Evaluation of WRF Microphysics Schemes Performance Forced by Reanalysis and Satellite-Based Precipitation Datasets for Early Warning System of Extreme Storms in Hyper Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Datasets
2.3. Model Configuration
2.4. Model Evaluation Using MODE Analysis
2.5. Evaluation of Satellite-Based Rainfall Data
3. Results
3.1. WRF Simulations
3.2. Mode Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Microphysics | Cen DIST | ANG Diff | Area Ratio | SYMM Diff | Tot INTR | FBIAS | POD | FAR | CSI | HK | HSS | GOOD | BAD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lin | 5.59 | 10.02 | 0.65 | 421 | 0.95 | 1.53 | 0.97 | 0.37 | 0.62 | 0.67 | 0.6 | 8 | 0 |
WSM_6 class_graupe | 6.13 | 11.94 | 0.64 | 463 | 0.95 | 1.59 | 0.94 | 0.41 | 0.57 | 0.59 | 0.52 | 0 | 2 |
Goddard_GCE | 6.04 | 12.78 | 0.66 | 444 | 0.95 | 1.48 | 0.93 | 0.37 | 0.6 | 0.63 | 0.57 | 2 | 0 |
Thompson | 6.76 | 14.06 | 0.67 | 513 | 0.95 | 1.48 | 0.88 | 0.4 | 0.55 | 0.56 | 0.5 | 2 | 6 |
Morrison | 6.35 | 11.99 | 0.62 | 516 | 0.95 | 1.59 | 0.94 | 0.41 | 0.57 | 0.59 | 0.52 | 0 | 3 |
NSSL2C | 6.16 | 12.28 | 0.64 | 524 | 0.95 | 1.54 | 0.91 | 0.41 | 0.56 | 0.58 | 0.52 | 0 | 2 |
Best | Small | Small | 1 | Small | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Microphysics | Cen DIST | ANG Diff | Area Ratio | SYMM Diff | Tot INTR | FBIAS | POD | FAR | CSI | HK | HSS | GOOD | BAD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lin | 11.72 | 26.16 | 0.33 | 754.67 | 0.89 | 1.98 | 0.96 | 0.51 | 0.48 | 0.6 | 0.46 | 2 | 2 |
WSM_6 class_graupe | 11.88 | 26.77 | 0.33 | 776.33 | 0.89 | 1.97 | 0.92 | 0.53 | 0.45 | 0.55 | 0.42 | 0 | 4 |
Goddard_GCE | 11.85 | 26.96 | 0.34 | 739 | 0.89 | 1.93 | 0.94 | 0.51 | 0.47 | 0.59 | 0.45 | 0 | 1 |
Thompson | 12.11 | 27.5 | 0.34 | 768.33 | 0.89 | 1.91 | 0.89 | 0.53 | 0.44 | 0.53 | 0.41 | 0 | 8 |
Morrison | 11.85 | 26.48 | 0.33 | 766.33 | 0.89 | 2.05 | 0.98 | 0.52 | 0.47 | 0.6 | 0.45 | 1 | 3 |
NSSL2C | 6.16 | 12.28 | 0.64 | 524 | 0.95 | 1.54 | 0.91 | 0.41 | 0.56 | 0.58 | 0.52 | 9 | 0 |
Best | Small | Small | 1 | Small | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Microphysics | Cen DIST | ANG Diff | Area Ratio | SYMM Diff | Tot INTR | FBIAS | POD | FAR | CSI | HK | HSS | GOOD | BAD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lin | 2.9 | 7.49 | 0.71 | 391 | 0.98 | 1.39 | 0.95 | 0.32 | 0.66 | 0.67 | 0.63 | 6 | 0 |
WSM_6 class_graupe | 3.45 | 9.5 | 0.71 | 385 | 0.98 | 1.36 | 0.94 | 0.31 | 0.66 | 0.68 | 0.63 | 6 | 0 |
Goddard_GCE | 3.41 | 10.35 | 0.72 | 386 | 0.98 | 1.34 | 0.93 | 0.31 | 0.66 | 0.67 | 0.63 | 5 | 0 |
Thompson | 4.12 | 11.67 | 0.73 | 394 | 0.97 | 1.34 | 0.92 | 0.31 | 0.65 | 0.66 | 0.62 | 3 | 4 |
Morrison | 3.46 | 9.56 | 0.69 | 454 | 0.97 | 1.43 | 0.93 | 0.35 | 0.62 | 0.62 | 0.57 | 0 | 8 |
NSSL2C | 3.19 | 9.85 | 0.71 | 441 | 0.98 | 1.39 | 0.92 | 0.34 | 0.62 | 0.62 | 0.58 | 1 | 3 |
Best | Small | Small | 1 | Small | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Microphysics | Cen DIST | ANG Diff | Area Ratio | SYMM Diff | Tot INTR | FBIAS | POD | FAR | CSI | HK | HSS | GOOD | BAD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lin | 90.38 | 25.13 | 0.33 | 30,941.25 | 0.72 | 1.5 | 0.89 | 0.41 | 0.55 | 0.56 | 0.5 | 6 | 0 |
WSM_6 class_graupe | 90.91 | 24.21 | 0.33 | 31,743.25 | 0.71 | 1.48 | 0.85 | 0.42 | 0.53 | 0.52 | 0.47 | 1 | 3 |
Goddard_GCE | 90.76 | 23.72 | 0.33 | 30,654.25 | 0.71 | 1.45 | 0.86 | 0.41 | 0.54 | 0.54 | 0.49 | 3 | 0 |
Thompson | 102.48 | 26.37 | 0.27 | 19,096.12 | 0.54 | 1.45 | 0.84 | 0.42 | 0.53 | 0.52 | 0.47 | 2 | 8 |
Morrison | 90.95 | 24.41 | 0.32 | 31,840.25 | 0.75 | 1.54 | 0.9 | 0.42 | 0.54 | 0.55 | 0.49 | 1 | 2 |
NSSL2C | 90.98 | 24 | 0.32 | 32,122.25 | 0.75 | 1.52 | 0.87 | 0.43 | 0.53 | 0.52 | 0.47 | 2 | 5 |
Best | Small | Small | 1 | Small | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Microphysics | PERSIANN-CDR | CMORPH | Era5 | PERSIANN-CCS | ||||
---|---|---|---|---|---|---|---|---|
GOOD | BAD | GOOD | BAD | GOOD | BAD | GOOD | BAD | |
Lin | 8 | 0 | 2 | 2 | 6 | 0 | 6 | 0 |
WSM_6 class_graupe | 0 | 2 | 0 | 4 | 6 | 0 | 1 | 3 |
Goddard_GCE | 2 | 0 | 0 | 1 | 5 | 0 | 3 | 0 |
Thompson | 2 | 6 | 0 | 8 | 3 | 4 | 2 | 8 |
Morrison | 0 | 3 | 1 | 3 | 0 | 8 | 1 | 2 |
NSSL2C | 0 | 2 | 9 | 0 | 1 | 3 | 2 | 5 |
References
- El Afandi, G.; Morsy, M.; El Hussieny, F. Heavy rainfall simulation over sinai peninsula using the weather research and forecasting model. Int. J. Atmos. Sci. 2013, 2013, 241050. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.L.; Farley, R.; Orville, H. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Hong, S.; Lim, J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. Available online: https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001017491 (accessed on 3 March 2021).
- Tao, W.K.; Simpson, J. The Goddard cumulus ensemble model, part I: Model description, Terr. Atmos. Ocean. Sci. 1993, 4, 35–72. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather. Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Morrison, H.; Curry, J.A.; Khvorostyanov, V. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci. 2005, 62, 1665–1677. [Google Scholar] [CrossRef]
- Mansell, E.R.; Ziegler, C.L.; Bruning, E. Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci. 2010, 67, 171–194. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Lelieveld, J. Comparison of WRF model physics parameterizations over the MENA-CORDEX domain. Am. J. Clim. Chang. 2014, 3, 490–511. [Google Scholar] [CrossRef] [Green Version]
- Cassola, F.; Ferrari, F.; Mazzino, A. Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A veri fi cation exercise using different approaches. Atmos. Res. 2015, 164–165, 210–225. [Google Scholar] [CrossRef]
- Lagasio, M.; Parodi, A.; Procopio, R.; Rachidi, F.; Fiori, E. Lightning potential index performances in multimicrophysical cloud-resolving simulations of a back-building mesoscale convective system: The Genoa 2014 event. J. Geophys. Res. Atmos. 2017, 122, 4238–4257. [Google Scholar] [CrossRef]
- Politi, N.; Nastos, P.T.; Sfetsos, A.; Vlachogiannis, D.; Dalezios, N.R. Evaluation of the AWR-WRF model con fi guration at high resolution over the domain of Greece. Atmos. Res. 2017, 208, 229–245. [Google Scholar] [CrossRef]
- Karki, R.; Hasson, S.U.; Gerlitz, L.; Talchabhadel, R.; Schenk, E.; Schickhoff, U.; Scholten, T.; Böhner, J. WRF-based simulation of an extreme precipitation event over the Central Himalayas: Atmospheric mechanisms and their representation by microphysics parameterization schemes. Atmos. Res. 2018, 214, 21–35. [Google Scholar] [CrossRef]
- Douluri, D.L.; Chakraborty, A. Assessment of WRF-ARW model parameterization schemes for extreme heavy precipitation events associated with atmospheric rivers over West Coast of India. Atmos. Res. 2020, 249, 105330. [Google Scholar] [CrossRef]
- El-Taweel, M.H.; Robaa, S.M.; Abdel Wahab, M.M. Sensitivity of WRF Model to Convection Schemes for Rainfall Forecast Over Egypt. Curr. Sci. Int. 2019, 8, 12–17. Available online: https://scholar.cu.edu.eg/?q=moetasm/files/12-17-csi_1.pdf (accessed on 3 March 2021).
- Eltahan, M.; Magooda, M. Sensitivity of WRF microphysics schemes: Case study of simulating a severe rainfall over Egypt. J. Phys. Conf. Ser. 2018, 1039, 012024. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, Y.; Chen, O.; Wang, J.; Zhuo, L.; Rico-Ramirez, M.A.; Han, D. To develop a progressive multimetric configuration optimisation method for WRF simulations of extreme rainfall events over Egypt. J. Hydrol. 2021, 598, 126237. [Google Scholar] [CrossRef]
- Ibrahim, A. A comparative study of two extreme cases hit egypt in January 2008 and 2009 using WRF different convective schemes. Biomed. J. Sci. Tech. Res. 2020, 26, 19828–19837. [Google Scholar] [CrossRef]
- Almazroui, M.; Awad, A.M. Synoptic regimes associated with the eastern Mediterranean wet season cyclone tracks. Atmos. Res. 2016, 180, 92–118. [Google Scholar] [CrossRef]
- Krichak, S.O.; Breitgand, J.S.; Feldstein, S.B. A conceptual model for the identification of active red sea trough synoptic events over the southeastern mediterranean. J. Appl. Meteorol. Clim. 2012, 51, 962–971. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Berner, J.; Wang, W.; Powers, G.; Duda, G.; Barker, D.M.; et al. A De-scription of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar]
- Betts, A.K.; Miller, M.J. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q. J. R. Meteorol. Soc. 1986, 112, 693–709. [Google Scholar]
- Chen, F.; Pielke Sr, R.A.; Mitchell, K. Development and application of land-surface models for mesoscale atmospheric models: Problems and Promises. In Observation and Modeling of the Land Surface Hydrological Processes; Lakshmi, V., Alberston, J., Schaake, J., Eds.; American Geophysical Union: Washington, DC, USA, 2001; pp. 107–135. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Davis, C.A.; Brown, B.G.; Bullock, R.G. Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Weather Rev. 2006, 134, 1772–1784. [Google Scholar] [CrossRef]
- Davis, C.A.; Brown, B.G.; Bullock, R.G. Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Weather Rev. 2006, 134, 1785–1795. [Google Scholar] [CrossRef]
Station Name | Latitude | Longitude | Average Annual Rainfall (mm) |
---|---|---|---|
Salloum | 31°31′ N | 25°10′ E | 92 |
Mersa Matruh | 31°20′ N | 27°13′ E | 141 |
Port-Said | 31°17′ N | 32°14′ E | 83 |
Alexandria/Nouzha | 31°11′ N | 29°57′ E | 189 |
El Arish | 31°4′ N | 33°50′ E | 106 |
Dabaa | 31°2′ N | 28°27′ E | 119 |
Tanta | 30°47′ N | 31°0′ E | 51 |
Tahrir | 30°39′ N | 30°42′ E | 34 |
Ismailia | 30°35′ N | 32°15′ E | 37 |
Cairo | 30°7′ N | 31°25′ E | 26 |
As-Suways/Suez | 29°52′ N | 32°28′ E | 17 |
Helwan | 29°52′ N | 31°21′ E | 18 |
Ras Elnakb | 29°35′ N | 34°47′ E | 20 |
Ras-Sedr | 29°35′ N | 32°43′ E | 15 |
Siwa Oasis | 29°12′ N | 25°29′ E | 9 |
Beni Suef | 29°4′ N | 31°5′ E | 6 |
St. Katrine | 28°41′ N | 34°4′ E | 21 |
Bahariya | 28°20′ N | 28°54′ E | 4 |
El Tor | 28°13′ N | 33°39′ E | 7 |
Minya | 28°5′ N | 30°44′ E | 5 |
Ras Nsrany | 27°59′ N | 34°24′ E | 5 |
Hurguada | 27°8′ N | 33°42′ E | 5 |
Farafra | 27°3′ N | 27°59′ E | 2 |
Sohag | 26°33′ N | 31°41′ E | 1 |
Kosseir | 26°8′ N | 34°15′ E | 3 |
Luxor | 25°40′ N | 32°42′ E | 1 |
Kharga | 25°28′ N | 30°33′ E | 1 |
ICAO Number | Station Name | Latitude | Longitude | Rainfall (mm) |
---|---|---|---|---|
62317 | Raselten | 31.2 | 29.85 | 40 |
62324 | Rashed | 31.45 | 30.37 | 43 |
62365 | Belbes | 30.4 | 31.58 | 43 |
62437 | Elsalhia | 30.78 | 32.03 | 43 |
62380 | Komoshem | 29.55 | 30.88 | 42 |
62366 | Cairo International Airport | 30.13 | 31.4 | 45 |
62372 | Almaza | 30.08 | 31.35 | 51 |
62332 | Portsaid | 31.55 | 32.33 | 66 |
Data | Available at | Resolution | RMSE | MAE | RMAE(%) | Rank+ |
---|---|---|---|---|---|---|
CMORPH | https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/daily/0.25deg/, accessed on 1 June 2021 | 0.25 × 0.25 | 19.1 | 13.9 | 71 | 3 |
PERSIANN | https://chrsdata.eng.uci.edu/, accessed on 1 June 2021 | 0.25 × 0.25 | 21.2 | 17.8 | 83 | 5 |
PDIR-now | https://chrsdata.eng.uci.edu/, accessed on 1 June 2021 | 0.04 × 0.04 | 22.5 | 19.3 | 92 | 6 |
PERSIANN-CDR | https://chrsdata.eng.uci.edu/, accessed on 1 June 2021 | 0.25 × 0.25 | 11.9 | 9.8 | 76 | 1 |
PERSIANN-CCS | https://chrsdata.eng.uci.edu/, accessed on 1 June 2021 | 0.04 × 0.04 | 19.5 | 15.9 | 60 | 4 |
ERA5 | https://cds.climate.copernicus.eu, accessed on 1 June 2021 | 0.25 × 0.25 | 15.3 | 11.1 | 52 | 2 |
CHIRPS | https://www.chc.ucsb.edu/data/chirps, accessed on 1 June 2021 | 0.25 × 0.25 | 24.1 | 19.4 | 78 | 7 |
Dynamics | Non-Hydrostatic |
---|---|
Data | NCEP gfs 0.25 × 0.25 3-h interval |
Output interval | 1 Hour |
Terrain and land use data | USGS |
Gris size | Domain1: (293 × 362) × 34 Domain2: (376 × 475) × 34 |
Resolution | Domain1: 18 × 18 Km Domain2: 6 × 6 Km |
Time step | 60 Second |
Long Wave Radiation | Dudhia [24] |
Short Wave Radiation | Dudhia [24] |
PBL scheme | YUS [23] |
Cumulus scheme | BMJ [21] |
Microphysics scheme | Lin [2] WSM6 [3] Goddard [4] Thompson [5] Morrison [6] NSSL2C [7] |
Index | Description |
---|---|
Cen DIST | Centroid Difference: Provides a quantitative sense of spatial displacement of forecast |
ANG Diff | For noncircular objects: Gives measure of orientation errors |
Area Ratio | Provides an objective measure of whether there is an over prediction or under prediction of areal extent of forecast |
Symm Diff | Provides a good summary statistic for how well forecast and objects match Domain2: |
Tot Intr | Summary statistic derived from fuzzy logic engine user-defined interest maps for all these attributes plus some others |
Microphysics | RMSE | MAE | Order |
---|---|---|---|
Goddard_GCE | 14.3 | 11.9 | 1 |
Thompson | 18.3 | 14.5 | 2 |
Morrison | 18.1 | 15.0 | 3 |
WSM_6 class_graupe | 20.8 | 14.7 | 4 |
Lin | 19.6 | 14.6 | 5 |
NSSL2C | 19.2 | 15.6 | 6 |
Microphysics | PERSIANN-CDR | CMORPH | Era5 | PERSIANN-CCS | Rank |
---|---|---|---|---|---|
Lin | 1 | 3 | 1 | 1 | 1 |
Goddard_GCE | 2 | 2 | 2 | 2 | 2 |
NSSL2C | 3 | 1 | 3 | 5 | 3 |
WSM_6 class_graupe | 3 | 5 | 1 | 4 | 4 |
Morrison | 4 | 4 | 5 | 3 | 5 |
Thompson | 5 | 6 | 4 | 6 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekawy, M.; Saber, M.; Mekhaimar, S.A.; Zakey, A.S.; Robaa, S.M.; Abdel Wahab, M. Evaluation of WRF Microphysics Schemes Performance Forced by Reanalysis and Satellite-Based Precipitation Datasets for Early Warning System of Extreme Storms in Hyper Arid Environment. Climate 2023, 11, 8. https://doi.org/10.3390/cli11010008
Mekawy M, Saber M, Mekhaimar SA, Zakey AS, Robaa SM, Abdel Wahab M. Evaluation of WRF Microphysics Schemes Performance Forced by Reanalysis and Satellite-Based Precipitation Datasets for Early Warning System of Extreme Storms in Hyper Arid Environment. Climate. 2023; 11(1):8. https://doi.org/10.3390/cli11010008
Chicago/Turabian StyleMekawy, Mohamed, Mohamed Saber, Sayed A. Mekhaimar, Ashraf Saber Zakey, Sayed M. Robaa, and Magdy Abdel Wahab. 2023. "Evaluation of WRF Microphysics Schemes Performance Forced by Reanalysis and Satellite-Based Precipitation Datasets for Early Warning System of Extreme Storms in Hyper Arid Environment" Climate 11, no. 1: 8. https://doi.org/10.3390/cli11010008
APA StyleMekawy, M., Saber, M., Mekhaimar, S. A., Zakey, A. S., Robaa, S. M., & Abdel Wahab, M. (2023). Evaluation of WRF Microphysics Schemes Performance Forced by Reanalysis and Satellite-Based Precipitation Datasets for Early Warning System of Extreme Storms in Hyper Arid Environment. Climate, 11(1), 8. https://doi.org/10.3390/cli11010008