Rainy Day Prediction Model with Climate Covariates Using Artificial Neural Network MLP, Pilot Area: Central Italy
Abstract
:1. Introduction
1.1. Aim of the Study and State of the Art
1.2. Geographical Framework
2. Materials and Methods
2.1. Weather Stations and Climate Data
2.2. Interpolation and Extrapolation of Climate Data
2.3. Predictive Modelling
3. Results
3.1. Quantitative Rainfall Prediction Model Based on MLP Technique
3.2. Binary Forecast Model of Rainy and Non-Rainy Days Based on the MLP Technique
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pelfini, M.; Santilli, M. Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy. Geomorphology 2008, 101, 721–730. [Google Scholar] [CrossRef]
- Kisaka, M.O.; Mucheru-Muna, M.; Ngetich, F.K.; Mugwe, J.N.; Mugendi, D.; Mairura, F. Rainfall Variability, Drought Characterization, and Efficacy of Rainfall Data Reconstruction: Case of Eastern Kenya. Adv. Meteorol. 2015, 2015, 380404. [Google Scholar] [CrossRef]
- Wu, L.; Zhai, P. Validation of daily precipitation from two high-resolution satellite precipitation datasets over the Tibetan Plateau and the regions to its east. Acta Meteorol. Sin. 2012, 26, 735–745. [Google Scholar] [CrossRef]
- Hong, Y.; Adler, R.; Huffman, G. Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys. Res. Lett. 2006, 33, g1028010. [Google Scholar] [CrossRef]
- Dezfuli, A.K.; Ichoku, C.M.; Huffman, G.J.; Mohr, K.I.; Selker, J.S.; Van De Giesen, N.; Hochreutener, R.; Annor, F.O. Validation of IMERG precipitation in Africa. J. Hydrometeorol. 2017, 18, 2817–2825. [Google Scholar] [CrossRef] [PubMed]
- Gentilucci, M.; Pambianchi, G. Prediction of Snowmelt Days Using Binary Logistic Regression in the Umbria-Marche Apennines (Central Italy). Water 2022, 14, 1495. [Google Scholar] [CrossRef]
- Gentilucci, M.; Barbieri, M.; Pambianchi, G. Reliability of the IMERG product through reference rain gauges in Central Italy. Atmospheric Res. 2022, 278, 106340. [Google Scholar] [CrossRef]
- Gentilucci, M.; Barbieri, M.; Burt, P.; D’Aprile, F. Preliminary data validation and reconstruction of temperature and precip-itation in Central Italy. Geosciences 2018, 8, 202. [Google Scholar] [CrossRef]
- Tiwari, S.; Jha, S.K.; Sivakumar, B. Reconstruction of daily rainfall data using the concepts of networks: Accounting for spatial connections in neighborhood selection. J. Hydrol. 2019, 579, 124185. [Google Scholar] [CrossRef]
- Mishra, V.; Shah, R.; Azhar, S.; Shah, H.; Modi, P.; Kumar, R. Reconstruction of droughts in India using multiple land-surface models (1951–2015). Hydrol. Earth Syst. Sci. 2018, 22, 2269–2284. [Google Scholar] [CrossRef]
- Gimmi, U.; Luterbacher, J.; Pfister, C.; Wanner, H. A method to reconstruct long precipitation series using systematic de-scriptive observations in weather diaries: The example of the precipitation series for Bern, Switzerland (1760–2003). Theor. Appl. Climatol. 2007, 87, 185–199. [Google Scholar] [CrossRef]
- Rios, O.; Valero, M.M.; Pastor, E.; Planas, E. A data-driven fire spread simulator: Validation in Vall-Llobrega’s fire. Front. Mech. Eng. 2019, 5, 8. [Google Scholar] [CrossRef]
- Towers, P.; Jones, B.L. Real-time wind field reconstruction from LiDAR measurements using a dynamic wind model and state estimation. Wind. Energy 2014, 19, 133–150. [Google Scholar] [CrossRef]
- Nguyen, X.T.; Nguyen, B.T.; Do, K.P.; Bui, Q.H.; Nguyen, T.N.T.; Vuong, V.Q.; Le, T.H. Spatial interpolation of meteorologic variables in Vietnam using the Kriging method. J. Inf. Process. Syst. 2015, 11, 134–147. [Google Scholar]
- Li, L.; Zha, Y. Mapping relative humidity, average and extreme temperature in hot summer over China. Sci. Total Environ. 2018, 615, 875–881. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Wei, C.; Yeh, H.-C. Rainfall network design using kriging and entropy. Hydrol. Process. 2007, 22, 340–346. [Google Scholar] [CrossRef]
- Gentilucci, M.; Bisci, C.; Burt, P.; Fazzini, M.; Vaccaro, C. Interpolation of Rainfall Through Polynomial Regression in the Marche Region (Central Italy). In the Annual International Conference on Geographic Information Science; Springer: Cham, Switzerland, 2018; pp. 55–73. [Google Scholar]
- Hamidi, O.; Poorolajal, J.; Sadeghifar, M.; Abbasi, H.; Maryanaji, Z.; Faridi, H.R.; Tapak, L. A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran. Theor. Appl. Climatol. 2014, 119, 723–731. [Google Scholar] [CrossRef]
- Mekanik, F.; Imteaz, M.; Gato-Trinidad, S.; Elmahdi, A. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. J. Hydrol. 2013, 503, 11–21. [Google Scholar] [CrossRef]
- Rozos, E.; Dimitriadis, P.; Mazi, K.; Koussis, A. A Multilayer Perceptron Model for Stochastic Synthesis. Hydrology 2021, 8, 67. [Google Scholar] [CrossRef]
- Bellido-Jiménez, J.A.; Gualda, J.E.; García-Marín, A.P. Assessing Machine Learning Models for Gap Filling Daily Rainfall Series in a Semiarid Region of Spain. Atmosphere 2021, 12, 1158. [Google Scholar] [CrossRef]
- Forthofer, J.; Shannon, K.; Butler, B. Simulating diurnally driven slope winds with WindNinja. In Proceedings of the 8th Eighth Symposium on Fire and Forest Meteorology, Kalispell, MT, USA, 13–15 October 2009; American Meteorological Society: Boston, MA, USA, 2009. 13p. Available online: https://ams.confex.com/ams/8Fire/techprogram/paper_156275.htm (accessed on 1 February 2022).
- Pham, B.T.; Nguyen, M.D.; Bui, K.-T.T.; Prakash, I.; Chapi, K.; Bui, D.T. A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. Catena 2019, 173, 302–311. [Google Scholar] [CrossRef]
- Wong, W.; Xia, M.; Chu, W. Adaptive neural network model for time-series forecasting. Eur. J. Oper. Res. 2010, 207, 807–816. [Google Scholar] [CrossRef]
- Gouvas, M.; Sakellariou, N.; Xystrakis, F. The relationship between altitude of meteorological stations and average monthly and annual precipitation. Stud. Geophys. Geod. 2009, 53, 557–570. [Google Scholar] [CrossRef]
- Gentilucci, M.; Barbieri, M.; Burt, P. Climate and Territorial Suitability for the Vineyards Developed Using GIS Techniques. In Conference of the Arabian Journal of Geosciences; Springer: Cham, Switzerland, 2018; pp. 11–13. [Google Scholar] [CrossRef]
- Kim, J.-S.; Seo, G.-S.; Jang, H.-W.; Lee, J.-H. Correlation analysis between Korean spring drought and large-scale teleconnection patterns for drought forecasting. KSCE J. Civ. Eng. 2016, 21, 458–466. [Google Scholar] [CrossRef]
- Mello, L.; Pontes, M.S.; Fagundes, I.; Almeida, M.P.C.; Andrade, F.J.A. Modified rain attenuation prediction method considering the effect of wind direction. J. Microw. Optoelectron. Electromagn. Appl. 2014, 13, 254–267. [Google Scholar] [CrossRef]
- Jenamani, R.K.; Bhan, S.C.; Kalsi, S.R. Observational/forecasting aspects of the meteorological event that caused a record highest rainfall in Mumbai. Curr. Sci. 2006, 90, 1344–1362. [Google Scholar]
- Ng, D.H.L.; Li, R.; Raghavan, S.V.; Liong, S.-Y. Investigating the relationship between Aerosol Optical Depth and Precipitation over Southeast Asia with Relative Humidity as an influencing factor. Sci. Rep. 2017, 7, 13395. [Google Scholar] [CrossRef]
- Hung, N.Q.; Babel, M.S.; Weesakul, S.; Tripathi, N.K. An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrol. Earth Syst. Sci. 2009, 13, 1413–1425. [Google Scholar] [CrossRef]
Id | Name | Long. | Lat. | Alt. | Sen. | Id | Name | Long. | Lat. | Alt. | Sen. |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Acqualagna | 12.7 | 43.6 | 193 | r,h | 61 | Monte Grimano Terme | 12.5 | 43.8 | 362 | r |
2 | Acquasanta | 13.4 | 42.8 | 392 | r,h | 62 | Monte Paganuccio | 12.8 | 43.6 | 889 | r,h |
3 | Agugliano | 13.4 | 43.5 | 170 | r | 63 | Monte Prata | 13.2 | 42.9 | 1813 | r,p,w,h |
4 | Amandola | 13.4 | 43.0 | 550 | r | 64 | Montecchio | 12.8 | 43.9 | 43 | r |
5 | Ancona Baraccola | 13.5 | 43.6 | 37 | r,h | 65 | Montefano | 13.4 | 43.4 | 215 | r,h |
6 | Ancona Regione | 13.5 | 43.6 | 91 | r,p,w,h | 66 | Montelabbate | 12.8 | 43.8 | 65 | r |
7 | Apecchio | 12.4 | 43.6 | 465 | r | 67 | Montemonaco | 13.3 | 42.9 | 987 | r |
8 | Appignano | 13.3 | 43.4 | 199 | r | 68 | Mozzano | 13.5 | 42.8 | 193 | r,p,h |
9 | Arcevia | 12.9 | 43.5 | 535 | r,h | 69 | Nocera Umbra | 12.8 | 43.1 | 535 | r |
10 | Arquata del Tronto | 13.3 | 42.8 | 720 | r | 70 | Norcia | 13.1 | 42.8 | 700 | r |
11 | Badia Tedalda | 12.2 | 43.7 | 756 | r | 71 | Osimo Monteragolo | 13.5 | 43.5 | 123 | r,w,h |
12 | Barbara | 13.0 | 43.6 | 219 | r | 72 | Pennabilli | 12.3 | 43.8 | 600 | r |
13 | Bastia Umbra | 12.6 | 43.1 | 214 | r | 73 | Pergola | 12.8 | 43.6 | 306 | r,h |
14 | Bettolelle | 13.2 | 43.7 | 26 | r | 74 | Pesaro | 12.9 | 43.9 | 9 | r |
15 | Bocca Serriola | 12.4 | 43.5 | 730 | r | 75 | Piagge | 13.0 | 43.7 | 201 | r |
16 | Bolognola Pintura | 13.2 | 43.0 | 1352 | r,p,w,h | 76 | Pianello di Cagli | 12.6 | 43.5 | 384 | r,w,h |
17 | Bronzo | 12.5 | 43.8 | 173 | r,h | 77 | Pievebovigliana | 13.1 | 43.1 | 451 | r |
18 | Ca’Mazzasette | 12.6 | 43.8 | 112 | r | 78 | Piobbico | 12.5 | 43.6 | 339 | r |
19 | Camerino | 13.1 | 43.1 | 664 | r,p,w,h | 79 | Pioraco | 13.0 | 43.2 | 441 | r |
20 | Campodiegoli | 12.8 | 43.3 | 507 | r | 80 | Poggio San Vicino | 13.1 | 43.4 | 580 | r,h |
21 | Cantiano | 12.6 | 43.5 | 360 | r | 81 | Ponte Felcino | 12.4 | 43.1 | 205 | r |
22 | Capodacqua | 13.2 | 42.7 | 817 | r | 82 | Porto Sant’Elpidio | 13.8 | 43.2 | 3 | r,p,w,h |
23 | Carestello | 12.5 | 43.3 | 523 | r | 83 | Recanati | 13.5 | 43.4 | 235 | r |
24 | Carpegna | 12.3 | 43.8 | 748 | r | 84 | Ripatransone | 13.8 | 43.0 | 494 | r |
25 | Cascia | 13.0 | 42.7 | 604 | r | 85 | Rostighello | 13.5 | 43.4 | 28 | r |
26 | Case San Giovanni | 13.0 | 43.4 | 620 | r | 86 | Rotella | 13.6 | 43.0 | 385 | r |
27 | Cingoli | 13.2 | 43.4 | 790 | r,h | 87 | Sant’Angelo in Pontano | 13.4 | 43.1 | 473 | r |
28 | Citta di Castello | 12.3 | 43.5 | 304 | r | 88 | Sant’Angelo in Vado | 12.4 | 43.7 | 359 | r,h |
29 | Colle | 13.1 | 43.5 | 350 | r,p,w,h | 89 | San Bendetto del Tronto | 13.9 | 42.9 | 6 | r,p,w,h |
30 | Colleponi | 12.9 | 43.4 | 254 | r,h | 90 | San Giovanni | 13.0 | 43.4 | 625 | r |
31 | Corinaldo | 13.0 | 43.6 | 203 | r | 91 | San Lorenzo in Campo | 12.9 | 43.6 | 209 | r |
32 | Cupramontana | 13.1 | 43.4 | 506 | r | 92 | Santa Maria di Pieca | 13.3 | 43.1 | 467 | r |
33 | Esanatoglia Convento | 12.9 | 43.3 | 608 | r | 93 | Santa Maria Goretti | 13.7 | 43.0 | 130 | r |
34 | Fabriano | 12.9 | 43.3 | 357 | r,h | 94 | Santa Maria in Arzilla | 12.9 | 43.8 | 53 | r |
35 | Fermo | 13.7 | 43.2 | 280 | r | 95 | San Severino Marche | 13.2 | 43.2 | 220 | r,h |
36 | FiastraTrebbio | 13.2 | 43.0 | 747 | r,h | 96 | Sassofeltrio | 12.5 | 43.9 | 221 | r |
37 | Filottrano | 13.3 | 43.4 | 270 | r | 97 | Sassoferrato | 12.9 | 43.4 | 312 | r |
38 | Foligno | 12.7 | 43.0 | 224 | r | 98 | Sassotetto | 13.2 | 43.0 | 1365 | r,p,w,h |
39 | Fonte Avellana | 12.7 | 43.5 | 689 | r,h | 99 | Scheggia | 12.7 | 43.4 | 688 | r |
40 | Foresta della Cesana | 12.7 | 43.7 | 640 | r,h | 100 | Sefro | 13.0 | 43.2 | 469 | r |
41 | Forsivo | 13.0 | 42.8 | 968 | r | 101 | Sellano | 12.9 | 42.9 | 608 | r |
42 | Fossombrone | 12.8 | 43.7 | 116 | r | 102 | Senigallia | 13.2 | 43.7 | 5 | r,w,h |
43 | Gallo | 12.7 | 43.8 | 122 | r,h | 103 | Serravalle di Chienti | 13.0 | 43.1 | 647 | r,h |
44 | Gelagna Alta | 13.0 | 43.1 | 711 | r | 104 | Servigliano | 13.5 | 43.1 | 215 | r |
45 | Grottammare | 13.9 | 43.0 | 4 | r | 105 | Sorti | 13.0 | 43.1 | 672 | r,h |
46 | Grottazzolina | 13.6 | 43.1 | 200 | r | 106 | Spindoli | 12.9 | 43.2 | 484 | r |
47 | GualdoTadino | 12.8 | 43.2 | 535 | r | 107 | Spinetoli | 13.8 | 42.9 | 52 | r |
48 | Gubbio | 12.6 | 43.3 | 473 | r | 108 | Svarchi | 13.6 | 43.5 | 6 | r |
49 | Illice | 13.4 | 42.9 | 760 | r | 109 | Tavoleto | 12.6 | 43.8 | 426 | r |
50 | Jesi | 13.2 | 43.5 | 96 | r,h | 110 | Tolentino | 13.3 | 43.2 | 244 | r,w,h |
51 | Loreto | 13.6 | 43.4 | 127 | r,h | 111 | Trestina | 12.2 | 43.4 | 257 | R |
52 | Loro Piceno | 13.4 | 43.2 | 435 | r,h | 112 | Umito | 13.4 | 42.7 | 646 | R |
53 | Lucrezia | 13.0 | 43.8 | 36 | r,h | 113 | Urbania | 12.5 | 43.7 | 273 | R |
54 | Macerata | 13.4 | 43.3 | 294 | r,w,h | 114 | Urbino | 12.6 | 43.7 | 451 | r,p,w,h |
55 | Marotta | 13.1 | 43.7 | 144 | r | 115 | Ussita | 13.1 | 43.0 | 744 | r |
56 | Metaurilia | 13.1 | 43.8 | 7 | r | 116 | Villa Fastiggi | 12.9 | 43.9 | 22 | r,p,w,h |
57 | Moie | 13.1 | 43.5 | 110 | r | 117 | Villa Potenza | 13.4 | 43.3 | 133 | r,h |
58 | Monte Bove Sud | 13.2 | 42.9 | 1917 | r,p,w,h | 118 | Villa San Filippo | 13.6 | 43.3 | 58 | r |
59 | Monte Cavallo | 13.0 | 43.0 | 960 | r | 119 | Vallo di Nera | 12.9 | 42.8 | 310 | r |
60 | Monte Cucco | 12.7 | 43.4 | 1092 | r |
Error of a Model in the Prediction | Relative Humidity | Atmospheric Pressure |
---|---|---|
ME | −0.14 | −0.01 |
RMSE | 4.86 | 1.79 |
Training Percentage | Testing Percentage | Correct Percentage |
---|---|---|
50 | 50 | 79.7 |
60 | 40 | 79.8 |
70 | 30 | 80.0 |
80 | 20 | 79.9 |
90 | 10 | 79.9 |
Id | reTr | ret | Id | reTr | ret | Id | reTr | ret | Id | reTr | ret | Id | reTr | ret | Id | reTr | ret |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.83 | 0.83 | 21 | 0.82 | 0.83 | 41 | 0.89 | 0.89 | 61 | 0.89 | 0.93 | 81 | 0.86 | 0.81 | 101 | 0.83 | 0.86 |
2 | 0.89 | 0.85 | 22 | 0.84 | 0.87 | 42 | 0.87 | 0.84 | 62 | 0.87 | 0.88 | 82 | 0.90 | 0.87 | 102 | 0.87 | 0.89 |
3 | 0.83 | 0.86 | 23 | 0.84 | 0.81 | 43 | 0.86 | 0.82 | 63 | 0.90 | 0.91 | 83 | 0.83 | 0.84 | 103 | 0.89 | 0.92 |
4 | 0.93 | 0.89 | 24 | 0.85 | 0.88 | 44 | 0.86 | 0.84 | 64 | 0.86 | 0.85 | 84 | 0.89 | 0.89 | 104 | 0.90 | 0.91 |
5 | 0.84 | 0.88 | 25 | 0.80 | 0.83 | 45 | 0.81 | 0.87 | 65 | 0.86 | 0.86 | 85 | 0.87 | 0.83 | 105 | 0.78 | 0.80 |
6 | 0.86 | 0.87 | 26 | 0.88 | 0.88 | 46 | 0.76 | 0.84 | 66 | 0.90 | 0.86 | 86 | 0.81 | 0.73 | 106 | 0.88 | 0.84 |
7 | 0.85 | 0.86 | 27 | 0.89 | 0.90 | 47 | 0.90 | 0.89 | 67 | 0.86 | 0.84 | 87 | 0.91 | 0.90 | 107 | 0.82 | 0.77 |
8 | 0.83 | 0.82 | 28 | 0.86 | 0.90 | 48 | 0.83 | 0.82 | 68 | 0.82 | 0.73 | 88 | 0.89 | 0.88 | 108 | 0.91 | 0.92 |
9 | 0.90 | 0.91 | 29 | 0.84 | 0.88 | 49 | 0.84 | 0.83 | 69 | 0.84 | 0.80 | 89 | 0.88 | 0.96 | 109 | 0.93 | 0.93 |
10 | 0.86 | 0.91 | 30 | 0.83 | 0.83 | 50 | 0.85 | 0.84 | 70 | 0.88 | 0.85 | 90 | 0.82 | 0.78 | 110 | 0.85 | 0.86 |
11 | 0.88 | 0.87 | 31 | 0.84 | 0.83 | 51 | 0.88 | 0.88 | 71 | 0.86 | 0.81 | 91 | 0.92 | 0.94 | 111 | 0.86 | 0.91 |
12 | 0.87 | 0.84 | 32 | 0.87 | 0.87 | 52 | 0.86 | 0.86 | 72 | 0.84 | 0.85 | 92 | 0.85 | 0.84 | 112 | 0.88 | 0.90 |
13 | 0.89 | 0.86 | 33 | 0.85 | 0.85 | 53 | 0.87 | 0.87 | 73 | 0.82 | 0.82 | 93 | 0.88 | 0.88 | 113 | 0.85 | 0.88 |
14 | 0.85 | 0.85 | 34 | 0.81 | 0.85 | 54 | 0.86 | 0.85 | 74 | 0.84 | 0.87 | 94 | 0.93 | 0.91 | 114 | 0.85 | 0.83 |
15 | 0.89 | 0.90 | 35 | 0.81 | 0.79 | 55 | 0.86 | 0.83 | 75 | 0.86 | 0.88 | 95 | 0.81 | 0.88 | 115 | 0.88 | 0.85 |
16 | 0.86 | 0.89 | 36 | 0.86 | 0.84 | 56 | 0.93 | 0.90 | 76 | 0.85 | 0.85 | 96 | 0.73 | 0.90 | 116 | 0.84 | 0.85 |
17 | 0.91 | 0.87 | 37 | 0.86 | 0.86 | 57 | 0.81 | 0.83 | 77 | 0.88 | 0.87 | 97 | 0.85 | 0.90 | 117 | 0.85 | 0.82 |
18 | 0.91 | 0.91 | 38 | 0.88 | 0.85 | 58 | 0.89 | 0.92 | 78 | 0.88 | 0.88 | 98 | 0.86 | 0.90 | 118 | 0.89 | 0.86 |
19 | 0.84 | 0.82 | 39 | 0.75 | 0.80 | 59 | 0.80 | 0.82 | 79 | 0.82 | 0.84 | 99 | 0.87 | 0.88 | 119 | 0.86 | 0.85 |
20 | 0.85 | 0.82 | 40 | 0.83 | 0.82 | 60 | 0.82 | 0.83 | 80 | 0.85 | 0.81 | 100 | 0.85 | 0.84 |
Id | V. | Imp | Id | V. | Imp | Id | V. | Imp | Id | V. | Imp | Id | V. | Imp | Id | V. | Imp | Id | V. | Imp | Id | V. | Imp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | p | 0.64 | 16 | p | 0.46 | 31 | p | 0.53 | 46 | p | 0.29 | 61 | p | 0.33 | p | 0.58 | p | 0.84 | p | 0.76 | |||
h | 0.34 | h | 0.44 | h | 0.44 | h | 0.62 | h | 0.61 | 76 | h | 0.34 | 91 | h | 0.10 | 106 | h | 0.15 | |||||
w | 0.02 | w | 0.10 | w | 0.03 | w | 0.09 | w | 0.06 | w | 0.08 | w | 0.06 | w | 0.09 | ||||||||
2 | p | 0.55 | 17 | p | 0.49 | 32 | p | 0.49 | 47 | p | 0.77 | 62 | p | 0.52 | p | 0.66 | p | 0.37 | p | 0.06 | |||
h | 0.37 | h | 0.43 | h | 0.47 | h | 0.04 | h | 0.35 | 77 | h | 0.18 | 92 | h | 0.57 | 107 | h | 0.85 | |||||
w | 0.08 | w | 0.08 | w | 0.04 | w | 0.19 | w | 0.13 | w | 0.16 | w | 0.06 | w | 0.09 | ||||||||
3 | p | 0.42 | 18 | p | 0.67 | 33 | p | 0.79 | 48 | p | 0.61 | 63 | p | 0.16 | p | 0.74 | p | 0.51 | p | 0.60 | |||
h | 0.49 | h | 0.26 | h | 0.11 | h | 0.32 | h | 0.59 | 78 | h | 0.13 | 93 | h | 0.45 | 108 | h | 0.38 | |||||
w | 0.09 | w | 0.07 | w | 0.10 | w | 0.07 | w | 0.25 | w | 0.13 | w | 0.04 | w | 0.02 | ||||||||
4 | p | 0.59 | 19 | p | 0.53 | 34 | p | 0.55 | 49 | p | 0.24 | 64 | p | 0.62 | p | 0.49 | p | 0.77 | p | 0.97 | |||
h | 0.16 | h | 0.45 | h | 0.39 | h | 0.72 | h | 0.28 | 79 | h | 0.48 | 94 | h | 0.05 | 109 | h | 0.02 | |||||
w | 0.25 | w | 0.02 | w | 0.06 | w | 0.04 | w | 0.10 | w | 0.03 | w | 0.18 | w | 0.01 | ||||||||
5 | p | 0.46 | 20 | p | 0.80 | 35 | p | 0.42 | 50 | p | 0.53 | 65 | p | 0.61 | p | 0.51 | p | 0.64 | p | 0.46 | |||
h | 0.42 | h | 0.13 | h | 0.53 | h | 0.44 | h | 0.32 | 80 | h | 0.38 | 95 | h | 0.32 | 110 | h | 0.51 | |||||
w | 0.12 | w | 0.07 | w | 0.05 | w | 0.03 | w | 0.07 | w | 0.11 | w | 0.04 | w | 0.03 | ||||||||
6 | p | 0.48 | 21 | p | 0.55 | 36 | p | 0.65 | 51 | p | 0.60 | 66 | p | 0.44 | p | 0.48 | p | 0.62 | p | 0.87 | |||
h | 0.43 | h | 0.39 | h | 0.32 | h | 0.37 | h | 0.41 | 81 | h | 0.47 | 96 | h | 0.36 | 111 | h | 0.05 | |||||
w | 0.09 | w | 0.06 | w | 0.03 | w | 0.03 | w | 0.15 | w | 0.05 | w | 0.02 | w | 0.08 | ||||||||
7 | p | 0.68 | 22 | p | 0.80 | 37 | p | 0.49 | 52 | p | 0.61 | 67 | p | 0.43 | p | 0.72 | p | 0.48 | p | 0.80 | |||
h | 0.18 | h | 0.06 | h | 0.46 | h | 0.37 | h | 0.51 | 82 | h | 0.23 | 97 | h | 0.47 | 112 | h | 0.02 | |||||
w | 0.14 | w | 0.14 | w | 0.05 | w | 0.02 | w | 0.06 | w | 0.05 | w | 0.05 | w | 0.18 | ||||||||
8 | p | 0.53 | 23 | p | 0.82 | 38 | p | 0.91 | 53 | p | 0.59 | 68 | p | 0.28 | p | 0.46 | p | 0.66 | p | 0.50 | |||
h | 0.39 | h | 0.08 | h | 0.03 | h | 0.39 | h | 0.68 | 83 | h | 0.51 | 98 | h | 0.34 | 113 | h | 0.46 | |||||
w | 0.08 | w | 0.10 | w | 0.06 | w | 0.02 | w | 0.04 | w | 0.03 | w | 0.00 | w | 0.04 | ||||||||
9 | p | 0.69 | 24 | p | 0.49 | 39 | p | 0.52 | 54 | p | 0.45 | 69 | p | 0.74 | p | 0.41 | p | 0.82 | p | 0.51 | |||
h | 0.24 | h | 0.49 | h | 0.36 | h | 0.44 | h | 0.08 | 84 | h | 0.57 | 99 | h | 0.03 | 114 | h | 0.41 | |||||
w | 0.07 | w | 0.02 | w | 0.12 | w | 0.11 | w | 0.18 | w | 0.02 | w | 0.15 | w | 0.08 | ||||||||
10 | p | 0.52 | 25 | p | 0.53 | 40 | p | 0.56 | 55 | p | 0.42 | 70 | p | 0.93 | p | 0.52 | p | 0.87 | p | 0.61 | |||
h | 0.36 | h | 0.42 | h | 0.44 | h | 0.52 | h | 0.05 | 85 | h | 0.48 | 100 | h | 0.10 | 115 | h | 0.38 | |||||
w | 0.12 | w | 0.05 | w | 0.00 | w | 0.06 | w | 0.02 | w | 0.00 | w | 0.03 | w | 0.01 | ||||||||
11 | p | 0.68 | 26 | p | 0.71 | 41 | p | 0.95 | 56 | p | 0.71 | 71 | p | 0.60 | p | 0.15 | p | 0.92 | p | 0.52 | |||
h | 0.20 | h | 0.22 | h | 0.02 | h | 0.19 | h | 0.35 | 86 | h | 0.84 | 101 | h | 0.04 | 116 | h | 0.42 | |||||
w | 0.12 | w | 0.07 | w | 0.03 | w | 0.10 | w | 0.05 | w | 0.01 | w | 0.04 | w | 0.06 | ||||||||
12 | p | 0.47 | 27 | p | 0.51 | 42 | p | 0.55 | 57 | p | 0.34 | 72 | p | 0.47 | p | 0.59 | p | 0.58 | p | 0.61 | |||
h | 0.51 | h | 0.37 | h | 0.38 | h | 0.64 | h | 0.50 | 87 | h | 0.16 | 102 | h | 0.38 | 117 | h | 0.34 | |||||
w | 0.02 | w | 0.12 | w | 0.07 | w | 0.02 | w | 0.03 | w | 0.25 | w | 0.04 | w | 0.05 | ||||||||
13 | p | 0.79 | 28 | p | 0.81 | 43 | p | 0.66 | 58 | p | 0.48 | 73 | p | 0.47 | p | 0.73 | p | 0.44 | p | 0.41 | |||
h | 0.18 | h | 0.11 | h | 0.32 | h | 0.51 | h | 0.44 | 88 | h | 0.21 | 103 | h | 0.41 | 118 | h | 0.48 | |||||
w | 0.03 | w | 0.08 | w | 0.02 | w | 0.01 | w | 0.09 | w | 0.06 | w | 0.15 | w | 0.11 | ||||||||
14 | p | 0.48 | 29 | p | 0.55 | 44 | p | 0.82 | 59 | p | 0.50 | 74 | p | 0.47 | p | 0.55 | p | 0.45 | p | 0.85 | |||
h | 0.50 | h | 0.37 | h | 0.07 | h | 0.33 | h | 0.43 | 89 | h | 0.38 | 104 | h | 0.15 | 119 | h | 0.14 | |||||
w | 0.02 | w | 0.08 | w | 0.11 | w | 0.17 | w | 0.10 | w | 0.07 | w | 0.40 | w | 0.01 | ||||||||
15 | p | 0.92 | 30 | p | 0.42 | 45 | p | 0.35 | 60 | p | 0.42 | 75 | p | 0.50 | p | 0.38 | p | 0.63 | p | ||||
h | 0.03 | h | 0.35 | h | 0.62 | h | 0.53 | h | 0.43 | 90 | h | 0.54 | 105 | h | 0.23 | 120 | h | ||||||
w | 0.05 | w | 0.23 | w | 0.03 | w | 0.05 | w | 0.07 | w | 0.08 | w | 0.14 | w |
Id | test | Id | test | Id | test | Id | test | Id | test | Id | test | Id | test | Id | test |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 81.2 | 16 | 77.6 | 31 | 79.6 | 46 | 80.2 | 61 | 77.0 | 76 | 78.9 | 91 | 78.2 | 106 | 76.6 |
2 | 76.8 | 17 | 77.6 | 32 | 83.1 | 47 | 77.6 | 62 | 76.9 | 77 | 78.7 | 92 | 75.9 | 107 | 79.0 |
3 | 78.1 | 18 | 81.2 | 33 | 76.7 | 48 | 76.9 | 63 | 76.4 | 78 | 76.3 | 93 | 74.4 | 108 | 79.3 |
4 | 75.3 | 19 | 81.2 | 34 | 80.6 | 49 | 75.0 | 64 | 79.1 | 79 | 77.2 | 94 | 79.3 | 109 | 78.8 |
5 | 83.0 | 20 | 80.3 | 35 | 76.9 | 50 | 83.7 | 65 | 82.2 | 80 | 80.1 | 95 | 81.4 | 110 | 78.6 |
6 | 81.7 | 21 | 77.0 | 36 | 76.9 | 51 | 82.3 | 66 | 78.8 | 81 | 81.3 | 96 | 81.7 | 111 | 79.3 |
7 | 76.5 | 22 | 76.7 | 37 | 75.4 | 52 | 78.8 | 67 | 73.1 | 82 | 80.2 | 97 | 76.9 | 112 | 75.9 |
8 | 83.0 | 23 | 81.3 | 38 | 81.0 | 53 | 82.4 | 68 | 82.4 | 83 | 76.2 | 98 | 77.6 | 113 | 81.5 |
9 | 82.8 | 24 | 78.2 | 39 | 82.4 | 54 | 81.4 | 69 | 82.1 | 84 | 79.5 | 99 | 79.2 | 114 | 81.0 |
10 | 78.1 | 25 | 80.2 | 40 | 77.1 | 55 | 78.9 | 70 | 78.9 | 85 | 78.8 | 100 | 79.9 | 115 | 77.8 |
11 | 75.9 | 26 | 83.3 | 41 | 76.7 | 56 | 78.8 | 71 | 80.7 | 86 | 75.9 | 101 | 81.7 | 116 | 82.6 |
12 | 78.8 | 27 | 77.7 | 42 | 83.9 | 57 | 82.2 | 72 | 79.8 | 87 | 76.8 | 102 | 82.2 | 117 | 81.4 |
13 | 84.1 | 28 | 79.0 | 43 | 82.6 | 58 | 76.3 | 73 | 82.6 | 88 | 77.2 | 103 | 80.9 | 118 | 77.3 |
14 | 79.4 | 29 | 80.3 | 44 | 78.0 | 59 | 82.7 | 74 | 80.8 | 89 | 83.1 | 104 | 75.6 | 119 | 79.1 |
15 | 77.8 | 30 | 81.5 | 45 | 81.5 | 60 | 73.5 | 75 | 81.8 | 90 | 77.0 | 105 | 81.2 | 120 |
Cases | Cases | ||
---|---|---|---|
True Positive (rain) | 17,535 | True Negative (no rain) | 86,811 |
False Negative | 9570 | False Positive | 16,574 |
Sensitivity | 65% | Specificity | 84% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentilucci, M.; Pambianchi, G. Rainy Day Prediction Model with Climate Covariates Using Artificial Neural Network MLP, Pilot Area: Central Italy. Climate 2022, 10, 120. https://doi.org/10.3390/cli10080120
Gentilucci M, Pambianchi G. Rainy Day Prediction Model with Climate Covariates Using Artificial Neural Network MLP, Pilot Area: Central Italy. Climate. 2022; 10(8):120. https://doi.org/10.3390/cli10080120
Chicago/Turabian StyleGentilucci, Matteo, and Gilberto Pambianchi. 2022. "Rainy Day Prediction Model with Climate Covariates Using Artificial Neural Network MLP, Pilot Area: Central Italy" Climate 10, no. 8: 120. https://doi.org/10.3390/cli10080120
APA StyleGentilucci, M., & Pambianchi, G. (2022). Rainy Day Prediction Model with Climate Covariates Using Artificial Neural Network MLP, Pilot Area: Central Italy. Climate, 10(8), 120. https://doi.org/10.3390/cli10080120