forests and Its Products. Forests 2019, 10, 51. [Google Scholar] [CrossRef]
- van der Lugt, P.; Thanlong, T.; King, C. Carbon Sequestration and Carbon Emissions Reduction through Bamboo Forests and Products; International Bamboo and Rattan Organisation: Beijing, China, 2018. [Google Scholar]
- Nath, A.J.; Lal, R.; Das, A.K. Managing Woody Bamboos for Carbon Farming and Carbon Trading. Glob. Ecol. Conserv. 2015, 3, 654–663. [Google Scholar] [CrossRef]
- Jenkins, M.; Schaap, B. Untapped Potential: Forest Ecosystem Services for Achieving SDG 15; United Nations: Washington, DC, USA, 2018. [Google Scholar]
- Arehart, J.H.; Hart, J.; Pomponi, F.; D’Amico, B. Carbon Sequestration and Storage in the Built Environment. Sustain. Prod. Consum. 2021, 27, 1047–1063. [Google Scholar] [CrossRef]
- Chang, F.-C.; Chen, K.-S.; Yang, P.-Y.; Ko, C.-H. Environmental Benefit of Utilizing Bamboo Material Based on Life Cycle Assessment. J. Clean. Prod. 2018, 204, 60–69. [Google Scholar] [CrossRef]
- Zea Escamilla, E.; Habert, G.; Correal Daza, J.; Archilla, H.; Echeverry Fernández, J.; Trujillo, D. Industrial or Traditional Bamboo Construction? Comparative Life Cycle Assessment (LCA) of Bamboo-Based Buildings. Sustainability 2018, 10, 3096. [Google Scholar] [CrossRef]
- Laleicke, P.F.; Cimino-Hurt, A.; Gardner, D.; Sinha, A. Comparative carbon footprint analysis of bamboo and steel scaffolding. J. Green Build. 2015, 10, 114–126. [Google Scholar] [CrossRef]
- Restrepo, Á.; Becerra, R.; Tibaquirá, G.J.E. Energetic and Carbon Footprint Analysis in Manufacturing Process of Bamboo Boards in Colombia. J. Clean. Prod. 2016, 126, 563–571. [Google Scholar] [CrossRef]
- Bukoski, J.J.; Gheewala, S.H. Beyond Face Value: A Life Cycle Comparison of Bamboo Board vs. Precast Concrete Veneer Wall System Cladding Materials. In Proceedings of the 4th International Conference on Green and Sustainable Innovation (ICGSI), Bangkok, Thailand, 22–24 May 2014. [Google Scholar]
- Phuong, V.T.; Xuan, N.V. Life Cycle Assessment for Key Bamboo Products in Viet Nam; International Bamboo and Rattan Organisation: Beijing, China, 2020. [Google Scholar]
- Caldas, L.R.; Bezerra, C.G.; Pittau, F.; Araujo, A.; Franco, M.; Hasparyk, N.; Toledo Filho, R.D. Development of GHG Emissions Curves for Bio-Concretes Specification: Case Study for Bamboo, Rice Husk, and Wood Shavings Considering the Context of Different Countries. Barcelona, Spain, 6 January 2022; pp. 428–435. Available online: https://oa.mg/work/10.4028/www.scientific.net/cta.1.428 (accessed on 3 January 2023).
- Rosse Caldas, L.; Bernstad Saraiva, A.; Andreola, V.M.; Dias Toledo Filho, R. Bamboo Bio-Concrete as an Alternative for Buildings’ Climate Change Mitigation and Adaptation. Constr. Build. Mater. 2020, 263, 120652. [Google Scholar] [CrossRef]
- Levasseur, A.; Lesage, P.; Margni, M.; Deschênes, L.; Samson, R. Considering Time in LCA: Dynamic LCA and Its Application to Global Warming Impact Assessments. Environ. Sci. Technol. 2010, 44, 3169–3174. [Google Scholar] [CrossRef]
- Paiva, R. de L.M.; Caldas, L.R.; Martins, A.P. de S.; de Sousa, P.B.; de Oliveira, G.F.; Toledo Filho, R.D. Thermal-Energy Analysis and Life Cycle GHG Emissions Assessments of Innovative Earth-Based Bamboo Plastering Mortars. Sustainability 2021, 13, 10429. [Google Scholar] [CrossRef]
- National Development and Reform Commission of China Announcement of the National Development and Reform Commission of the People’s Republic of China 2017 No.2. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/gg/201703/t20170317_961176.html?code=&state=123 (accessed on 3 January 2023).
- Tongshan County. Project Design Document for Bamboo Afforestation Project in Tongshan, Hubei. China Certified Emission Reduction. 2015. [Google Scholar]
- Cheng, Y.; Jiang, H.; Pan, J. Cost-Benefit Analysis of Different Types of Bamboo Forest Carbon Projects. J. Zhejiang Agric. Sci. 2021, 62, 421–424. [Google Scholar] [CrossRef]
- Shunchang County. Project Design Document for Bamboo Forest Management Project in Shunchang, Fujian. Fujian Forestry Certified Emission Reduction. 2017. [Google Scholar]
- Zhao, B.; Chen, J.; Wang, H. Carbon Accounting for Sustainable Management of Moso Forest in Shunchang State-Owned Forest Farm, Fujian Province. World Bamboo Ratt. 2019, 17, 25–30. [Google Scholar]
- French Development Agency Fostering Sustainable Forest Management in Hunan Province. Available online: https://www.afd.fr/en/carte-des-projets/fostering-sustainable-forest-management-hunan-province (accessed on 3 January 2023).
- Verra Verra Registry Verified Carbon Standard. Available online: https://registry.verra.org/app/search/VCS/All%20Projects (accessed on 3 January 2023).
- Verra Ecoplanet Bamboo Central America—Reforestation Project. Available online: https://registry.verra.org/app/projectDetail/VCS/1085 (accessed on 3 January 2023).
- Ecoplanet Bamboo Bamboo Carbon Removals Verified Carbon Offsets. Available online: https://www.ecoplanetbamboo.com/bamboo-carbon (accessed on 3 January 2023).
- Verra Peri-Urban Bamboo Planting Around South African Townships. Available online: https://registry.verra.org/app/projectDetail/VCS/721 (accessed on 3 January 2023).
- Ecoplanet Bamboo. Project Description Document for EcoPlanet Bamboo Central America 2012. Available online: https://registry.verra.org/mymodule/ProjectDoc/Project_ViewFile.asp?FileID=37083&IDKEY=dq934lkmsad39asjdkfj90qlkalsdkngaf98ulkandDfdvDdfha51137457 (accessed on 20 August 2023).
- China Certified Emission Reduction. Bamboo Afforestation Carbon Project Methodology. China Certified Emission Reduction. 2013. [Google Scholar]
- Wang, W.; Wang, L.; Gu, L.; Zhou, G. Understanding Farmers’ Commitments to Carbon Projects. Sci. Total Environ. 2021, 784, 147112. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Shrestha, A.; Innes, J.L.; Zhou, G.; Li, N.; Li, J.; He, Y.; Sheng, C.; Niles, J.-O.; Wang, G. Key Challenges and Approaches to Addressing Barriers in Forest Carbon Offset Projects. J. For. Res. 2022, 33, 1109–1122. [Google Scholar] [CrossRef]
- Anji Liangshan Cooperative Lucid Waters and Lush Mountains Are Invaluable Assets. Available online: https://www.anjilsyh.com/cms (accessed on 3 January 2023).
Step | Description of Each Step |
---|---|
I | Framing the Question |
II | Identifying Relevant Publications |
III | Assessing Study Quality |
IV | Summarizing the Evidence |
V | Interpreting the Findings |
Source | Species | Region | CSR (tCO2/ha/yr) | Note |
---|---|---|---|---|
(Cao et al. [37]) | Phyllostachys pubescens | Zhejiang, China | 1.67 | Lingfeng Bamboo Farm |
Phyllostachys pubescens | Zhejiang, China | 1.48 | Tianmu Mountain Natural Reserve | |
(Huang et al. [38]) | Phyllostachys violascens | Zhejiang, China | 0.29 | Carbon occluded in phytolith (PhytOC) |
(Y. Kuehl et al. [39]) | Phyllostachys pubescens | China | 18.69 | 60-year managed bamboo forest |
(Nath et al. [40]) | Bambusa cacharensis | Assam, India | 4.77 | Bamboo-based family forest |
Bambusa vulgaris | Assam, India | 8.43 | Bamboo-based family forest | |
Bambusa balcooa | Assam, India | 5.86 | Bamboo-based family forest | |
(Tang et al. [41]) | Phyllostachys pubescens | Hubei, China | 41.38 | Management with application of herbicide |
(Teng et al. [42]) | Dendrocalamus latiflorus | China | 40.48 | National-scale investigation |
Dendrocalamus membranaceus | China | 34.91 | National-scale investigation | |
Bambusa textilis | China | 38.43 | National-scale investigation | |
Dendrocalamopsis oldhami | China | 57.09 | National-scale investigation | |
Bambusa burmanica | China | 45.21 | National-scale investigation | |
Bambusa chungii | China | 55.26 | National-scale investigation | |
Neosinocalamus affinis | China | 51.08 | National-scale investigation | |
Dendrocalamus giganteus | China | 70.11 | National-scale investigation | |
(Yu et al. [43]) | Phyllostachys pubescens | Zhejiang, China | 1.86 | Bamboo forest plantation (year 1–5) |
Source | Species | Region | NEP (Kg CO2/m2/yr) | Note |
---|---|---|---|---|
(Cai et al. [44]) | Phyllostachys pubescens | Sichuan, China | 1.94 ± 0.83 | NEP (without nitrogen deposition) |
(Y. Chen et al. [31]) | Phyllostachys violascens | Zhejiang, China | 0.13 | NEP (high-efficiency management) |
(L. Chen et al. [32]) | Phyllostachys pubescens | Zhejiang, China | 20.18 | NEP (growing season) |
Phyllostachys violascens | Zhejiang, China | 20.81 | NEP (growing season) | |
(C. Li et al. [45]) | Phyllostachys pubescens | Zhejiang, China | 0.24 | NEP (mid-fertilization and low-harvest) |
(X. Li et al. [46]) | Mix | Zhejiang, China | 0.51 ± 0.31 | All bamboo forests in Zhejiang (2001–2017) |
(Liu et al. [47]) | Phyllostachys violascens | Zhejiang, China | 0.11 ± 0.02 | Intensively managed forest |
(Lu et al. [48]) | Phyllostachys violascens | Zhejiang, China | 1.50 | Carbon flux measurement |
(Mao et al. [49]) | Mix | Zhejiang, China | 0.41 | All bamboo forests in Zhejiang (2015) |
(Mazumder et al. [35]) | Mix | Assam, India | 0.20–0.74 | Different species, ages, and village physiography |
(Song et al. [50]) | Phyllostachys pubescens | Zhejiang, China | 0.6 ± 0.06 | Mean value from 2011 to 2015 |
(Tang et al. [51]) | Phyllostachys pubescens | Hubei, China | 5.97 | Management with application of herbicide |
(M. Zhang et al. [52]) | Phyllostachys violascens | Zhejiang, China | 0.12 | Intensively managed forest (triplex-flux model) |
Source | Region | Product | Carbon Footprint (kg CO2eq/m3 Product) |
---|---|---|---|
(van der Lugt et al. [14]) | China, Europe | Flattened bamboo flooring boards | −524.00 |
China, Europe | Plybamboo panels | −148.00 | |
China, Europe | Strand-woven bamboo beams | −381.00 | |
China, Europe | Strand-woven bamboo decking | −23.00 | |
(Chang et al. [85]) | China | Plybamboo (bleached) | −990.00 |
(Estimated) | China | Plybamboo (heat treatment) | −700.00 |
China | Plybamboo | −900.00 | |
(Zea Escamilla et al. [86]) | Colombia | Bamboo single-story house | −20.00 |
(Estimated) | Colombia | Glue-laminated bamboo single-story house | −10.00 |
Colombia | Glue-laminated bamboo multi-story building | −5.00 | |
(Laleicke et al. [87]) | China | Bamboo scaffolding | −99.00 |
(Restrepo et al. [88]) | Colombia | Bamboo board | −2456.00 |
(Bukoski & Gheewala [89]) | Thailand | Industrialized bamboo board | −11.50 |
Thailand | Non-industrialized bamboo board | −6.44 | |
(Gu et al. [80]) | China | Bamboo scrimber flooring | −14.90 |
(Caldas et al. [91]) | Brazil | Bamboo bio-concrete-B (52.5%)/W (0.5) | −55.00 |
Brazil | Bamboo bio-concrete-B (52.5%)/W (0.45) | −45.00 | |
Brazil | Bamboo bio-concrete-B (52.5%)/W (0.4) | −35.00 | |
Source | Region | Product | Carbon Footprint (kg CO2eq/kg product) |
(Chang et al. [85]) | China | Plybamboo (bleached) | −980.00 |
(Estimated) | China | Plybamboo (heat treatment) | −600.00 |
China | Plybamboo | −1250.00 | |
(Phuong & Xuan [90]) | Vietnam | Strand-woven bamboo flooring | −0.26 |
Vietnam | Bamboo kitchen countertop panel | −0.47 | |
Vietnam | Strand-woven bamboo mat | −0.70 |
Name | Platform | Status | Country | Estimated Annual Emission Reduction (tCO2e) | Crediting Period Start Date | Crediting Period End Date |
---|---|---|---|---|---|---|
Bamboo Plantations by Farmers and Community in the Country | VCS | Under development | India | 61,126 | 09-07-2019 | 08-07-2049 |
Reforestation Project in Meghalaya by Shillong Bamboo | VCS | Under development | India | 100,000 | 01-07-2017 | 30-06-2037 |
Bisignano and Mesoraca Project of Afforestation of the Agricultural Company Gaia SRL Bamboo Plants | VCS | Under development | Italy | 315,494 | 01-07-2022 | 30-06-2050 |
Reforestation Project of the Agricultural Company Gaia SRL Bamboo Plant | VCS | Under validation | Italy | 2,430,904 | 17-09-2019 | 16-09-2051 |
Eastern Cape Bamboo Forestry Project, South Africa | VCS | Under validation | South Africa | 460,404 | N/A | N/A |
Eastern Cape Restoration Project, South Africa—Somerset East | VCS | Under validation | South Africa | 211,721 | 01-10-2022 | 30-09-2062 |
Eastern Cape Restoration Project, South Africa—Makhanda | VCS | Under validation | South Africa | 135,772 | 01-10-2022 | 30-09-2062 |
Lanao del Sur Bamboo Reforestation Project | VCS | Under validation | Philippines | 297,917 | 01-06-2022 | 31-05-2042 |
North Bandai Bamboo Reforestation Project | VCS | Under validation | Ghana | 105,106 | 01-06-202 | 31-05-2041 |
Bandai Hills Bamboo Reforestation Project | VCS | Under validation | Ghana | 157,858 | 01-06-2022 | 31-05-2032 |
Rwanda Riparian Restoration Project | VCS | Under validation | Rwanda | 45,841 | 01-10-2022 | 30-09-2032 |
Peri-urban Bamboo Planting around South African Townships | VCS | Registered | South Africa | 16,000 | 01-03-2011 | 28-02-2031 |
EcoPlanet Bamboo Central America—Reforestation Project | VCS | Registered | Nicaragua | 40,815 | 01-06-2011 | 31-05-2031 |
Bamboo Afforestation Carbon Project in Tongshan County, Hubei Province | CCER | Registered | China | 6556 | 01-01-2015 | 31-12-2034 |
Shunchang County State-owned Forest Farm Bamboo Forest Management Carbon Project | FFCER | Registered | China | 8639 | 15-01-2010 | 14-01-2040 |
Fostering Sustainable Forest Management in Hunan Province | AFD | Completed | China | 129,000 | 19-12-2012 | 31-10-2018 |
Bamboo Forest Carbon Project in Xishuangbanna, Yunnan | Panda | Withdrawn | China | 18,200 | 01-11-2010 | 31-10-2030 |
Number | Annual Emission Reductions (tCO2e) | |
---|---|---|
Bamboo Projects | 13 | 4,378,958 |
Forestry Projects | 520 | 1,283,575,126 |
Bamboo’s Proportion | 2.50% | 0.34% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.; Zhou, G.; Shrestha, A.K.; Chen, J.; Kozak, R.; Li, N.; Li, J.; He, Y.; Sheng, C.; Wang, G. Bamboo as a Nature-Based Solution (NbS) for Climate Change Mitigation: Biomass, Products, and Carbon Credits. Climate 2023, 11, 175. https://doi.org/10.3390/cli11090175
Pan C, Zhou G, Shrestha AK, Chen J, Kozak R, Li N, Li J, He Y, Sheng C, Wang G. Bamboo as a Nature-Based Solution (NbS) for Climate Change Mitigation: Biomass, Products, and Carbon Credits. Climate. 2023; 11(9):175. https://doi.org/10.3390/cli11090175
Chicago/Turabian StylePan, Chunyu, Guomo Zhou, Anil Kumar Shrestha, Jialu Chen, Robert Kozak, Nuyun Li, Jinliang Li, Yeyun He, Chunguang Sheng, and Guangyu Wang. 2023. "Bamboo as a Nature-Based Solution (NbS) for Climate Change Mitigation: Biomass, Products, and Carbon Credits" Climate 11, no. 9: 175. https://doi.org/10.3390/cli11090175