Evaluation of WRF Microphysics Schemes Performance Forced by Reanalysis and Satellite-Based Precipitation Datasets for Early Warning System of Extreme Storms in Hyper Arid Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Datasets
2.3. Model Configuration
2.4. Model Evaluation Using MODE Analysis
2.5. Evaluation of Satellite-Based Rainfall Data
3. Results
3.1. WRF Simulations
3.2. Mode Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Microphysics | Cen DIST | ANG Diff | Area Ratio | SYMM Diff | Tot INTR | FBIAS | POD | FAR | CSI | HK | HSS | GOOD | BAD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lin | 5.59 | 10.02 | 0.65 | 421 | 0.95 | 1.53 | 0.97 | 0.37 | 0.62 | 0.67 | 0.6 | 8 | 0 |
WSM_6 class_graupe | 6.13 | 11.94 | 0.64 | 463 | 0.95 | 1.59 | 0.94 | 0.41 | 0.57 | 0.59 | 0.52 | 0 | 2 |
Goddard_GCE | 6.04 | 12.78 | 0.66 | 444 | 0.95 | 1.48 | 0.93 | 0.37 | 0.6 | 0.63 | 0.57 | 2 | 0 |
Thompson | 6.76 | 14.06 | 0.67 | 513 | 0.95 | 1.48 | 0.88 | 0.4 | 0.55 | 0.56 | 0.5 | 2 | 6 |
Morrison | 6.35 | 11.99 | 0.62 | 516 | 0.95 | 1.59 | 0.94 | 0.41 | 0.57 | 0.59 | 0.52 | 0 | 3 |
NSSL2C | 6.16 | 12.28 | 0.64 | 524 | 0.95 | 1.54 | 0.91 | 0.41 | 0.56 | 0.58 | 0.52 | 0 | 2 |
Best | Small | Small | 1 | Small | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Microphysics | Cen DIST | ANG Diff | Area Ratio | SYMM Diff | Tot INTR | FBIAS | POD | FAR | CSI | HK | HSS | GOOD | BAD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lin | 11.72 | 26.16 | 0.33 | 754.67 | 0.89 | 1.98 | 0.96 | 0.51 | 0.48 | 0.6 | 0.46 | 2 | 2 |
WSM_6 class_graupe | 11.88 | 26.77 | 0.33 | 776.33 | 0.89 | 1.97 | 0.92 | 0.53 | 0.45 | 0.55 | 0.42 | 0 | 4 |
Goddard_GCE | 11.85 | 26.96 | 0.34 | 739 | 0.89 | 1.93 | 0.94 | 0.51 | 0.47 | 0.59 | 0.45 | 0 | 1 |
Thompson | 12.11 | 27.5 | 0.34 | 768.33 | 0.89 | 1.91 | 0.89 | 0.53 | 0.44 | 0.53 | 0.41 | 0 | 8 |
Morrison | 11.85 | 26.48 | 0.33 | 766.33 | 0.89 | 2.05 | 0.98 | 0.52 | 0.47 | 0.6 | 0.45 | 1 | 3 |
NSSL2C | 6.16 | 12.28 | 0.64 | 524 | 0.95 | 1.54 | 0.91 | 0.41 | 0.56 | 0.58 | 0.52 | 9 | 0 |
Best | Small | Small | 1 | Small | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Microphysics | Cen DIST | ANG Diff | Area Ratio | SYMM Diff | Tot INTR | FBIAS | POD | FAR | CSI | HK | HSS | GOOD | BAD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lin | 2.9 | 7.49 | 0.71 | 391 | 0.98 | 1.39 | 0.95 | 0.32 | 0.66 | 0.67 | 0.63 | 6 | 0 |
WSM_6 class_graupe | 3.45 | 9.5 | 0.71 | 385 | 0.98 | 1.36 | 0.94 | 0.31 | 0.66 | 0.68 | 0.63 | 6 | 0 |
Goddard_GCE | 3.41 | 10.35 | 0.72 | 386 | 0.98 | 1.34 | 0.93 | 0.31 | 0.66 | 0.67 | 0.63 | 5 | 0 |
Thompson | 4.12 | 11.67 | 0.73 | 394 | 0.97 | 1.34 | 0.92 | 0.31 | 0.65 | 0.66 | 0.62 | 3 | 4 |
Morrison | 3.46 | 9.56 | 0.69 | 454 | 0.97 | 1.43 | 0.93 | 0.35 | 0.62 | 0.62 | 0.57 | 0 | 8 |
NSSL2C | 3.19 | 9.85 | 0.71 | 441 | 0.98 | 1.39 | 0.92 | 0.34 | 0.62 | 0.62 | 0.58 | 1 | 3 |
Best | Small | Small | 1 | Small | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Microphysics | Cen DIST | ANG Diff | Area Ratio | SYMM Diff | Tot INTR | FBIAS | POD | FAR | CSI | HK | HSS | GOOD | BAD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lin | 90.38 | 25.13 | 0.33 | 30,941.25 | 0.72 | 1.5 | 0.89 | 0.41 | 0.55 | 0.56 | 0.5 | 6 | 0 |
WSM_6 class_graupe | 90.91 | 24.21 | 0.33 | 31,743.25 | 0.71 | 1.48 | 0.85 | 0.42 | 0.53 | 0.52 | 0.47 | 1 | 3 |
Goddard_GCE | 90.76 | 23.72 | 0.33 | 30,654.25 | 0.71 | 1.45 | 0.86 | 0.41 | 0.54 | 0.54 | 0.49 | 3 | 0 |
Thompson | 102.48 | 26.37 | 0.27 | 19,096.12 | 0.54 | 1.45 | 0.84 | 0.42 | 0.53 | 0.52 | 0.47 | 2 | 8 |
Morrison | 90.95 | 24.41 | 0.32 | 31,840.25 | 0.75 | 1.54 | 0.9 | 0.42 | 0.54 | 0.55 | 0.49 | 1 | 2 |
NSSL2C | 90.98 | 24 | 0.32 | 32,122.25 | 0.75 | 1.52 | 0.87 | 0.43 | 0.53 | 0.52 | 0.47 | 2 | 5 |
Best | Small | Small | 1 | Small | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Microphysics | PERSIANN-CDR | CMORPH | Era5 | PERSIANN-CCS | ||||
---|---|---|---|---|---|---|---|---|
GOOD | BAD | GOOD | BAD | GOOD | BAD | GOOD | BAD | |
Lin | 8 | 0 | 2 | 2 | 6 | 0 | 6 | 0 |
WSM_6 class_graupe | 0 | 2 | 0 | 4 | 6 | 0 | 1 | 3 |
Goddard_GCE | 2 | 0 | 0 | 1 | 5 | 0 | 3 | 0 |
Thompson | 2 | 6 | 0 | 8 | 3 | 4 | 2 | 8 |
Morrison | 0 | 3 | 1 | 3 | 0 | 8 | 1 | 2 |
NSSL2C | 0 | 2 | 9 | 0 | 1 | 3 | 2 | 5 |
References
- El Afandi, G.; Morsy, M.; El Hussieny, F. Heavy rainfall simulation over sinai peninsula using the weather research and forecasting model. Int. J. Atmos. Sci. 2013, 2013, 241050. [Google Scholar] [CrossRef]
- Lin, Y.L.; Farley, R.; Orville, H. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Hong, S.; Lim, J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. Available online: https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001017491 (accessed on 3 March 2021).
- Tao, W.K.; Simpson, J. The Goddard cumulus ensemble model, part I: Model description, Terr. Atmos. Ocean. Sci. 1993, 4, 35–72. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather. Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Morrison, H.; Curry, J.A.; Khvorostyanov, V. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci. 2005, 62, 1665–1677. [Google Scholar] [CrossRef]
- Mansell, E.R.; Ziegler, C.L.; Bruning, E. Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci. 2010, 67, 171–194. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Lelieveld, J. Comparison of WRF model physics parameterizations over the MENA-CORDEX domain. Am. J. Clim. Chang. 2014, 3, 490–511. [Google Scholar] [CrossRef]
- Cassola, F.; Ferrari, F.; Mazzino, A. Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A veri fi cation exercise using different approaches. Atmos. Res. 2015, 164–165, 210–225. [Google Scholar] [CrossRef]
- Lagasio, M.; Parodi, A.; Procopio, R.; Rachidi, F.; Fiori, E. Lightning potential index performances in multimicrophysical cloud-resolving simulations of a back-building mesoscale convective system: The Genoa 2014 event. J. Geophys. Res. Atmos. 2017, 122, 4238–4257. [Google Scholar] [CrossRef]
- Politi, N.; Nastos, P.T.; Sfetsos, A.; Vlachogiannis, D.; Dalezios, N.R. Evaluation of the AWR-WRF model con fi guration at high resolution over the domain of Greece. Atmos. Res. 2017, 208, 229–245. [Google Scholar] [CrossRef]
- Karki, R.; Hasson, S.U.; Gerlitz, L.; Talchabhadel, R.; Schenk, E.; Schickhoff, U.; Scholten, T.; Böhner, J. WRF-based simulation of an extreme precipitation event over the Central Himalayas: Atmospheric mechanisms and their representation by microphysics parameterization schemes. Atmos. Res. 2018, 214, 21–35. [Google Scholar] [CrossRef]
- Douluri, D.L.; Chakraborty, A. Assessment of WRF-ARW model parameterization schemes for extreme heavy precipitation events associated with atmospheric rivers over West Coast of India. Atmos. Res. 2020, 249, 105330. [Google Scholar] [CrossRef]
- El-Taweel, M.H.; Robaa, S.M.; Abdel Wahab, M.M. Sensitivity of WRF Model to Convection Schemes for Rainfall Forecast Over Egypt. Curr. Sci. Int. 2019, 8, 12–17. Available online: https://scholar.cu.edu.eg/?q=moetasm/files/12-17-csi_1.pdf (accessed on 3 March 2021).
- Eltahan, M.; Magooda, M. Sensitivity of WRF microphysics schemes: Case study of simulating a severe rainfall over Egypt. J. Phys. Conf. Ser. 2018, 1039, 012024. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Chen, O.; Wang, J.; Zhuo, L.; Rico-Ramirez, M.A.; Han, D. To develop a progressive multimetric configuration optimisation method for WRF simulations of extreme rainfall events over Egypt. J. Hydrol. 2021, 598, 126237. [Google Scholar] [CrossRef]
- Ibrahim, A. A comparative study of two extreme cases hit egypt in January 2008 and 2009 using WRF different convective schemes. Biomed. J. Sci. Tech. Res. 2020, 26, 19828–19837. [Google Scholar] [CrossRef]
- Almazroui, M.; Awad, A.M. Synoptic regimes associated with the eastern Mediterranean wet season cyclone tracks. Atmos. Res. 2016, 180, 92–118. [Google Scholar] [CrossRef]
- Krichak, S.O.; Breitgand, J.S.; Feldstein, S.B. A conceptual model for the identification of active red sea trough synoptic events over the southeastern mediterranean. J. Appl. Meteorol. Clim. 2012, 51, 962–971. [Google Scholar] [CrossRef][Green Version]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Berner, J.; Wang, W.; Powers, G.; Duda, G.; Barker, D.M.; et al. A De-scription of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar]
- Betts, A.K.; Miller, M.J. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q. J. R. Meteorol. Soc. 1986, 112, 693–709. [Google Scholar]
- Chen, F.; Pielke Sr, R.A.; Mitchell, K. Development and application of land-surface models for mesoscale atmospheric models: Problems and Promises. In Observation and Modeling of the Land Surface Hydrological Processes; Lakshmi, V., Alberston, J., Schaake, J., Eds.; American Geophysical Union: Washington, DC, USA, 2001; pp. 107–135. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Davis, C.A.; Brown, B.G.; Bullock, R.G. Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Weather Rev. 2006, 134, 1772–1784. [Google Scholar] [CrossRef]
- Davis, C.A.; Brown, B.G.; Bullock, R.G. Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Weather Rev. 2006, 134, 1785–1795. [Google Scholar] [CrossRef]
Station Name | Latitude | Longitude | Average Annual Rainfall (mm) |
---|---|---|---|
Salloum | 31°31′ N | 25°10′ E | 92 |
Mersa Matruh | 31°20′ N | 27°13′ E | 141 |
Port-Said | 31°17′ N | 32°14′ E | 83 |
Alexandria/Nouzha | 31°11′ N | 29°57′ E | 189 |
El Arish | 31°4′ N | 33°50′ E | 106 |
Dabaa | 31°2′ N | 28°27′ E | 119 |
Tanta | 30°47′ N | 31°0′ E | 51 |
Tahrir | 30°39′ N | 30°42′ E | 34 |
Ismailia | 30°35′ N | 32°15′ E | 37 |
Cairo | 30°7′ N | 31°25′ E | 26 |
As-Suways/Suez | 29°52′ N | 32°28′ E | 17 |
Helwan | 29°52′ N | 31°21′ E | 18 |
Ras Elnakb | 29°35′ N | 34°47′ E | 20 |
Ras-Sedr | 29°35′ N | 32°43′ E | 15 |
Siwa Oasis | 29°12′ N | 25°29′ E | 9 |
Beni Suef | 29°4′ N | 31°5′ E | 6 |
St. Katrine | 28°41′ N | 34°4′ E | 21 |
Bahariya | 28°20′ N | 28°54′ E | 4 |
El Tor | 28°13′ N | 33°39′ E | 7 |
Minya | 28°5′ N | 30°44′ E | 5 |
Ras Nsrany | 27°59′ N | 34°24′ E | 5 |
Hurguada | 27°8′ N | 33°42′ E | 5 |
Farafra | 27°3′ N | 27°59′ E | 2 |
Sohag | 26°33′ N | 31°41′ E | 1 |
Kosseir | 26°8′ N | 34°15′ E | 3 |
Luxor | 25°40′ N | 32°42′ E | 1 |
Kharga | 25°28′ N | 30°33′ E | 1 |
ICAO Number | Station Name | Latitude | Longitude | Rainfall (mm) |
---|---|---|---|---|
62317 | Raselten | 31.2 | 29.85 | 40 |
62324 | Rashed | 31.45 | 30.37 | 43 |
62365 | Belbes | 30.4 | 31.58 | 43 |
62437 | Elsalhia | 30.78 | 32.03 | 43 |
62380 | Komoshem | 29.55 | 30.88 | 42 |
62366 | Cairo International Airport | 30.13 | 31.4 | 45 |
62372 | Almaza | 30.08 | 31.35 | 51 |
62332 | Portsaid | 31.55 | 32.33 | 66 |
Data | Available at | Resolution | RMSE | MAE | RMAE(%) | Rank+ |
---|---|---|---|---|---|---|
CMORPH | https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/daily/0.25deg/, accessed on 1 June 2021 | 0.25 × 0.25 | 19.1 | 13.9 | 71 | 3 |
PERSIANN | https://chrsdata.eng.uci.edu/, accessed on 1 June 2021 | 0.25 × 0.25 | 21.2 | 17.8 | 83 | 5 |
PDIR-now | https://chrsdata.eng.uci.edu/, accessed on 1 June 2021 | 0.04 × 0.04 | 22.5 | 19.3 | 92 | 6 |
PERSIANN-CDR | https://chrsdata.eng.uci.edu/, accessed on 1 June 2021 | 0.25 × 0.25 | 11.9 | 9.8 | 76 | 1 |
PERSIANN-CCS | https://chrsdata.eng.uci.edu/, accessed on 1 June 2021 | 0.04 × 0.04 | 19.5 | 15.9 | 60 | 4 |
ERA5 | https://cds.climate.copernicus.eu, accessed on 1 June 2021 | 0.25 × 0.25 | 15.3 | 11.1 | 52 | 2 |
CHIRPS | https://www.chc.ucsb.edu/data/chirps, accessed on 1 June 2021 | 0.25 × 0.25 | 24.1 | 19.4 | 78 | 7 |
Dynamics | Non-Hydrostatic |
---|---|
Data | NCEP gfs 0.25 × 0.25 3-h interval |
Output interval | 1 Hour |
Terrain and land use data | USGS |
Gris size | Domain1: (293 × 362) × 34 Domain2: (376 × 475) × 34 |
Resolution | Domain1: 18 × 18 Km Domain2: 6 × 6 Km |
Time step | 60 Second |
Long Wave Radiation | Dudhia [24] |
Short Wave Radiation | Dudhia [24] |
PBL scheme | YUS [23] |
Cumulus scheme | BMJ [21] |
Microphysics scheme | Lin [2] WSM6 [3] Goddard [4] Thompson [5] Morrison [6] NSSL2C [7] |
Index | Description |
---|---|
Cen DIST | Centroid Difference: Provides a quantitative sense of spatial displacement of forecast |
ANG Diff | For noncircular objects: Gives measure of orientation errors |
Area Ratio | Provides an objective measure of whether there is an over prediction or under prediction of areal extent of forecast |
Symm Diff | Provides a good summary statistic for how well forecast and objects match Domain2: |
Tot Intr | Summary statistic derived from fuzzy logic engine user-defined interest maps for all these attributes plus some others |
Microphysics | RMSE | MAE | Order |
---|---|---|---|
Goddard_GCE | 14.3 | 11.9 | 1 |
Thompson | 18.3 | 14.5 | 2 |
Morrison | 18.1 | 15.0 | 3 |
WSM_6 class_graupe | 20.8 | 14.7 | 4 |
Lin | 19.6 | 14.6 | 5 |
NSSL2C | 19.2 | 15.6 | 6 |
Microphysics | PERSIANN-CDR | CMORPH | Era5 | PERSIANN-CCS | Rank |
---|---|---|---|---|---|
Lin | 1 | 3 | 1 | 1 | 1 |
Goddard_GCE | 2 | 2 | 2 | 2 | 2 |
NSSL2C | 3 | 1 | 3 | 5 | 3 |
WSM_6 class_graupe | 3 | 5 | 1 | 4 | 4 |
Morrison | 4 | 4 | 5 | 3 | 5 |
Thompson | 5 | 6 | 4 | 6 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekawy, M.; Saber, M.; Mekhaimar, S.A.; Zakey, A.S.; Robaa, S.M.; Abdel Wahab, M. Evaluation of WRF Microphysics Schemes Performance Forced by Reanalysis and Satellite-Based Precipitation Datasets for Early Warning System of Extreme Storms in Hyper Arid Environment. Climate 2023, 11, 8. https://doi.org/10.3390/cli11010008
Mekawy M, Saber M, Mekhaimar SA, Zakey AS, Robaa SM, Abdel Wahab M. Evaluation of WRF Microphysics Schemes Performance Forced by Reanalysis and Satellite-Based Precipitation Datasets for Early Warning System of Extreme Storms in Hyper Arid Environment. Climate. 2023; 11(1):8. https://doi.org/10.3390/cli11010008
Chicago/Turabian StyleMekawy, Mohamed, Mohamed Saber, Sayed A. Mekhaimar, Ashraf Saber Zakey, Sayed M. Robaa, and Magdy Abdel Wahab. 2023. "Evaluation of WRF Microphysics Schemes Performance Forced by Reanalysis and Satellite-Based Precipitation Datasets for Early Warning System of Extreme Storms in Hyper Arid Environment" Climate 11, no. 1: 8. https://doi.org/10.3390/cli11010008
APA StyleMekawy, M., Saber, M., Mekhaimar, S. A., Zakey, A. S., Robaa, S. M., & Abdel Wahab, M. (2023). Evaluation of WRF Microphysics Schemes Performance Forced by Reanalysis and Satellite-Based Precipitation Datasets for Early Warning System of Extreme Storms in Hyper Arid Environment. Climate, 11(1), 8. https://doi.org/10.3390/cli11010008