Exploring ENSO-Induced Anomalies over North America in Historical and Future Climate Simulations That Use HadGEM2-ESM Output to Drive WRF
Abstract
:1. Introduction
- How does the use of WRF applied at a convection-permitting resolution within the CMIP5 HadGEM2 output modify the implied teleconnections for near-surface minimum and maximum daily temperature and precipitation over the eastern USA? Does this downscaling increase the degree of association with long-term observationally derived air temperature and precipitation differences?
- Which other modeled variables are dictating the surface responses?
- Does this model chain suggest that these surface responses to different ENSO phases may change in the future?
2. Materials and Methods
2.1. NOAA ENSO Climate Normals
2.2. Weather Research and Forecasting (WRF) Model Simulations
2.3. Analysis of HadGEM2-WRF Model Simulations
3. Results and Discussion
3.1. ENSO Normals Anomalies Difference (El Niño–La Niña) in the Historical Climate HadGEM2 and HadGEM2-WRF versus the NOAA ENSO Climate Normals
3.2. Drivers of Tmax and Tmin Differences by ENSO Phase in HadGEM2-WRF
3.3. ENSO Impacts on Air Temperature and Precipitation: Historical and Future Climate Scenarios from HadGEM2-WRF Simulations
3.4. ENSO Impacts on US Cities
4. Conclusions
- The regional modeling of the ENSO teleconnections with WRF using LBC from HadGEM2 show a poor degree of agreement with differences in Tmax, Tmin, and PPT values under the different ENSO phases as manifest in the observed NOAA ENSO Climate Normals data;
- When the HadGEM2-WRF results were placed in the context of output from HadGEM2, teleconnections at the regional scale are dominated by bias in the HadGEM2 model. There was evidence to suggest that the WRF model can drive its own response to the ENSO phase. In areas of weaker signals from the LBC, the WRF generates a different regional teleconnection response;
- A reversal in the difference in Tmax and Tmin values under different ENSO phases in the future climate relative to the historical climate was manifest in this model chain for this very high external climate forcing scenario.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C. A review of ENSO theories. Natl. Sci. Rev. 2018, 5, 813–825. [Google Scholar] [CrossRef]
- Neelin, J.D.; Battisti, D.S.; Hirst, A.C.; Jin, F.F.; Wakata, Y.; Yamagata, T.; Zebiak, S.E. ENSO theory. J. Geophys. Res. Ocean 1998, 103, 14261–14290. [Google Scholar] [CrossRef]
- Levine, A.F.Z.; McPhaden, M.J. The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys. Res. Lett. 2015, 42, 5034–5041. [Google Scholar] [CrossRef]
- Haszpra, T.; Herein, M.; Bódai, T. Investigating ENSO and its teleconnections under climate change in an ensemble view—A new perspective. Earth Syst. Dyn. 2020, 11, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Barnston, A.G.; Tippett, M.K.; Ranganathan, M.; L’Heureux, M.L. Deterministic skill of ENSO predictions from the North American Multimodel Ensemble. Clim. Dyn. 2019, 53, 7215–7234. [Google Scholar] [CrossRef] [Green Version]
- Horel, J.D.; Wallace, J.M. Planetary-Scale Atmospheric Phenomena Associated with the Southern Oscillation. Mon. Weather Rev. 1981, 109, 813–829. [Google Scholar] [CrossRef]
- Van Loon, H.; Madden, R.A. The Southern Oscillation. Part I: Global Associations with Pressure and Temperature in Northern Winter. Mon. Weather Rev. 1981, 109, 1150–1162. [Google Scholar] [CrossRef] [Green Version]
- Ropelewski, C.F.; Halpert, M.S. North American Precipitation and Temperature Patterns Associated with the El Niño/Southern Oscillation (ENSO). Mon. Weather Rev. 1986, 114, 2352–2362. [Google Scholar] [CrossRef] [Green Version]
- Mo, K.C. Interdecadal Modulation of the Impact of ENSO on Precipitation and Temperature over the United States. J. Clim. 2010, 23, 3639–3642; 3646–3649; 3651; 3654–3656. [Google Scholar] [CrossRef]
- Arguez, A.; Inamdar, A.; Palecki, M.A.; Schreck, C.J.; Young, A.H. ENSO Normals: A New U.S. Climate Normals Product Conditioned by ENSO Phase and Intensity and Accounting for Secular Trends. J. Appl. Meteorol. Climatol. 2019, 58, 1381–1397. [Google Scholar] [CrossRef]
- Mie Sein, Z.M.; Ullah, I.; Syed, S.; Zhi, X.; Azam, K.; Rasool, G. Interannual variability of air temperature over Myanmar: The influence of ENSO and IOD. Climate 2021, 9, 35. [Google Scholar] [CrossRef]
- Kug, J.-S.; An, S.-I.; Ham, Y.-G.; Kang, I.-S. Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations. Theor. Appl. Climatol. 2010, 100, 275–282. [Google Scholar] [CrossRef]
- Huang, P.; Xie, S.-P. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci. 2015, 8, 922–926. [Google Scholar] [CrossRef]
- Zhou, Z.-Q.; Xie, S.-P.; Zheng, X.-T.; Liu, Q.; Wang, H. Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Clim. 2014, 27, 9050–9064. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, K.; Huang, G.; Tao, W. Asymmetric impacts of El Niño and La Niña on the Pacific–North American teleconnection pattern: The role of subtropical jet stream. Environ. Res. Lett. 2021, 16, 114040. [Google Scholar] [CrossRef]
- Hu, K.; Huang, G.; Huang, P.; Kosaka, Y.; Xie, S.-P. Intensification of El Niño-induced atmospheric anomalies under greenhouse warming. Nat. Geosci. 2021, 14, 377–382. [Google Scholar] [CrossRef]
- Feng, J.; Lian, T.; Ying, J.; Li, J.; Li, G. Do CMIP5 Models Show El Niño Diversity? J. Clim. 2020, 33, 1619–1641. [Google Scholar] [CrossRef]
- Coburn, J.J.; Pryor, S.C. Differential Credibility of Climate Modes in CMIP6. J. Clim. 2021, 34, 8145–8164. [Google Scholar] [CrossRef]
- Cai, W.; Santoso, A.; Collins, M.; Dewitte, B.; Karamperidou, C.; Kug, J.-S.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; Taschetto, A.S.; et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2021, 2, 628–644. [Google Scholar] [CrossRef]
- Fuentes-Franco, R.; Giorgi, F.; Coppola, E.; Kucharski, F. The role of ENSO and PDO in variability of winter precipitation over North America from twenty first century CMIP5 projections. Clim. Dyn. 2016, 46, 3259–3277. [Google Scholar] [CrossRef]
- Langenbrunner, B.; Neelin, J.D. Analyzing ENSO Teleconnections in CMIP Models as a Measure of Model Fidelity in Simulating Precipitation. J. Clim. 2013, 26, 4431–4446. [Google Scholar] [CrossRef]
- Perry, S.J.; McGregor, S.; Sen Gupta, A.; England, M.H.; Maher, N. Projected late 21st century changes to the regional impacts of the El Niño-Southern Oscillation. Clim. Dyn. 2020, 54, 395–412. [Google Scholar] [CrossRef]
- Oh, J.-H.; Shin, D.W.; Cocke, S.D.; Baigorria, G.A. ENSO Teleconnection Pattern Changes over the Southeastern United States under a Climate Change Scenario in CMIP5 Models. Adv. Meteorol. 2014, 2014, 648197. [Google Scholar] [CrossRef] [Green Version]
- Fredriksen, H.-B.; Berner, J.; Subramanian, A.C.; Capotondi, A. How Does El Niño–Southern Oscillation Change Under Global Warming—A First Look at CMIP6. Geophys. Res. Lett. 2020, 47, e2020GL090640. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 2014, 4, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Yun, K.-S.; Lee, J.-Y.; Timmermann, A.; Stein, K.; Stuecker, M.F.; Fyfe, J.C.; Chung, E.-S. Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship. Commun. Earth Environ. 2021, 2, 43. [Google Scholar] [CrossRef]
- Cai, W.; Ng, B.; Geng, T.; Wu, L.; Santoso, A.; McPhaden, M.J. Butterfly effect and a self-modulating El Niño response to global warming. Nature 2020, 585, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Maher, N.; Matei, D.; Milinski, S.; Marotzke, J. ENSO Change in Climate Projections: Forced Response or Internal Variability? Geophys. Res. Lett. 2018, 45, 11390–11398. [Google Scholar] [CrossRef]
- Zheng, X.-T.; Hui, C.; Yeh, S.-W. Response of ENSO amplitude to global warming in CESM large ensemble: Uncertainty due to internal variability. Clim. Dyn. 2018, 50, 4019–4035. [Google Scholar] [CrossRef]
- Ng, B.; Cai, W.; Cowan, T.; Bi, D. Impacts of Low-Frequency Internal Climate Variability and Greenhouse Warming on El Niño–Southern Oscillation. J. Clim. 2021, 34, 2205–2218. [Google Scholar] [CrossRef]
- Michel, C.; Li, C.; Simpson, I.R.; Bethke, I.; King, M.P.; Sobolowski, S. The Change in the ENSO Teleconnection under a Low Global Warming Scenario and the Uncertainty due to Internal Variability. J. Clim. 2020, 33, 4871–4889. [Google Scholar] [CrossRef] [Green Version]
- Pryor, S.C.; Shepherd, T.J.; Barthelmie, R.J. Interannual variability of wind climates and wind turbine annual energy production. Wind Energy Sci. 2018, 3, 651–665. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.C.; Dirmeyer, P.A.; Koster, R.D.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. GLACE: The Global Land-Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeorol. 2006, 7, 611–625. [Google Scholar] [CrossRef]
- Fritsch, J.; Kane, R.; Chelius, C. The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Clim. Appl. Meteorol. 1986, 25, 1333–1345. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Leung, L.R.; Liu, N.; Wang, J.; Houze, R.A., Jr.; Li, J.; Hardin, J.C.; Chen, D.; Guo, J. A Global High-Resolution Mesoscale Convective System Database Using Satellite-Derived Cloud Tops, Surface Precipitation, and Tracking. J. Geophys. Res. Atmos. 2021, 126, e2020JD034202. [Google Scholar] [CrossRef]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model. Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef] [Green Version]
- Andrews, T.; Gregory, J.M.; Webb, M.J.; Taylor, K.E. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett. 2012, 39, L09712. [Google Scholar] [CrossRef] [Green Version]
- Vose, R.S.; Applequist, S.; Squires, M.; Durre, I.; Menne, M.J.; Williams, C.N.; Fenimore, C.; Gleason, K.; Arndt, D. Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions. J. Appl. Meteorol. Climatol. 2014, 53, 1232–1251. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.; Duda, M.; Huang, X.-Y.; Wang, W.; Powers, J. A Description of the Advanced Research WRF Version 3; NCAR/TN-475+STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008; p. 113. [Google Scholar]
- Schwalm, C.R.; Glendon, S.; Duffy, P.B. RCP8. 5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha, R.P.; Reboita, M.S.; Dutra, L.M.M.; Llopart, M.P.; Coppola, E. Interannual variability associated with ENSO: Present and future climate projections of RegCM4 for South America-CORDEX domain. Clim. Chang. 2014, 125, 95–109. [Google Scholar] [CrossRef]
- Cai, W.; Ng, B.; Wang, G.; Santoso, A.; Wu, L.; Yang, K. Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Clim. Chang. 2022, 12, 228–231. [Google Scholar] [CrossRef]
- Capotondi, A.; Wittenberg, A.T.; Newman, M.; Di Lorenzo, E.; Yu, J.-Y.; Braconnot, P.; Cole, J.; Dewitte, B.; Giese, B.; Guilyardi, E. Understanding ENSO diversity. Bull. Amer. Meteor. Soc. 2015, 96, 921–938. [Google Scholar] [CrossRef]
- Ferrier, B.S.; Jin, Y.; Lin, Y.; Black, T.; Rogers, E.; DiMego, G. Implementation of a New Grid-Scale Cloud and Precipitation Scheme in the NCEP Eta Model; AMS: San Antonio, TX, USA, 2002; pp. 280–283. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, M.; Niino, H. An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound. Layer Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In The Representation of Cumulus Convection in Numerical Models; Springer: Berlin/Heidelberg, Germany, 1993; pp. 165–170. [Google Scholar]
- Giorgi, F. Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Teichmann, C.; Sobolowski, S.; Katragkou, E.; Anders, I.; Belda, M.; Benestad, R.; Boberg, F.; Buonomo, E.; Cardoso, R.M.; et al. Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Environ. Chang. 2020, 20, 51. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA; Oxford, UK, 2011; Volume 100, ISBN 9780123850225. [Google Scholar]
- Roberts, N.M.; Lean, H.W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Suhaila, J. Functional data visualization and outlier detection on the anomaly of El Niño southern oscillation. Climate 2021, 9, 118. [Google Scholar] [CrossRef]
- Xu, K.; Tam, C.-Y.; Zhu, C.; Liu, B.; Wang, W. CMIP5 projections of two types of El Niño and their related tropical precipitation in the twenty-first century. J. Clim. 2017, 30, 849–864. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shepherd, T.; Coburn, J.J.; Barthelmie, R.J.; Pryor, S.C. Exploring ENSO-Induced Anomalies over North America in Historical and Future Climate Simulations That Use HadGEM2-ESM Output to Drive WRF. Climate 2022, 10, 117. https://doi.org/10.3390/cli10080117
Shepherd T, Coburn JJ, Barthelmie RJ, Pryor SC. Exploring ENSO-Induced Anomalies over North America in Historical and Future Climate Simulations That Use HadGEM2-ESM Output to Drive WRF. Climate. 2022; 10(8):117. https://doi.org/10.3390/cli10080117
Chicago/Turabian StyleShepherd, Tristan, Jacob J. Coburn, Rebecca J. Barthelmie, and Sara C. Pryor. 2022. "Exploring ENSO-Induced Anomalies over North America in Historical and Future Climate Simulations That Use HadGEM2-ESM Output to Drive WRF" Climate 10, no. 8: 117. https://doi.org/10.3390/cli10080117
APA StyleShepherd, T., Coburn, J. J., Barthelmie, R. J., & Pryor, S. C. (2022). Exploring ENSO-Induced Anomalies over North America in Historical and Future Climate Simulations That Use HadGEM2-ESM Output to Drive WRF. Climate, 10(8), 117. https://doi.org/10.3390/cli10080117