Seaside Renewable Energy Resources Literature Review
Abstract
:1. Introduction
Renewable Energy Implementation in Nordics
2. Seaside Renewable Energy Resources
2.1. Possible Types of Seaside Energy Solutions
2.2. Seaside Difficulties and Challenges for Energy, Especially on Islands
2.3. The Possible Future Renewable Energy Solutions in Seaside Areas
2.3.1. Water Heat Exchanger
2.3.2. Sediment Heat Energy
2.3.3. Wave Energy
2.3.4. Asphalt Energy Resources
2.3.5. GEU (Groundwater Energy Utilization)
2.3.6. Wind Turbines
2.3.7. KNBNNO-Material
2.3.8. Solar Systems
3. Sustainable Development
3.1. Efficiency and Challenges for Future Energy Solutions
3.2. Energy Storage
3.2.1. Thermal Energy Storage Systems
3.2.2. What Are the Possibilities of Thermal Energy Systems? What Is the Best Technology and Why?
3.2.3. State-of-the-Art Promising Features
3.2.4. Energy Efficiency and Cost of Thermal Energy Systems (TES)
3.2.5. What Can Be Implemented Here in the City of Vaasa and for Industries?
4. Projects as an Application in Installing Seaside and Renewable Energy Solutions (Projects: ‘Drop in Sea’, ‘Merten Talo’, and Future Work at ‘Energy Village in Africa’)
4.1. ”Drop in Sea”: The Project of Renewable Energy Installation on Islands of the Archipelago
4.2. Merten Talo Project about the Installation of Renewable Energy Solutions on a Local Site
4.3. LEAP-RE Project Only one Work Package (WP14) on ‘Energy Village Concept in Africa’ (Current and Future Continuation of Research Work)
5. Methodological Lit and Research Gaps Addressed
5.1. Methodological Lit
5.2. Ethical Issues
5.3. Analysis of the Gap in the Literature
5.4. Related Works
5.5. Issues of Policy
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dincer, I. Renewable energy and sustainable development—A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Kruger, P. Alternative Energy Resources—The Quest for Sustainable Energy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; p. 248. ISBN 10:0-471-77208-9. [Google Scholar]
- Kamboj, A.; Chanana, S. Optimization of cost and emission in a renewable energy microgrid. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016. [Google Scholar]
- IEA. Report on—Energy Technology Perspectives 2020; International Energy Agency: Paris, France, 2020. [Google Scholar]
- Arola, T. Groundwater as an Energy Resource in Finland. Ph.D. Dissertation, University of Helsinki, Department of Geosciences and Geography, Helsinki, Finland, 2015. [Google Scholar]
- Aslani, A.; Naaranoja, M.; Wong, K.-F.V. Strategic analysis of diffusion of renewable energy in the Nordic countries. Renew. Sustain. Energy Rev. 2013, 22, 497–505. [Google Scholar] [CrossRef]
- Aslani, A.; Helo, P.; Feng, B.; Antila, E.; Hiltunen, E. Renewable energy supply chain in Ostrobothnia region and Vaasa city—Innovative framework. Renew. Sustain. Energy Rev. 2013, 23, 405–411. [Google Scholar] [CrossRef]
- Watzlf, G.R.; Ackman, T.E. Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ. 2006, 25, 1–14. [Google Scholar] [CrossRef]
- Beecher, J.A.; Kalmbach, J.A. Climate change and energy. In U.S. National Climate Assessment Midwest Technical Report; Great Lakes Integrated Science and Assessments (GLISA): Ann Arbor, MI, USA, 2012; p. 15. [Google Scholar]
- Girgibo, N. The effect of climate change on water and environment resources in the Kvarken Archipelago Area. In University of Vaasa Reports 20; University of Vaasa: Vaasa, Finland, 2021; p. 90. ISBN 978-952-476-941-9. [Google Scholar]
- Gross, R.; Leach, M.; Bauen, A. Progress in renewable energy. Environ. Int. 2003, 29, 105–122. [Google Scholar] [CrossRef]
- Yao, Y.; Masanet, E. Life-cycle modelling framework for generating energy and greenhouse gas emissions inventory of emerging technologies in the chemical industry. J. Clean. Prod. 2018, 172, 768–777. [Google Scholar] [CrossRef]
- Shrestha, S.; Babel, M.S.; Pandey, V.P. Climate Change and Water Resources; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2014; p. 365. ISBN 978-1-4665–9466-1. [Google Scholar]
- Hannah, L. Climate Change Biology; Elsevier Ltd.: Burlington, VT, USA, 2011; p. 402. ISBN 978-0-12-374182-0. [Google Scholar]
- Hiltunen, E.; Martinkauppi, J.B.; Mäkiranta, A.; Rinta-Luoma, J.; Syrjälä, T. Seasonal temperature variation in heat collection liquid used in renewable, carbon-free heat production from urban and rural water areas. Agron. Res. 2015, 13, 485–493. [Google Scholar]
- Hiltunen, E.; Martinkauppi, J.B.; Zhu, L.; Mäkiranta, A.; Lieskoski, M.; Rinta-Luoma, J. Renewable, carbon-free heat production from urban and rural water areas. J. Clean. Prod. 2017, 153, 379–404. [Google Scholar] [CrossRef]
- Mäkiranta, A.; Martinkauppi, J.B.; Hiltunen, E. Correlation between temperature of air, heat carrier liquid and seabed sediment in renewable low energy network. Agron. Res. 2016, 14, 1191–1199. [Google Scholar]
- Martinkauppi, J.B.; Mäkiranta, A.; Kiijärvi, J.; Hiltunen, E. Thermal behaviour of an asphalt pavement in the laboratory and in the parking lot. Sci. World J. 2015, 2015, 540934. [Google Scholar] [CrossRef]
- Mäkiranta, A.; Hiltunen, E. Utilizing asphalt heat energy in Finnish climate conditions. Energies 2019, 12, 2101. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Hiltunen, E.; Antila, E.; Zhong, J.; Yuan, Z.; Wang, Z. Micro-algal Biofuels flexible bio-energies for sustainable development. Renew. Sustain. Energy Rev. 2014, 30, 1035–1046. [Google Scholar] [CrossRef]
- Hiltunen, E.; Girgibo, N.; Shandiz, M.H.; Martinkauppi, B.; Mäkiranta, A.; Nieminen, J. Report on—Maailmanperintöportti Merten Talo: Esityksiä Energiaratkaisuiksi (27.04.2017); University of Vaasa, Technical Faculty, Electrical Engineering and Energy Technology Department: Vaasa, Finland, 2017; p. 17. [Google Scholar]
- Mäkiranta, A. Distributed Temperature Sensing Method—Usability in Asphalt and Sediment Heat Measurement. Master’s Thesis, University of Vaasa, Degree Programme in Electrical and Energy Engineering, Energy Technology, Vaasa, Finland, 2013. [Google Scholar]
- Kattilakoski, I.-M. Bi-Directional Distributed Thermal Response Test (TRT). Master’s Thesis, University of Vaasa, Dctionalegree Programme in Electrical and Energy Engineering, Energy Technology, Vaasa, Finland, 2017. [Google Scholar]
- Banks, D. An Introduction to Thermogeology—Ground Source Heating and Cooling, 2nd ed.; Wiley-Blackwell Publishing Ltd.: Oxford, UK, 2012; ISBN 978-0-470-67034-7. [Google Scholar]
- Jakhar, S.; Soni, M.S.; Gakkhar, N. Performance analysis of earth water heat exchanger for concentrating photovoltaic cooling. Energy Procedia 2016, 90, 145–153. [Google Scholar] [CrossRef]
- Yang, W.; Li, S.; Zhang, X. Numerical simulation on heat transfer characteristics of soil around U-tube underground heat exchangers. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 14–17 July 2008; p. 896. Available online: http://docs.lib.purdue.edu/iracc/896 (accessed on 11 September 2022).
- Boudhiaf, R.; Baccar, M. Transient hydrodynamic, heat and mass transfer in a salinity gradient solar pond: A numerical study. Energy Convers. Manag. 2014, 79, 568–580. [Google Scholar] [CrossRef]
- Girgibo, N.; Mäkiranta, A.; Lü, X.; Hiltunen, E. Statistical investigation of climate change effects on the utilization of the sediment heat energy. Energies 2022, 15, 435. [Google Scholar] [CrossRef]
- Likens, G.E.; Johnson, N.M. Measurement and analysis of the annual heat budget for the sediment in two Wisconsin lakes. Limnol. Oceanogr. 1969, 14, 115–135. [Google Scholar] [CrossRef]
- Mäkiranta, A.; Martinkauppi, J.B.; Hiltunen, E. Seabed sediment—A natural seasonal heat storage feasibility study. Agron. Res. 2017, 15, 1101–1106. [Google Scholar]
- Mäkiranta, A.; Martinkauppi, J.B.; Hiltunen, E.; Lieskoski, M. Seabed sediment as an annually renewable heat source. Appl. Sci. 2018, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Mäkiranta, A. Renewable Thermal Energy Sources: Sediment and Asphalt Energy Applications in an Urban Northern Environment. Ph.D. Dissertation, University of Vaasa, School of Technology and Innovations, Department of Electrical Engineering and Energy Technology, Energy Technology, Vaasa, Finland, 2020. [Google Scholar]
- Golosov, S.; Kirillin, G. A parameterized model of heat storage by lake sediments. Environ. Model. Softw. 2010, 25, 793–801. [Google Scholar] [CrossRef]
- Smith, P.N. Observations and simulations of water-sediment heat exchange in a shallow coastal lagoon. Estuaries 2002, 25, 483–487. [Google Scholar] [CrossRef]
- Lowrie, W. Fundamentals of Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2007; p. 393. ISBN -13-978-0-511-35447-2. [Google Scholar]
- Heino, H. Utilization of Wave Power in the Baltic Sea Region; Finland Future Research Center (FFRC), University of Turku: Turku, Finland, 2013; ISBN 978-952-249-272-2. Available online: https://www.utu.fi/fi/yksikot/ffrc/julkaisut/e-tutu/Documents/eBook_9-2013.pdf (accessed on 11 September 2022).
- Kauppila, P. Phytoplankton Quantity as an Indicator of Eutrophication in Finnish Coastal Waters—Application within the Water framework Directive. Monographs of the Boreal Environment Research 31. Ph.D. Dissertation, Finnish Environmental Institute, Helsinki, Finland, 2007. [Google Scholar]
- Bernhoff, H.; Sjöstedt, E.; Leijon, M. Wave energy resources in sheltered sea areas—A case study of the Baltic Sea. Renew. Energy 2006, 31, 2164–2170. [Google Scholar] [CrossRef]
- de Andres, A.; Guanche, R.; Vidal, C.; Losada, I.J. Adaptability of a generic wave energy converter to different climate conditions. Renew. Energy 2015, 78, 322–333. [Google Scholar] [CrossRef]
- Rajasree, B.R.; Deo, M.C.; Sheela Nair, L. Effect of climate change on shoreline shifts at a straight and continuous coast. J. Estuar. Coast. Self Sci. 2016, 183, 221–234. [Google Scholar] [CrossRef]
- Yle News. Sukeltajan Keksinnöstä Hiotaan Vientituotetta—Wärtsilä Alkaa Toimittaa Suomalaisia Aaltovoimaloita Maailmalle/The Diver’s Invention is Blown into Export Product—Wärtsilä Starts Delivering Finnish Wave Power Plants to the World. 2017. Available online: https://yle.fi/uutiset/3-9871175 (accessed on 10 September 2022).
- Haq, H.M.K.U.; Martinkauppi, B.; Hiltunen, E. Storing asphalt energy into bedrock heat battery system. Int. J. Energy Environ. 2016, 10, 137–141. [Google Scholar]
- Martinkauppi, B.; Mäkiranta, A.; Hiltunen, E. PCA analysis of distributed temperature sensing data from an asphalt field. In Proceedings of the 5th International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016. [Google Scholar]
- Çuhac, C.; Mäkiranta, A.; Välisuo, P.; Hiltunen, E.; Elmusrati, M. Temperature measurements on a solar and low enthalpy geothermal open-air asphalt surface platform in a cold climate region. Energies 2020, 13, 979. [Google Scholar] [CrossRef] [Green Version]
- Grant, M.A.; Bixley, P.F. Geothermal Reservoir Engineering, 2nd ed.; Elsevier Inc.: Massachusetts, CA, USA, 2011; ISBN 978-0-12-383880-3. [Google Scholar]
- Girgibo, N. Report on Groundwater and Aquifers in Vaasa Region: Using Groundwater as Energy Source; University of Vaasa: Vaasa, Finland, 2022; Volume 67, p. 2014. [Google Scholar]
- Haq, H.M.K.U.; Martinkauppi, B.; Hiltunen, E. Analysis of ground heat exchanger for a ground source heat pump: A study of an existing system to find optimal borehole length to enhance the coefficient of performance. WSEAS Trans. Heat Mass Transf. 2017, 12, 38–47. [Google Scholar]
- Haq, H.M.K.U.; Hiltunen, E. An inquiry of ground heat storage: Analysis of experimental measurements and optimization of system’s performance. Appl. Therm. Eng. 2019, 148, 10–21. [Google Scholar] [CrossRef]
- Martinkauppi, J.B.; Syrjälä, T.; Mäkiranta, A.; Hiltunen, E. A preliminary test for using a borehole as cool storage. In Proceedings of the 14th Conference on Sustainable Development of Energy, Water and Environment Systems, Dubrovnik, Croatia, 1–6 October 2019. [Google Scholar]
- Ali, M.H. Wind Energy Systems: Solutions for Power Quality and Stabilization; Taylor & Francs Group, LLC: New York, NY, USA, 2012. [Google Scholar]
- Cherp, A.; Vinichenko, V.; Jewell, J.; Suzuki, M.; Antal, M. Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan. Energy Policy 2017, 101, 612–628. [Google Scholar] [CrossRef] [Green Version]
- Brännbacka, B. Technical Improvements of Wind-side Wind Turbine Systems. Ph.D. Dissertation, University of Vaasa, Vaasa, Finland, 2015. [Google Scholar]
- Marmutova, S. Performance of a Savonius Wind Turbine in Urban Sites Using CFD Analysis. Ph.D. Dissertation, University of Vaasa, Vaasa, Finland, 2016. [Google Scholar]
- Zhou, W.; Deng, H.; Yang, P.; Chu, J. Investigating of microstructure and optical properties of (K, Ba) (Ni, Nb)O3-δ thin film fabricated by pulsed laser deposition. Mater. Lett. 2016, 181, 178–181. [Google Scholar] [CrossRef]
- Wallenius, D. Yle news (12 November 2017): The Hygrometer Collects Three Types of Energy. Yle News, 12 November 2017. [Google Scholar]
- Bai, Y.; Siponkoski, T.; Peräntie, J.; Jantunen, H.; Juuti, J. Ferroelectric, pyroelectric, and piezoelectric properties of a photovoltaic perovskite oxide. Appl. Phys. Lett. 2017, 110, 063903. [Google Scholar] [CrossRef]
- Kneifel, J.; O’Rear, E.; Webb, D.; O’Fallon, C. An exploration the relationships between improvements in energy efficiency and life-cycle energy and carbon emissions using the BIRDS low-energy residential database. Energy Build. 2018, 160, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, H.; Ji, A.; Li, F.; Jia, Y. Design of a hybrid solar-wind powered charging station for electric vehicles. In Proceedings of the 2013 International Conference on Materials for Renewable Energy and Environment, Chengdu, China, 19–21 August 2013. [Google Scholar]
- Bogdanov, D.; Farfan, J.; Sadovskaia, K.; Aghahosseini, A.; Child, M.; Gulagi, A.; Oyewo, A.S.; Barbosa, L.d.S.N.S.; Breyer, C. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 2019, 10, 1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Employment and Economy. Energy and Climate Roadmap 2050: Report of the Parliamentary Committee on Energy and Climate Issues on 16 October 2014; Finland’s Ministry of Employment and Economy: Helsinki, Finland, 2014; ISBN 978-952-227-906-4.
- Sukhatme, S.P. Solar Energy—Principles of Thermal Collection and Storage, 2nd ed.; Tata McGraw-Hill: New Delhi, India, 1996; p. 426. ISBN 0-07-462453-9. [Google Scholar]
- Huggins, R.A. Energy Storage—Fundamentals, Materials and Applications; Springer International Publishing: Cham, Switzerland, 2016; p. 509. ISBN 978-3-319-21238-8/978-3-319-21239-5. [Google Scholar]
- Hauer, A. Thermal Energy System: Technical Brief; IEA-ETSAP and IRENA: Abu Dhabi, United Arab Emirates, 2013. [Google Scholar]
- Wu, C.-T.; Feng, C.-L.; Tsai, Y.-H. Application of an ice thermal energy storage system as ways of energy management in a multi-functional building. J. Renew. Sustain. Energy 2015, 7, 023107. [Google Scholar] [CrossRef]
- Venkataramani, G.; Ramalingam, V. Performance analysis of a small capacity compressed air energy storage system for renewable energy generation using TRNSYS. J. Renew. Sustain. Energy 2017, 9, 044106. [Google Scholar] [CrossRef]
- Seibt, P.; Kabus, F. Aquifer Thermal Energy Storage-Project Implemented in Germany. Available online: http://talon.stockton.edu/eyos/energy_studies/content/docs/FINAL_PAPERS/4A-1.pdf (accessed on 10 September 2022).
- Sunliang, C. State of the Art Thermal Energy Storage Solutions for High-Performance Buildings. Master’s Thesis, Jyväskylä University, Jyväskylä, Finland, 2010; p. 201. [Google Scholar]
- Xiao, J.; Yang, H.; Bénard, P.; Chahine, R. Numerical study of thermal effects in cryo-adsorption hydrogen storage tank. J. Renew. Sustain. Energy 2013, 5, 021010. [Google Scholar] [CrossRef]
- Banks, D. An Introduction to Thermogeology—Ground Source Heating and Cooling; Blackwell Publishing Ltd.: Oxford, UK, 2008; ISBN 978-1-4051-7061-1. [Google Scholar]
- Worthington, M.A. Aquifer Thermal Energy Storage—Feasibility Study Process and Results for District Energy Systems. Conference Presentation. In IDEA’s Annual Campus Energy Conference: Innovation in Clean Energy; Underground Energy, LLC: Arlington, VA, USA, 2012; p. 37. [Google Scholar]
- Final Report. In The Project ‘’Drop in Sea’’: The Equity-Sufficient Integrated Hybrid-Energy Solutions and a Meeting—Concept Research and Development Program; University of Vaasa: Vaasa, Finland, 2011.
- Flake. Flake Model for Global Lakes Model. 2019. Available online: http://www.flake.igb-berlin.de/ (accessed on 10 September 2022).
- Booth, A.; Papaioannou, D.; Sutton, A. Systematic Approaches to a Successful Literature Review; SAGE Publications Ltd.: London, UK, 2012; ISBN 978-0-85702-134-2. [Google Scholar]
- Girgibo, N.; Lü, X.; Hiltunen, E.; Peura, P.; Yang, T.; Dai, Z. A conceptual framework for the future of sea-level rise and land uplift changes in the Vaasa region of Finland. SCIREA J. Geosci. 2022, 6, 23–57. [Google Scholar] [CrossRef]
- Pirilä, P. Climate Change—Socioeconomic Dimensions and Consequences of Mitigation Measures; EDITA Ltd.: Helsinki, Finland, 2000; p. 392. ISBN 951-37-2926-5. [Google Scholar]
- Rankinen, K.; Keinänen, H.; Cano Bernal, J.E. Influence of climate and land use changes on nutrient fluxes from Finnish rivers to the Baltic Sea. Agric. Ecosyst. Environ. 2016, 216, 100–115. [Google Scholar] [CrossRef]
- Holma, A.; Leskinen, P.; Myllyviita, T.; Manninen, K.; Sokka, L.; Sinkko, T.; Pasanen, K. Environmental impacts and risks of the national renewable energy targets—A review and a qualitative case study from Finland. Renew. Sustain. Energy Rev. 2018, 82, 1433–1441. [Google Scholar] [CrossRef]
- Aslani, A. Evaluation of Renewable Energy Development in Power Generation. Ph.D. Dissertation, University of Vaasa, Vaasa, Finland, 2014. [Google Scholar]
- Peura, P. From Unlimited Growth to Sustainable Energy: The Origin of Operational Patterns by Means of Social Selection. Ph.D. Dissertation, University of Vaasa, Vaasa, Finland, 2013; p. 188. [Google Scholar]
- IPCC. Climate Change 2007—The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2007; p. 996. ISBN 978-0-521-88009-1. [Google Scholar]
- IPCC. Climate Change 2013—The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; p. 1535. ISBN 978-1-107-05799-9. [Google Scholar]
- IPCC. Climate Change 2014—Synthesis Report; World Metrological Organization (WMO): Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold, J., et al., Eds.; Cambridge University Press: New York, NY, USA, 2019. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group—I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6 WGI); United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Nordman, M.; Peltola, A.; Bilker-Koivula, M.; Lahtinen, S. Past and future sea level changes and land uplift in the Baltic Sea seen by geodetic observations. In International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Poutanen, M.; Steffen, H. Land uplift at Kvarken Archipelago/high-cost UNESCO World Heritage area. Geophysica 2014, 50, 49–64. [Google Scholar]
- Räike, A.; Taskinen, A.; Knuuttila, S. Nutrient from Finnish rivers into the Baltic Sea has not decreased despite water protection measures. Ambio 2020, 49, 460–474. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, J. Long-Term Changes and Variability of the Winter and Spring Season Hydrological Regime in Finland. Report Series in Geophysics No. 79. Ph.D. Dissertation, University of Helsinki, Helsinki, Finland, 2019; p. 82. [Google Scholar]
- Huck, S.W. Reading Statistics and Research, 6th ed.; Pearson Education, Inc.: Boston, MA, USA, 2012; ISBN 0-13-265909-3/978-0-13-265909-3. [Google Scholar]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; U.S. Geological Survey: Reston, VA, USA, 2002.
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, R.G. Limnology—Lakes and River Ecosystems, 3rd ed.; Elsevier Science (USA): San Diego, CA, USA, 2001; p. 1006. ISBN 0-12-744760-1. [Google Scholar]
- Fan, M.; Shibata, H. Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River Watershed, Northern Japan. Ecol. Indic. 2015, 250, 79–89. [Google Scholar] [CrossRef]
- Huttunen, I.; Lehtonen, H.; Huttunen, M.; Piirainen, V.; Korppoo, M.; Veijalainen, N.; Viitasalo, M.; Vehviläinen, B. Effects of climate change and agricultural adaptation on nutrient loading from Finnish catchments to the Baltic Sea. Sci. Total Environ. 2015, 529, 168–181. [Google Scholar] [CrossRef]
- Paudel, I.; Bar-Tal, A.; Rotbart, N.; Ephrath, J.; Cohen, S. Water quality changes seasonal variations in root respiration, xylem CO2, and sap pH in citrus orchards. Agric. Water Manag. 2018, 197, 147–157. [Google Scholar] [CrossRef]
- Pearl, J. Causality—Model, Reasoning and Influence; Cambridge University Press: New York, NY, USA, 2009; ISBN 978-0-521-89560-6. [Google Scholar]
- Ylhäisi, J.S.; Tietäväinen, H.; Peltonen-Sainio, P.; Venäläinen, A.; Eklund, J.; Räisänen, J.; Jylhä, K. Growing season precipitation in Finland under recent and projected climate. J. Nat. Hazards Earth Syst. Sci. 2010, 10, 1563–1574. [Google Scholar] [CrossRef]
- Peura, P.; Sevola, P. Acidification mosaic of small lakes. A study on 81 lakes in the Kvarken, Gulf of Bothnia (Finland and Sweden). Aqua Fenn. 1992, 22, 153–171. [Google Scholar]
- Haukkala, T. A struggle for change—The formation of a green-transition advocacy coalition in Finland. Environ. Innov. Soc. Transit. 2018, 27, 146–156. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Energy and Transport. In 2020 Vision: Saving Our Energy; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 2007; ISBN 92-79-03629-7. [Google Scholar]
- European Union. Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings. In Official Journal of the European Communities; European Union: Brussels, Belgium, 2003. [Google Scholar]
- European Union. Directive 2006/32/EC of the European Parliament and of the Council of 5 April 2006 on energy end-use efficiency and energy services and repealing Council Directive 93/76/EEC (Text with EEA relevance). In Official Journal of the European Communities; European Union: Brussels, Belgium, 2006. [Google Scholar]
- European Commission. Towards a European strategy for the security of energy supply. In Green Paper; Publications Office of the European Union: Luxembourg, Luxembourg, 2000. [Google Scholar]
Descriptions of Water Heat Exchanger | Size (mm)/Energy Production Capacity in (kW) |
---|---|
Water heat exchanger | 9.6 kW |
Length | 1450 mm |
Diameter about | 1300 mm |
Installation depth minimum | 3000 mm |
The ice margin is about | 600 mm |
Water level variation of about | 1000 mm |
The diameter of the exchanger is about | 1300 mm |
Heat pump | 13 kW |
TES Systems | Chosen System | Capacity (KWh/t) | Power (MW) | Efficiency (%) | Storage Period (h, d, m) | Cost (€/KWh) |
---|---|---|---|---|---|---|
STES | Sensible (hot water) | 1050 | 0.00110 | 5090 | d/m | 0.110 |
Ice thermal storage system | ~3.5 | - | - | h/d | 0.11 | |
Advanced adiabatic-compressed air energy storage system (AA-CAES) | - | 2 | 6065 | h/d | - | |
Borehole storage | - | - | - | d/m | - | |
ATES (Aquifer thermal storage system)-Hot | - | 0.2512.5 | - | d/m | - | |
ATES-cold | - | 7 | - | d/m | - | |
PCM | PCM | 50,150 | 0.0011 | 7990 | h/m | 1050 |
Chemical reaction | Chemical reaction | 120,150 | 0.011 | 75,100 | h/d | 8100 |
Cryo-adsorptive hydrogen storage tank | - | - | - | h/d | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girgibo, N.W. Seaside Renewable Energy Resources Literature Review. Climate 2022, 10, 153. https://doi.org/10.3390/cli10100153
Girgibo NW. Seaside Renewable Energy Resources Literature Review. Climate. 2022; 10(10):153. https://doi.org/10.3390/cli10100153
Chicago/Turabian StyleGirgibo, Nebiyu Wolde. 2022. "Seaside Renewable Energy Resources Literature Review" Climate 10, no. 10: 153. https://doi.org/10.3390/cli10100153
APA StyleGirgibo, N. W. (2022). Seaside Renewable Energy Resources Literature Review. Climate, 10(10), 153. https://doi.org/10.3390/cli10100153