Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data
Abstract
:1. Introduction
1.1. Maximum Likelihood Estimation for Models with Partially Observable Data
1.2. Prior Work on Misspecification in Missing Data Models
1.3. A Framework for Understanding Misspecification in Missing Data Models
2. Assumptions
2.1. Data Generating Process Assumptions
2.2. Probability Model Assumptions
2.3. Likelihood Functions, Pseudo-True Parameter Values, and True Parameter Values
2.4. Moment Assumptions
- (i)
- (a)
- is dominated on Θ with respect to;
- (b)
- each element ofis dominated on Θ with respect to;
- (c)
- is dominated on Θ with respect to;
- (d)
- each element ofis dominated on Θ with respect to; and
- (ii)
- there exists a finite positive number K such that for alland for all:.
2.5. Solution Assumptions
3. Theorems
3.1. Quasi-Maximum Likelihood Estimation for Possibly Misspecified Missing Data Models
3.2. QMLE Asymptotic Distribution for Possibly Misspecified Missing Data Models
3.3. Validity of Missing Information Principles When Model Misspecification Is Present
3.4. Detection of Model Misspecification in the Presence of Missing Data
3.5. Estimating the Fraction of Missing Information with Possible Model Misspecification
- (i)
- Letbe a point in the interior ofAssume thatis positive definite. Bothandif and only if there exists a non-empty open convex subset of which contains such that l is convex on . In addition, the range of and on is the set of non-negative real numbers.
- (ii)
- Assume thatis positive definite on a non-empty open convex subsetof. Bothorfor allif and only if l is convex on. In addition, the range ofandonis the set of non-negative real numbers.
- (i)
- The minimizeris the unique global minimizer of l on.
- (ii)
- If the missing-data mechanismis MAR and the observable-data model is correctly specified on, then the unique global minimizeris the unique observable-data true parameter value for l on.
- (iii)
- If the missing-data mechanismis MAR and the complete-data model is correctly specified on, then the unique global minimizeris both the observable-data true, and complete-data true parameter value for l on.
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Proofs of Theorems and Propositions
- (i)
- Since l is convex on the non-empty open convex set , and is a strict local minimizer of l on then is the unique global minimizer of l on (Bazarra et al. 2006, pp. 125–26).
- (ii)
- If the observable-data model is correctly specified on , then the observable-data true parameter value is in . Since the missing DGP density is MAR, every observable-data true parameter value is a global minimizer of l on . By Proposition 3(i), is the unique global minimizer of l on which implies the global minimizer is the unique observable-data true parameter value.
- (iii)
- If the complete-data model is correctly specified on , then the complete-data true parameter value is in . If there exists a complete-data true parameter value so that then and thus for all x in the support of X and for all . Thus, correct specification of the complete-data model on implies correct specification of the observable-data model on . By the assumption that the missing DGP density is MAR, and the correct specification of the observable-data model, Proposition 3(i), and Proposition 3(ii), it follows that is the unique global minimizer of l on . □
References
- Abrevaya, Jason, and Stephen G. Donald. 2017. A GMM approach for dealing with missing data on regressors. The Review of Economics and Statistics 99: 657–662. [Google Scholar] [CrossRef]
- Agresti, Alan. 2002. Categorical Data Analysis, 2nd ed. New York: Wiley. [Google Scholar]
- Allison, Paul D. 2001. Missing Data. Sage University Papers Series on Quantitative Applications in the Social Sciences, 07–136; Thousand Oaks: Sage. [Google Scholar]
- Arminger, Gerhard, and Michael E. Sobel. 1990. Pseudo-maximum likelihood estimation of mean and covariance structure with missing data. Journal of the American Statistical Association 85: 195–203. [Google Scholar] [CrossRef]
- Bartle, Robert G. 1966. The Elements of Integration. New York: Wiley. [Google Scholar]
- Bazarra, Mokhtar S., Hanif D. Sherali, and C. M. Shetty. 2006. Nonlinear Programming: Theory and Algorithms. Hoboken: Wiley. [Google Scholar]
- Berndt, Ernst K., Bronwyn H. Hall, Robert E. Hall, and Jerry A. Hausman. 1974. Estimation and inference in nonlinear structural models. Annals of Economic and Social Measurement 3: 653–65. [Google Scholar]
- Breunig, Christoph. 2019. Testing Missing at Random Using Instrumental Variables. Journal of Business & Economic Statistics 2017: 223–34. [Google Scholar]
- Chen, Hua Yun. 2004. Nonparametric and semiparametric models for missing covariates in parametric regression. Journal of the American Statistical Association 99: 1176–89. [Google Scholar] [CrossRef]
- Chen, Xiaohong, and Norman R. Swanson. 2013. Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis. New York: Springer. [Google Scholar]
- Cho, Jin Seo, and Halbert White. 2014. Testing the Equality of Two Positive-Definite Matrices with Application to Information Matrix Testing. In Advances in Econometrics: Essays in Honor of Peter C. B. Phillips. Edited by Yoosoon Chang, Thomas B. Fomby and Joon Park. West Yorkshire: Emerald Group Publishing Limited, vol. 33, pp. 491–556. [Google Scholar]
- Cho, Jin Seo, and Peter C.B. Phillips. 2018. Pythagorean generalization of testing the equality of two symmetric positive definite matrices. Journal of Econometrics 202: 45–56. [Google Scholar] [CrossRef] [Green Version]
- Clayton, David, David Spiegelhalter, Graham Dunn, and Andrew Pickles. 1998. Analysis of longitudinal binary data from multiphase sampling. Journal of the Royal Statistical Society Series B 60: 71–87. [Google Scholar] [CrossRef]
- Dempster, Arthur. P., Nan. M. Laird, and Donald. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39: 1–38. [Google Scholar] [CrossRef]
- Dobson, Annette J. 2002. An Introduction to Generalized Linear Models. New York: CRC Press. [Google Scholar]
- Efron, Bradley. 1994. Missing data, imputation, and the bootstrap. Journal of the American Statistical Association 89: 463–75. [Google Scholar] [CrossRef]
- Enders, Craig K. 2010. Applied Missing Data Analysis, 1st ed. New York: The Guilford Press. [Google Scholar]
- Fomby, Thomas B., and R. Carter Hill. 2003. Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later. New York: Elsevier. [Google Scholar]
- Fomby, Thomas B., and R. Carter Hill, eds. 1998. Messy Data—Missing Observations, Outliers, and Mixed-Frequency Data (Advances in Econometrics). Advances in Econometrics, No. 13. Bingley: Emerald Group Publishing Limited. [Google Scholar]
- Franklin, Joel N. 1968. Matrix Theory. Upper Saddle River: Prentice-Hall. [Google Scholar]
- Fridman, Arthur. 2003. Mixed Markov models. Proceedings of the National Academy of Sciences of the United States of America 100: 8092–96. [Google Scholar] [CrossRef]
- Gallini, Joan. 1983. Misspecifications that can result in path analysis structures. Applied Psychological Measurement 7: 125–37. [Google Scholar] [CrossRef]
- Gmel, Gerhard. 2001. Imputation of missing values in the case of a multiple item instrument measuring alcohol consumption. Statistics in Medicine 20: 2369–81. [Google Scholar] [CrossRef]
- Golden, Richard M. 1995. Making correct statistical inferences using a wrong probability model. Journal of Mathematical Psychology 39: 3–20. [Google Scholar] [CrossRef]
- Golden, Richard M. 1996. Mathematical Methods for Neural Network Analysis and Design. Cambridge: MIT Press. [Google Scholar]
- Golden, Richard M. 2000. Statistical tests for comparing possibly misspecified and nonnested models. Journal of Mathematical Psychology 44: 153–70. [Google Scholar] [CrossRef]
- Golden, Richard M. 2003. Discrepancy risk model selection test theory for comparing possibly misspecified or nonnested models. Psychometrika 68: 165–332. [Google Scholar] [CrossRef]
- Golden, Richard M., Steven S. Henley, Halbert White, and T. Michael Kashner. 2013. New directions in information matrix testing: Eigenspectrum tests. In Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis. Edited by Xiaohong Chen and Norman R. Swanson. New York: Springer, pp. 145–77. [Google Scholar]
- Golden, Richard M., Steven S. Henley, Halbert White, and T. Michael Kashner. 2016. Generalized information matrix tests for detecting model misspecification. Econometrics 4: 46. [Google Scholar] [CrossRef]
- Gourieroux, Christian S., Alain Monfort, and Alain Trognon. 1984. Pseudo-maximum likelihood methods: Theory. Econometrica 52: 681–700. [Google Scholar] [CrossRef]
- Graham, John W., Scott M. Hofer, Stewart I. Donaldson, David P. MacKinnon, and Joseph L. Schafer. 1997. Analysis with missing data in prevention research. In New Methodological Approaches to Alcohol Prevention Research. Edited by Kendall J. Bryant, Michael Windle and Stephen G. West. Washington, DC: American Psychological Association. [Google Scholar]
- Greenland, Sander, and William D. Finkle. 1995. A critical look at methods for handling missing covariates in epidemiologic regression analyses. American Journal of Epidemiology 142: 1255–64. [Google Scholar] [CrossRef]
- Groenwold, Rolf H.H., Ian R. White, A. Rogier T. Donders, James R. Carpenter, Douglas G. Altman, and Karel G.M Moons. 2012. Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis. CMAJ 184: 1265–69. [Google Scholar] [CrossRef]
- Hardin, James W. 2003. The sandwich estimate of variance. In Maximum Likelihood Estimation of Misspeciifed Models: Twenty Years Later. Edited by Thomas B. Fomby and R. Carter Hill. New York: Elsevier, pp. 45–73. [Google Scholar]
- Harel, Ofer, and Xiao-Hu Zhou. 2006. Multiple imputation for correcting verification bias. Statistics in Medicine 25: 3769–86. [Google Scholar] [CrossRef]
- Heitjan, Daniel F. 1994. Ignorability in general incomplete-data models. Biometrika 81: 701–8. [Google Scholar] [CrossRef]
- Henley, Steven S., Richard M. Golden, and T. Michael Kashner. 2019. Statistical Modeling Methods: Challenges and Strategies. Biostatistics & Epidemiology, 1–35. [Google Scholar] [CrossRef]
- Hosmer, David W., and Stanley Lemeshow. 2000. Applied Logistic Regression, 2nd ed. New York: Wiley. [Google Scholar]
- Huang, Wanling, and Artem Prokhorov. 2014. A Goodness-of-Fit Test for Copulas. Econometric Reviews 33: 751–71. [Google Scholar] [CrossRef]
- Huber, Peter J. 1967. The behavior of maximum likelihood estimates under non-standard conditions. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, vol. 1, pp. 221–33. [Google Scholar]
- Ibragimov, Rustam, and Artem Prokhorov. 2017. Heavy Tails And Copulas: Topics In Dependence Modelling In Economics and Finance. Hackensack: World Scientific Publishing. [Google Scholar]
- Ibrahim, Joseph G., Chen Ming-Hui, Stuart R. Lipsitz, and Amy H. Herring. 2005. Missing-Data Methods for Generalized Linear Models: A Comparative Review. Journal of the American Statistical Association 100: 332–46. [Google Scholar] [CrossRef]
- Ibrahim, Joseph G., Stuart R. Lipsitz, and Ming-Hui Chen. 1999. Missing covariates in generalized linear models when the missing data mechanism is nonignorable. Journal of The Royal Statistical Society Series B 61: 173–90. [Google Scholar] [CrossRef]
- Jaeger, Manfred. 2006. On Testing the Missing at Random Assumption. In Machine Learning: ECML 2006. Lecture Notes in Computer Science. Edited by Johannes Fürnkranz, Tobias Scheffer and Myra Spiliopoulou. Berlin/Heidelberg: Springer, vol. 4212, pp. 671–78. [Google Scholar]
- Jamshidian, Mortaza, and Robert I. Jennrich. 2000. Standard errors for EM estimation. Journal of The Royal Statistical Society Series B 62: 257–70. [Google Scholar] [CrossRef]
- Jank, Wolfgang, and James Booth. 2003. Efficiency of Monte Carlo EM and Simulated Maximum Likelihood in Two-Stage Hierarchical Models. Journal of Computational and Graphical Statistics 12: 214–29. [Google Scholar] [CrossRef]
- Jennrich, Robert I. 1969. Asymptotic properties of nonlinear least squares estimators. Annals of Mathematical Statistics 40: 633–43. [Google Scholar] [CrossRef]
- Kashner, T. Michael, Steven S. Henley, Richard M. Golden, John M. Byrne, Sheri A. Keitz, Grant W. Cannon, Barbara K. Chang, Gloria J. Holland, David C. Aron, Elaine A. Muchmore, and et al. 2010. Studying the Effects of ACGME duty hours limits on resident satisfaction: Results from VA Learner’s Survey. Academic Medicine 85: 1130–39. [Google Scholar] [CrossRef]
- Kass, Robert E., and Paul W. Voss. 1997. Geometric Foundations of Asymptotic Inference. New York: Wiley. [Google Scholar]
- Kenward, Michael G., and Geert Molenberghs. 1998. Likelihood based frequentist inference when data are missing at random. Statistical Science 13: 236–47. [Google Scholar] [CrossRef]
- King, Gary, James Honaker, Anne Joseph, and Kenneth Scheve. 2001. Analyzing incomplete political science data: An alternative algorithm for multiple imputation. American Political Science Association 95: 49–69. [Google Scholar] [CrossRef]
- Kosinski, Andrzej S., and Huiman X. Barnhart. 2003a. A global sensitivity analysis of performance of a medical diagnostic test when verification bias is present. Statistics in Medicine 22: 2711–21. [Google Scholar] [CrossRef]
- Kosinski, Andrzej S., and Huiman X. Barnhart. 2003b. Accounting for Nonignorable Verification Bias in Assessment of Diagnostic Tests. Biometrics 59: 163–71. [Google Scholar] [CrossRef]
- Kullback, Solomon, and Richard A. Leibler. 1951. On information and sufficiency. Annals of Mathematical Statistics 22: 79–86. [Google Scholar] [CrossRef]
- Leke, Collins Achepsah, and Tshilidzi Marwala. 2019. Deep Learning and Missing Data in Engineering Systems, 1st ed. Cham: Springer Nature Switzerland. [Google Scholar]
- Liang, Kung-Yee, and Scott L. Zeger. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73: 13–22. [Google Scholar] [CrossRef]
- Little, Roderick J. A., and Donald B. Rubin. 2002. Statistical Analysis with Missing Data, 2nd ed. New York: Wiley. [Google Scholar]
- Little, Roderick J., Ralph D’Agostino, Michael L. Cohen, Kay Dickersin, Scott S. Emerson, John T. Farrar, Constantine Frangakis, Joseph W. Hogan, Geert Molenberghs, Susan A. Murphy, and et al. 2012. The prevention and treatment of missing data in clinical trials. The New England Journal of Medicine 367: 1355–60. [Google Scholar] [CrossRef]
- Little, Roderick J.A. 1994. A class of pattern-mixture models for multivariate incomplete data. Biometrika 81: 471–83. [Google Scholar] [CrossRef]
- Little, Roderick J.A. 1988. A Test of Missing Completely at Random for Multivariate Data with Missing Values. Journal of the American Statistical Association 83: 1198–202. [Google Scholar] [CrossRef]
- Littman, Michael L. 2009. A tutorial on partially observable Markov decision processes. Journal of Mathematical Psychology 53: 119–25. [Google Scholar] [CrossRef]
- Louis, Thomas A. 1982. Finding the Observed Information Matrix when Using the EM Algorithm. Journal of The Royal Statistical Society Series B 44: 226–33. [Google Scholar] [CrossRef]
- Luenberger, David G. 1984. Linear and Nonlinear Programming, 2nd ed. Massachusetts: Addison-Wesley. [Google Scholar]
- . Lu, Guobing, and John B. Copas. 2004. Missing at Random, Likelihood Ignorability and Model Completeness. The Annals of Statistics 32: 754–65. [Google Scholar]
- Markovsky, Ivan. 2017. A Missing Data Approach to Data-Driven Filtering and Control. IEEE Transactions on Automatic Control 62: 1972–78. [Google Scholar] [CrossRef]
- McCullagh, P., and John A. Nelder. 1989. Generalized Linear Models. New York: Chapman and Hall. [Google Scholar]
- McDonough, Ian K., and Daniel L. Millimet. 2016. Missing Data, Imputation, and Endogeneity. Bonn: IZA Institute of Labor Economics. [Google Scholar]
- McLachlan, Geoffrey, and Thriyambakam Krishnan. 1997. The EM Algorithm and Extensions. New York: Wiley. [Google Scholar]
- Meng, Xiao-Li, and Donald B. Rubin. 1991. Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association 86: 899–909. [Google Scholar] [CrossRef]
- Miller, J. 2010. Isaac 2010. Cointegrating regressions with messy regressors and an application to mixed-frequency series. Journal of Time Series Analysis 31: 255–77. [Google Scholar]
- Molenberghs, Geert, and Michael Kenward. 2007. Missing Data in Clinical Studies. New York: Wiley. [Google Scholar]
- Molenberghs, Geert, Bart Michiels, Michael G. Kenward, and P.J. Diggle. 1998. Missing data mechanisms and pattern-mixture models. Statistica Neerlandica 52: 153–61. [Google Scholar] [CrossRef]
- Molenberghs, Geert, Caroline Beunckens, and Cristina Sotto. 2008. Every missingness not at random model has a missingness at random counterpart with equal fit. Journal of The Royal Statistical Society Series B 70: 371–88. [Google Scholar] [CrossRef]
- Molenberghs, Geert, Garrett Fitzmaurice, Michael G. Kenward, Anastasios Tsiatis, and Geert Verbeke. 2014. Handbook of Missing Data Methodology, 1st ed. London: Chapman & Hal, Boca Raton: CRC. [Google Scholar]
- Murray, Gordon D. 1977. Contribution to the discussion of paper by A. P. Dempster, N. M. Laird, and D. B. Rubin. Journal of The Royal Statistical Society Series B 39: 27–28. [Google Scholar]
- Nielsen, Søren Feodor. 1997. Inference and missing data: Asymptotic results. Scandinavian Journal of Statistics 24: 261–74. [Google Scholar] [CrossRef]
- Orchard, Terence, and Max A. Woodbury. 1972. A missing information principle: Theory and applications. Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability 1: 697–715. [Google Scholar]
- Parzen, Michael, Stuart R. Lipsitz, Garrett M. Fitzmaurice, Joseph G. Ibrahim, and Andrea Troxel. 2006. Pseudo-likelihood methods for longitudinal binary data with nonignorable missing responses and covariates. Statistics in Medicine 25: 2784–96. [Google Scholar] [CrossRef]
- Prokhorov, Artem, Ulf Schepsmeier, and Yajing Zhu. 2019. Generalized Information Matrix Tests for Copulas. Econometric Reviews 25: 1024–54. [Google Scholar] [CrossRef]
- Rhoads, Christopher H. 2012. Problems with Tests of the Missingness Mechanism in Quantitative Policy Studies. Statistics, Politics, and Policy 3: 6. [Google Scholar] [CrossRef]
- Robins, James M., and Naisyin Wang. 2000. Inference for imputation estimators. Biometrika 87: 113–24. [Google Scholar] [CrossRef]
- Royall, Richard M. 1986. Model robust confidence intervals using maximum likelihood estimators. International Statistical Review 54: 221–26. [Google Scholar] [CrossRef]
- Rubin, Donald B. 1976. Inference and missing data. Biometrika 63: 581–92. [Google Scholar] [CrossRef]
- Rubin, Donald B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley. [Google Scholar]
- Rubin, Donald B. 1996. Multiple imputation after 18+ years. Journal of the American Statistical Association 91: 473–89. [Google Scholar] [CrossRef]
- Ryden, Tobias, and D. M. Titterington. 1998. Computational Bayesian analysis of hidden Markov models. Journal of Computational and Graphical Statistics 7: 194–211. [Google Scholar]
- Schafer, Joseph L. 1997. Analysis of Incomplete Multivariate Data. New York: Chapman and Hall. [Google Scholar]
- Schenker, Nathaniel, and A. H. Welsh. 1988. Asymptotic results for multiple imputation. Annals of Statistics 16: 1550–66. [Google Scholar] [CrossRef]
- Schepsmeier, Ulf. 2015. Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review. Journal of Multivariate Analysis 138: 34–52. [Google Scholar] [CrossRef]
- Schepsmeier, Ulf. 2016. A goodness-of-fit test for regular vine copula models. Econometric Reviews 38: 25–46. [Google Scholar] [CrossRef] [Green Version]
- Serfling, Robert J. 1980. Approximation Theorems of Mathematical Statistics, 2nd ed. New York: Wiley-Interscience. [Google Scholar]
- Sung, Yun Ju, and Charles J. Geyer. 2007. Monte Carlo likelihood inference for missing data models. The Annals of Statistics 35: 990–1011. [Google Scholar] [CrossRef] [Green Version]
- Troxel, Andrea B., Diane L. Fairclough, Desmond Curran, and Elizabeth A. Hahn. 1998. Statistical Analysis of Quality of Life with Missing Data in Cancer Clinical Trials. Statistics in Medicine 17: 653–66. [Google Scholar] [CrossRef]
- Troxel, Andrea B., Stuart R. Lipsitz, and David P. Harrington. 1998. Marginal models for the analysis of longitudinal measurements with nonignorable nonmontone missing data. Biometrika 85: 661–72. [Google Scholar] [CrossRef]
- Verbeek, Marno. 2008. A Guide to Modern Econometrics. New York: Wiley. [Google Scholar]
- Verbeke, Geert, and Emmanuel Lesaffre. 1997. The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data. Computational Statistics & Data Analysis 23: 541–56. [Google Scholar]
- Visser, Ingmar. 2011. Seven things to remember about hidden Markov models: A tutorial on Markovian models for time series. Journal of Mathematical Psychology 55: 403–15. [Google Scholar] [CrossRef]
- Vittinghoff, Eric, David V. Glidden, Stephen C. Shiboski, and Charles E. McCulloch. 2012. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models, 2nd ed. New York: Springer. [Google Scholar]
- Wall, Melanie M., Yu Dai, and Lynn E. Eberly. 2005. GEE estimation of a misspecified time-varying covariate: An example with the effect of alcoholism treatment on medical utilization. Statistics in Medicine 24: 925–39. [Google Scholar] [CrossRef]
- Wang, Naisyin, and James M. Robins. 1998. Large-sample theory for parametric multiple imputation procedures. Biometrika 85: 935–48. [Google Scholar] [CrossRef]
- Wedderburn, Robert William Maclagan. 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61: 439–47. [Google Scholar]
- Wei, Bo-Cheng. 1998. Exponential Family Nonlinear Models. New York: Springer. [Google Scholar]
- White, Halbert. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48: 817–38. [Google Scholar] [CrossRef]
- White, Halbert. 1982. Maximum likelihood estimation of misspecified models. Econometrica 50: 1–25. [Google Scholar] [CrossRef]
- White, Halbert. 1984. Asymptotic Theory for Econometricians. New York: Academic Press. [Google Scholar]
- White, Halbert. 1994. Estimation, Inference and Specification Analysis. New York: Cambridge University Press. [Google Scholar]
- Woodbury, Max. A. 1971. Contribution to the discussion of “The analysis of incomplete data” by Herman. O. Hartley and Ronald. R. Hocking. Biometrics 27: 808–13. [Google Scholar]
- Wooldridge, Jeffrey M. 2004. Inverse Probability Weighted Estimation for General Missing Data Problems. Cemmap Working Paper, No. CWP05/04. London: Centre for Microdata Methods and Practice (cemmap). [Google Scholar]
- Yuan, Ke-Hai. 2009. Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis. Journal of Multivariate Analysis 100: 1900–18. [Google Scholar] [CrossRef]
- Zhao, Lue Ping, Lipsitz Stuart, and Danika Lew. 1996. Regression analysis with missing covariate data using estimating equations. Biometrics 52: 1165–82. [Google Scholar] [CrossRef]
- Zhou, Xiao-Hua, Chuan Zhou, Danping Lui, and Xaiobo Ding. 2014. Applied Missing Data Analysis in the Health Sciences, 1st ed. Statistics in Practice. New York: Wiley. [Google Scholar]
- Zhu, Yajing. 2017. Dependence Modelling and Testing: Copula and Varying Coefficient Model with Missing Data. Ph.D. thesis, Concordia University, Montreal, QC, Canada. [Google Scholar]
Result | Description |
---|---|
Consistency Theorem T1 | QMLE is a consistent estimator of the pseudo-true parameter values for observable-data probability models with an assumed ignorable missing-data mechanism in the presence of a missing DGP specified by a MAR or MNAR missing-data mechanism. |
Asymptotic Distribution Theorem T2(i) | The asymptotic distribution of the QMLE is Gaussian with covariance matrix for observable-data probability models with an assumed ignorable missing-data mechanism in the presence of a missing DGP specified by a MAR or MNAR missing-data mechanism. |
Misspecification Detection Theorem T2(ii) | A GIMT may be used to detect the presence of misspecification in the observable-data probability model with an assumed ignorable missing-data mechanism in the presence of a missing DGP that is a MAR or MNAR missing-data mechanism. If this observable-data probability model is misspecified, this implies the complete-data probability model is misspecified when the missing-data mechanism is possibly misspecified but correctly specified as ignorable. |
Missing Information Principles Theorem T3 | Let denote the observable-data negative average log-likelihood. The Hessian of in the presence of possible model misspecification may be estimated using either: and . If, in addition, either observable-data or complete-data model is correctly specified, then the Hessian of may be estimated using either: and . |
Identifiability Proposition P3 | Assume that the observable-data negative log-likelihood is convex on a convex region, , of the parameter space with a unique global minimizer in the interior of . Assume that the observable-data model is correctly specified and the missing-data mechanism is correctly specified as ignorable. Then assume that global minimizer is the observable-data model true parameter value. If, in addition, the complete-data model is correctly specified on , then the unique global minimizer on , is the complete-data model true parameter value. |
Fraction of Information Loss Theorem T4 | If the amount of missing data as measured by the Fraction of Information Loss is small and the complete-data model negative log-likelihood is strictly convex on a convex region of the parameter space, then with appropriate regularity conditions the observable data negative log-likelihood will be convex on that convex region of the parameter space. |
Missing-Data Mechanism 1 | Complete-Data Model | Conclusion when Observable-Data Model 2 is misspecified 3 |
---|---|---|
MAR | Possibly Misspecified | Complete-Data Model is Misspecified. |
MNAR or MAR | Correctly Specified | Missing-Data mechanism is MNAR 4. |
MNAR or MAR | Possibly Misspecified | Either the Complete-Data Model is Misspecified OR the Missing-Data Mechanism is MNAR. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golden, R.M.; Henley, S.S.; White, H.; Kashner, T.M. Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data. Econometrics 2019, 7, 37. https://doi.org/10.3390/econometrics7030037
Golden RM, Henley SS, White H, Kashner TM. Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data. Econometrics. 2019; 7(3):37. https://doi.org/10.3390/econometrics7030037
Chicago/Turabian StyleGolden, Richard M., Steven S. Henley, Halbert White, and T. Michael Kashner. 2019. "Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data" Econometrics 7, no. 3: 37. https://doi.org/10.3390/econometrics7030037
APA StyleGolden, R. M., Henley, S. S., White, H., & Kashner, T. M. (2019). Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data. Econometrics, 7(3), 37. https://doi.org/10.3390/econometrics7030037