Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices
Abstract
:1. Introduction
2. PMLE for Parametric Models
- (i)
- converges to zero such that as ; or
- (ii)
- if exists and is nonsingular, is selected to have at most the order such that as .
3. Examples
3.1. The Sample Selection Model
3.2. The Stochastic Frontier Function Model
4. Monte Carlo
4.1. The Sample Selection Model
4.2. The Stochastic Frontier Function Model
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. MLE of the Sample Selection Model
Appendix B. Proofs
References
- Aigner, Dennis, C. A. Knox Lovell, and Peter Schmidt. 1977. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 6: 21–37. [Google Scholar] [CrossRef]
- Andrews, Donald W. K. 1999. Estimation when a parameter is on a boundary. Econometrica 67: 1341–83. [Google Scholar] [CrossRef]
- Chen, Jiahua. 1995. Optimal rate of convergence for finite mixture models. Annals of Statistics 23: 221–33. [Google Scholar] [CrossRef]
- Cox, David R., and David V. Hinkley. 1974. Theoretical Statistics. London: Chapman and Hall. [Google Scholar]
- Fan, Jianqing, and Runze Li. 2001. Variable selection via Nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96: 1348–60. [Google Scholar] [CrossRef]
- Goldfeld, Stephen M., and Richard E. Quandt. 1975. Estimation in a disequilibrium model and the value of information. Journal of Econometrics 3: 325–48. [Google Scholar] [CrossRef]
- Jin, Fei, and Lung-Fei Lee. 2017. Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model. Journal of Econometrics. forthcoming. [Google Scholar]
- Kiefer, Nicholas M. 1982. A Remark on the Parameterization of a Model for Heterogeneity. Working Paper No 278. Ithaca, NY, USA: Department of Economics, Cornell University. [Google Scholar]
- Lee, Lung-Fei. 1993. Asymptotic distribution of the maximum likelihood estimator for a stochastic frontier function model with a singular information matrix. Econometric Theory 9: 413–30. [Google Scholar] [CrossRef]
- Lee, Lung-Fei, and Andrew Chesher. 1986. Specification testing when score test statistics are identically zero. Journal of Econometrics 31: 121–49. [Google Scholar] [CrossRef]
- Newey, Whitney K., and Daniel McFadden. 1994. Large sample estimation and hypothesis testing. In Handbook of Econometrics. Edited by James J. Heckman and Edward E. Leamer. Amsterdam: Elsevier, chapter 36. vol. 4, pp. 2111–245. [Google Scholar]
- Quandt, Richard E. 1978. Tests of the Equilibrium vs. Disequilibrium Hypotheses. International Economic Review 19: 435–52. [Google Scholar] [CrossRef]
- Rao, Calyampudi Radhakrishna. 1973. Linear Statistical Inferene and Its Applications. New York: John Wiley and Sons. [Google Scholar]
- Rothenberg, Thomas J. 1971. Identification in parametric models. Eonometrica 39: 577–91. [Google Scholar] [CrossRef]
- Rotnitzky, Andrea, David R.Cox, Matteo Bottai, and James Robins. 2000. Likelihood-based inference with singular information matrix. Bernoulli 6: 243–84. [Google Scholar] [CrossRef]
- Sargan, John D. 1983. Identification and lack of identification. Econometrica 51: 1605–33. [Google Scholar] [CrossRef]
- Silvey, Samuel D. 1959. The Lagrangean multiplier test. Annals of Mathematical Statistics 30: 389–407. [Google Scholar] [CrossRef]
- Wang, Hansheng, and Chelei Leng. 2007. Unified LASSO Estimation by Least Squares Approximation. Journal of the American Statistical Association 102: 1039–48. [Google Scholar] [CrossRef]
- Wang, Hansheng, and Chelei Leng. 2008. A note on adaptive group lasso. Computational Statistics and Data Analysis 52: 5277–86. [Google Scholar] [CrossRef]
- Wang, Hansheng, Bo Li, and Chelei Leng. 2009. Shrinkage Tuning Parameter Selection with a Diverging Number of Parameters. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 71: 671–83. [Google Scholar] [CrossRef]
- Wang, Hansheng, Runze Li, and Chih-Ling Tsai. 2007. Tuning Parameter Selectors for the Smoothly Clipped Absolute Deviation Method. Biometrika 94: 553–68. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Ming, and Yi Lin. 2006. Model selection and estimation in regression with group variables. Journal of the Royal Statistical Society, Series B 68: 49–67. [Google Scholar] [CrossRef]
- Zhang, Yiyun, Runze Li, and Chih-Ling Tsai. 2010. Regularization Parameter Selections via Generalized Information Criterion. Journal of the American Statistical Association 105: 312–23. [Google Scholar] [CrossRef] [PubMed]
- Zou, Hui. 2006. The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101: 1418–29. [Google Scholar] [CrossRef]
1 | A model with the new parameter can be considered in the case of a nonzero . |
2 | As pointed out by an anonymous referee, our PML approach can also be applied to interesting economic models such as disequilibrium models and structural change models. For a market possibly in disequilibrium, an equilibrium is characterized by a parameter value on the boundary (Goldfeld and Quandt 1975; Quandt 1978). Structural changes can also be characterized by parameters on the boundary. Thus, our PML approach can be applied in those models with singular information matrices. |
3 | This implies that when , which simplifies later presentation for the asymptotic distribution of the PMLE. In the case that with and is allowed to be on the boundary of , when , some components of can still be on the boundaries of their parameter spaces, then the asymptotic distributions of their PMLEs will be nonstandard. |
4 | Proposition 2 is proved in the case of a nonsingular information matrix, similar to that in Fan and Li (2001). The method cannot be used in the case of a singular information matrix. However, the sparsity property can still be established by using only the consistency of under Assumption 5 (i). |
5 | As before, when , the PMLE of is . |
6 | Another irregular case is that consists of only a constant term and dichotomous explanatory variables, and contains the same set of dichotomous explanatory variables and their interaction terms. For this case, the reparameterization process discussed in Appendix A to derive the asymptotic distribution of the MLE also applies. |
7 | |
8 | In theory, the information criterion (2) can achieve model selection consistency as long as satisfies the order requirement in Assumption 7. However, the finite sample performance depends on the choice of . From the proof of Proposition 5, when , for large enough n, should be smaller than the difference between the function values of the expected log density at the true parameter vector and at the probability limit of the restricted MLE with the restriction imposed. When , should be larger than the difference of the function values of the likelihood divided by n at the MLE and at the restricted MLE. For , and , we compute the second difference 1000 times, and set to be the sample mean plus 2 times the standard error, which yields = 0.26. We then set in all cases and for all sample sizes. We also tried setting to be the sample mean plus zero to four times the standard error. The results are relatively sensitive to the choice of k. We leave the theoretical study on the choice of the constant in to future research. |
9 | |
10 | In Rotnitzky et al. (2000), for a general model, it is possible that the order of the first non-zero derivative with respect to the first component (last component in this paper) is either odd or even after proper reparameterizations. If the order is even, there is a need to analyze the sign of the MLE. In our case, the order is odd and the asymptotic distribution of the MLE can be derived by considering one more reparameterization. |
11 | Note that we cannot use the delta method because is not differentiable at . |
PMLE-o | PMLE-t | PMLE-o | PMLE-t | PMLE-o | PMLE-t | |||
---|---|---|---|---|---|---|---|---|
1.000 | 1.000 | 0.999 | 0.999 | 0.058 | 0.222 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.072 | 0.241 | |||
1.000 | 1.000 | 0.999 | 0.999 | 0.045 | 0.196 | |||
1.000 | 1.000 | 0.997 | 0.999 | 0.043 | 0.200 | |||
1.000 | 1.000 | 0.999 | 0.999 | 0.955 | 0.808 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.051 | 0.191 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.050 | 0.209 | |||
1.000 | 1.000 | 0.998 | 1.000 | 0.054 | 0.216 | |||
1.000 | 1.000 | 0.997 | 0.997 | 0.035 | 0.166 | |||
1.000 | 1.000 | 0.996 | 0.998 | 0.964 | 0.809 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.014 | 0.310 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.007 | 0.333 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.004 | 0.255 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.003 | 0.273 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.996 | 0.692 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.008 | 0.275 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.011 | 0.244 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.002 | 0.228 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.001 | 0.214 | |||
1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.755 |
n, , | |||||||
---|---|---|---|---|---|---|---|
200, 2, 0.7 | MLE-r | −0.344[0.134]0.369 | −0.003[0.135]0.135 | −0.163[0.260]0.307 | −0.001[0.091]0.091 | −2.000[0.000]2.000 | −0.700[0.000]0.700 |
MLE | 0.011[0.164]0.164 | −0.003[0.129]0.129 | −0.022[0.301]0.302 | −0.004[0.132]0.132 | 0.054[0.269]0.274 | 0.002[0.146]0.146 | |
PMLE-o | 0.011[0.164]0.165 | −0.003[0.129]0.129 | −0.022[0.302]0.302 | −0.004[0.132]0.132 | 0.053[0.269]0.274 | 0.003[0.146]0.146 | |
PMLE-t | 0.011[0.164]0.164 | −0.003[0.129]0.129 | −0.022[0.301]0.302 | −0.004[0.132]0.132 | 0.054[0.269]0.274 | 0.002[0.146]0.146 | |
200, 2, −0.7 | MLE-r | 0.359[0.140]0.385 | 0.000[0.138]0.138 | −0.161[0.252]0.299 | −0.002[0.088]0.088 | −2.000[0.000]2.000 | 0.700[0.000]0.700 |
MLE | 0.001[0.171]0.171 | 0.000[0.130]0.130 | −0.017[0.296]0.296 | −0.001[0.134]0.134 | 0.046[0.264]0.268 | −0.004[0.153]0.154 | |
PMLE-o | 0.001[0.171]0.171 | 0.000[0.130]0.130 | −0.017[0.296]0.296 | −0.001[0.134]0.134 | 0.046[0.264]0.268 | −0.004[0.153]0.153 | |
PMLE-t | 0.001[0.171]0.171 | 0.000[0.130]0.130 | −0.017[0.296]0.296 | −0.001[0.134]0.134 | 0.046[0.264]0.268 | −0.004[0.153]0.153 | |
200, 2, 0.3 | MLE-r | −0.146[0.142]0.204 | −0.015[0.145]0.146 | −0.055[0.283]0.288 | −0.000[0.089]0.089 | −2.000[0.000]2.000 | −0.300[0.000]0.300 |
MLE | 0.002[0.187]0.187 | −0.014[0.145]0.146 | −0.017[0.297]0.297 | −0.004[0.132]0.132 | 0.053[0.273]0.278 | −0.007[0.231]0.231 | |
PMLE-o | 0.002[0.187]0.187 | −0.014[0.145]0.146 | −0.017[0.297]0.297 | −0.004[0.133]0.133 | 0.053[0.273]0.278 | −0.007[0.230]0.231 | |
PMLE-t | 0.002[0.187]0.187 | −0.014[0.145]0.146 | −0.017[0.296]0.297 | −0.004[0.133]0.133 | 0.053[0.273]0.278 | −0.006[0.231]0.231 | |
200, 2, −0.3 | MLE-r | 0.151[0.142]0.208 | −0.001[0.143]0.143 | −0.054[0.285]0.290 | −0.002[0.086]0.086 | −2.000[0.000]2.000 | 0.300[0.000]0.300 |
MLE | 0.000[0.189]0.189 | −0.002[0.144]0.144 | −0.016[0.297]0.298 | 0.002[0.127]0.127 | 0.050[0.264]0.269 | 0.003[0.225]0.225 | |
PMLE-o | 0.000[0.189]0.189 | −0.002[0.144]0.144 | −0.016[0.297]0.298 | 0.002[0.127]0.127 | 0.050[0.264]0.269 | 0.003[0.225]0.225 | |
PMLE-t | 0.000[0.189]0.189 | −0.002[0.144]0.144 | −0.016[0.297]0.298 | 0.002[0.127]0.127 | 0.050[0.264]0.269 | 0.003[0.225]0.225 | |
200, 2, 0 | MLE-r | 0.002[0.141]0.141 | −0.005[0.140]0.140 | −0.051[0.278]0.283 | −0.002[0.088]0.088 | −2.000[0.000]2.000 | 0.000[0.000]0.000 |
MLE | 0.003[0.186]0.186 | −0.005[0.142]0.142 | −0.036[0.281]0.283 | −0.005[0.133]0.133 | 0.065[0.277]0.285 | 0.004[0.238]0.238 | |
PMLE-o | 0.003[0.185]0.186 | −0.005[0.142]0.142 | −0.036[0.281]0.283 | −0.006[0.133]0.133 | 0.065[0.277]0.285 | 0.003[0.238]0.238 | |
PMLE-t | 0.003[0.185]0.186 | −0.005[0.142]0.142 | −0.036[0.281]0.283 | −0.005[0.133]0.133 | 0.065[0.277]0.285 | 0.004[0.238]0.238 | |
200, 0.5, 0.7 | MLE-r | −0.174[0.064]0.186 | 0.003[0.069]0.069 | −0.039[0.066]0.076 | 0.001[0.091]0.091 | −2.000[0.000]2.000 | −0.700[0.000]0.700 |
MLE | 0.004[0.082]0.082 | 0.004[0.066]0.066 | −0.003[0.076]0.076 | 0.001[0.132]0.132 | 0.066[0.280]0.287 | 0.012[0.142]0.143 | |
PMLE-o | 0.004[0.082]0.082 | 0.004[0.066]0.066 | −0.003[0.075]0.075 | 0.001[0.132]0.132 | 0.067[0.279]0.287 | 0.012[0.142]0.142 | |
PMLE-t | 0.004[0.082]0.082 | 0.004[0.066]0.066 | −0.003[0.075]0.076 | 0.001[0.132]0.132 | 0.067[0.279]0.287 | 0.012[0.142]0.142 | |
200, 0.5, −0.7 | MLE-r | 0.177[0.069]0.190 | −0.003[0.070]0.070 | −0.042[0.070]0.081 | 0.003[0.090]0.090 | −2.000[0.000]2.000 | 0.700[0.000]0.700 |
MLE | 0.002[0.082]0.082 | −0.004[0.066]0.066 | −0.008[0.079]0.080 | 0.001[0.126]0.126 | 0.067[0.262]0.270 | −0.006[0.137]0.137 | |
PMLE-o | 0.001[0.082]0.082 | −0.004[0.066]0.066 | −0.008[0.079]0.080 | 0.001[0.126]0.126 | 0.067[0.262]0.270 | −0.006[0.137]0.137 | |
PMLE-t | 0.002[0.082]0.082 | −0.004[0.066]0.066 | −0.008[0.079]0.080 | 0.001[0.126]0.126 | 0.067[0.262]0.270 | −0.006[0.137]0.137 | |
200, 0.5, 0.3 | MLE-r | −0.077[0.072]0.105 | 0.006[0.074]0.074 | −0.017[0.068]0.070 | −0.000[0.089]0.089 | −2.000[0.000]2.000 | −0.300[0.000]0.300 |
MLE | 0.000[0.096]0.096 | 0.006[0.073]0.074 | −0.007[0.071]0.072 | 0.000[0.132]0.132 | 0.042[0.264]0.267 | 0.008[0.220]0.220 | |
PMLE-o | 0.000[0.096]0.096 | 0.006[0.073]0.074 | −0.007[0.071]0.072 | 0.000[0.132]0.132 | 0.042[0.264]0.267 | 0.008[0.220]0.220 | |
PMLE-t | 0.000[0.096]0.096 | 0.006[0.073]0.074 | −0.007[0.071]0.072 | 0.000[0.132]0.132 | 0.042[0.264]0.267 | 0.008[0.220]0.220 | |
200, 0.5, −0.3 | MLE-r | 0.074[0.073]0.103 | −0.002[0.074]0.074 | −0.019[0.068]0.071 | 0.001[0.091]0.091 | −2.000[0.000]2.000 | 0.300[0.000]0.300 |
MLE | −0.001[0.094]0.094 | −0.001[0.075]0.075 | −0.010[0.071]0.072 | −0.000[0.130]0.130 | 0.060[0.281]0.288 | 0.004[0.224]0.224 | |
PMLE-o | −0.001[0.094]0.094 | −0.002[0.075]0.075 | −0.010[0.071]0.072 | −0.000[0.130]0.130 | 0.060[0.281]0.288 | 0.003[0.223]0.223 | |
PMLE-t | −0.001[0.094]0.094 | −0.002[0.075]0.075 | −0.010[0.071]0.072 | −0.000[0.130]0.130 | 0.060[0.281]0.288 | 0.003[0.223]0.223 | |
200, 0.5, 0 | MLE-r | −0.001[0.071]0.071 | −0.007[0.075]0.076 | −0.011[0.071]0.072 | −0.005[0.086]0.086 | −2.000[0.000]2.000 | 0.000[0.000]0.000 |
MLE | −0.001[0.092]0.092 | −0.007[0.076]0.077 | −0.007[0.072]0.073 | −0.001[0.135]0.135 | 0.066[0.279]0.287 | −0.001[0.246]0.246 | |
PMLE-o | −0.001[0.092]0.092 | −0.007[0.076]0.077 | −0.007[0.072]0.073 | −0.001[0.135]0.135 | 0.066[0.279]0.287 | −0.001[0.246]0.246 | |
PMLE-t | −0.001[0.092]0.092 | −0.007[0.076]0.077 | −0.007[0.072]0.073 | −0.001[0.135]0.135 | 0.066[0.279]0.287 | −0.001[0.246]0.246 | |
600, 2, 0.7 | MLE-r | −0.356[0.079]0.364 | 0.000[0.078]0.078 | −0.137[0.159]0.210 | −0.000[0.050]0.050 | −2.000[0.000]2.000 | −0.700[0.000]0.700 |
MLE | 0.000[0.093]0.093 | 0.001[0.072]0.072 | −0.004[0.180]0.180 | 0.005[0.069]0.069 | 0.008[0.147]0.148 | 0.005[0.080]0.080 | |
PMLE-o | 0.000[0.093]0.093 | 0.001[0.072]0.072 | −0.004[0.180]0.180 | 0.005[0.069]0.069 | 0.008[0.147]0.147 | 0.005[0.080]0.080 | |
PMLE-t | 0.000[0.093]0.093 | 0.001[0.072]0.072 | −0.004[0.180]0.180 | 0.006[0.069]0.069 | 0.008[0.147]0.147 | 0.005[0.080]0.080 | |
600, 2, −0.7 | MLE-r | 0.351[0.076]0.360 | −0.005[0.078]0.078 | −0.138[0.154]0.207 | 0.002[0.051]0.052 | −2.000[0.000]2.000 | 0.700[0.000]0.700 |
MLE | −0.001[0.091]0.091 | −0.006[0.073]0.073 | −0.010[0.175]0.175 | 0.002[0.073]0.073 | 0.011[0.148]0.149 | −0.002[0.080]0.080 | |
PMLE-o | −0.001[0.091]0.091 | −0.006[0.073]0.073 | −0.009[0.175]0.175 | 0.002[0.073]0.073 | 0.011[0.148]0.149 | −0.002[0.080]0.080 | |
PMLE-t | −0.001[0.091]0.091 | −0.006[0.073]0.073 | −0.009[0.175]0.175 | 0.002[0.073]0.073 | 0.011[0.148]0.149 | −0.002[0.080]0.080 | |
600, 2, 0.3 | MLE-r | −0.158[0.081]0.178 | −0.000[0.082]0.082 | −0.031[0.165]0.168 | −0.003[0.052]0.052 | −2.000[0.000]2.000 | −0.300[0.000]0.300 |
MLE | −0.003[0.104]0.104 | 0.001[0.081]0.081 | −0.003[0.170]0.170 | −0.001[0.075]0.075 | 0.019[0.158]0.159 | 0.006[0.124]0.124 | |
PMLE-o | −0.003[0.104]0.104 | 0.001[0.081]0.081 | −0.003[0.170]0.170 | −0.001[0.075]0.075 | 0.019[0.158]0.159 | 0.006[0.124]0.124 | |
PMLE-t | −0.003[0.104]0.104 | 0.001[0.081]0.081 | −0.003[0.170]0.170 | −0.001[0.075]0.075 | 0.019[0.158]0.159 | 0.006[0.124]0.124 | |
600, 2, −0.3 | MLE-r | 0.151[0.084]0.173 | −0.000[0.082]0.082 | −0.040[0.163]0.168 | −0.000[0.051]0.051 | −2.000[0.000]2.000 | 0.300[0.000]0.300 |
MLE | −0.001[0.107]0.107 | −0.001[0.081]0.081 | −0.012[0.168]0.169 | −0.002[0.071]0.071 | 0.018[0.159]0.160 | −0.002[0.126]0.126 | |
PMLE-o | −0.001[0.107]0.107 | −0.001[0.081]0.081 | −0.012[0.168]0.169 | −0.002[0.071]0.071 | 0.018[0.159]0.160 | −0.002[0.126]0.126 | |
PMLE-t | −0.001[0.107]0.107 | −0.001[0.081]0.081 | −0.012[0.168]0.169 | −0.002[0.071]0.071 | 0.018[0.159]0.160 | −0.002[0.126]0.126 | |
600, 2, 0 | MLE-r | −0.005[0.081]0.081 | 0.002[0.084]0.084 | −0.007[0.162]0.162 | −0.002[0.050]0.050 | −2.000[0.000]2.000 | 0.000[0.000]0.000 |
MLE | −0.005[0.108]0.108 | 0.002[0.084]0.084 | −0.003[0.162]0.162 | −0.003[0.074]0.075 | 0.013[0.151]0.151 | 0.000[0.131]0.131 | |
PMLE-o | −0.005[0.108]0.108 | 0.002[0.084]0.084 | −0.003[0.162]0.162 | −0.003[0.074]0.075 | 0.013[0.151]0.151 | 0.000[0.131]0.131 | |
PMLE-t | −0.005[0.108]0.108 | 0.002[0.084]0.084 | −0.003[0.162]0.162 | −0.003[0.074]0.075 | 0.013[0.151]0.151 | 0.000[0.131]0.131 | |
600, 0.5, 0.7 | MLE-r | −0.176[0.039]0.180 | 0.001[0.038]0.038 | −0.033[0.039]0.051 | −0.000[0.050]0.050 | −2.000[0.000]2.000 | −0.700[0.000]0.700 |
MLE | 0.002[0.047]0.047 | 0.001[0.036]0.036 | −0.000[0.043]0.043 | −0.000[0.071]0.071 | 0.014[0.144]0.145 | 0.005[0.078]0.078 | |
PMLE-o | 0.002[0.047]0.047 | 0.001[0.036]0.036 | −0.000[0.043]0.043 | −0.000[0.071]0.071 | 0.014[0.144]0.145 | 0.005[0.078]0.078 | |
PMLE-t | 0.002[0.047]0.047 | 0.001[0.036]0.036 | −0.000[0.043]0.043 | −0.000[0.071]0.071 | 0.014[0.144]0.145 | 0.005[0.078]0.078 | |
600, 0.5, −0.7 | MLE-r | 0.178[0.040]0.182 | −0.000[0.039]0.039 | −0.034[0.039]0.052 | 0.000[0.053]0.053 | −2.000[0.000]2.000 | 0.700[0.000]0.700 |
MLE | −0.000[0.048]0.048 | −0.000[0.037]0.037 | −0.001[0.045]0.045 | 0.002[0.074]0.074 | 0.016[0.147]0.148 | −0.005[0.080]0.080 | |
PMLE-o | −0.000[0.048]0.048 | −0.000[0.037]0.037 | −0.001[0.045]0.045 | 0.002[0.074]0.075 | 0.016[0.147]0.148 | −0.005[0.080]0.080 | |
PMLE-t | −0.000[0.048]0.048 | −0.000[0.037]0.037 | −0.001[0.045]0.045 | 0.002[0.074]0.075 | 0.016[0.147]0.148 | −0.005[0.080]0.080 | |
600, 0.5, 0.3 | MLE-r | −0.075[0.042]0.085 | 0.002[0.041]0.041 | −0.009[0.041]0.042 | 0.002[0.053]0.053 | −2.000[0.000]2.000 | −0.300[0.000]0.300 |
MLE | 0.000[0.053]0.053 | 0.002[0.041]0.041 | −0.002[0.042]0.042 | −0.001[0.076]0.076 | 0.023[0.155]0.156 | −0.001[0.124]0.124 | |
PMLE-o | 0.000[0.053]0.053 | 0.002[0.041]0.041 | −0.002[0.042]0.042 | −0.001[0.076]0.076 | 0.023[0.155]0.156 | −0.001[0.124]0.124 | |
PMLE-t | 0.000[0.053]0.053 | 0.002[0.041]0.041 | −0.002[0.042]0.042 | −0.001[0.076]0.076 | 0.023[0.155]0.156 | −0.001[0.124]0.124 | |
600, 0.5, −0.3 | MLE-r | 0.076[0.039]0.085 | 0.000[0.041]0.041 | −0.012[0.041]0.043 | −0.002[0.052]0.052 | −2.000[0.000]2.000 | 0.300[0.000]0.300 |
MLE | 0.001[0.051]0.051 | 0.000[0.040]0.040 | −0.005[0.043]0.043 | −0.005[0.074]0.075 | 0.019[0.156]0.157 | 0.002[0.121]0.121 | |
PMLE-o | 0.001[0.051]0.051 | 0.000[0.040]0.040 | −0.005[0.043]0.043 | −0.005[0.074]0.075 | 0.019[0.156]0.157 | 0.002[0.121]0.121 | |
PMLE-t | 0.001[0.051]0.051 | 0.000[0.040]0.040 | −0.005[0.043]0.043 | −0.005[0.074]0.075 | 0.019[0.156]0.157 | 0.002[0.121]0.121 | |
600, 0.5, 0 | MLE-r | −0.001[0.040]0.040 | 0.001[0.041]0.041 | −0.003[0.041]0.041 | −0.002[0.052]0.052 | −2.000[0.000]2.000 | 0.000[0.000]0.000 |
MLE | −0.000[0.052]0.052 | 0.001[0.041]0.041 | −0.002[0.041]0.041 | −0.005[0.074]0.074 | 0.015[0.146]0.147 | 0.001[0.129]0.129 | |
PMLE-o | −0.000[0.052]0.052 | 0.001[0.041]0.041 | −0.002[0.041]0.041 | −0.005[0.074]0.074 | 0.015[0.146]0.147 | 0.001[0.129]0.129 | |
PMLE-t | −0.000[0.052]0.052 | 0.001[0.041]0.041 | −0.002[0.041]0.041 | −0.005[0.074]0.074 | 0.015[0.146]0.147 | 0.001[0.129]0.129 |
n, , | |||||||
---|---|---|---|---|---|---|---|
200, 2, 0.7 | MLE-r | −0.704[0.123]0.715 | 0.001[0.125]0.125 | −0.532[0.204]0.570 | 0.002[0.090]0.090 | −0.500[0.000]0.500 | −0.700[0.000]0.700 |
MLE | −0.014[0.323]0.323 | 0.003[0.120]0.120 | 0.027[0.483]0.484 | 0.003[0.094]0.094 | 0.006[0.098]0.098 | −0.035[0.217]0.220 | |
PMLE-o | −0.015[0.324]0.325 | 0.003[0.120]0.120 | 0.028[0.487]0.487 | 0.003[0.094]0.094 | 0.006[0.099]0.099 | −0.035[0.218]0.221 | |
PMLE-t | −0.015[0.324]0.324 | 0.003[0.120]0.120 | 0.027[0.483]0.484 | 0.003[0.094]0.094 | 0.006[0.099]0.099 | −0.035[0.218]0.221 | |
200, 2, −0.7 | MLE-r | 0.705[0.124]0.716 | 0.003[0.125]0.125 | −0.533[0.208]0.572 | −0.004[0.093]0.093 | −0.500[0.000]0.500 | 0.700[0.000]0.700 |
MLE | 0.009[0.306]0.306 | 0.001[0.123]0.123 | 0.030[0.508]0.509 | −0.003[0.097]0.097 | 0.012[0.104]0.104 | 0.031[0.207]0.209 | |
PMLE-o | 0.009[0.308]0.308 | 0.001[0.123]0.123 | 0.031[0.510]0.511 | −0.002[0.097]0.097 | 0.012[0.104]0.104 | 0.031[0.207]0.209 | |
PMLE-t | 0.009[0.306]0.306 | 0.001[0.123]0.123 | 0.030[0.508]0.509 | −0.003[0.097]0.097 | 0.012[0.104]0.104 | 0.031[0.207]0.209 | |
200, 2, 0.3 | MLE-r | −0.305[0.140]0.336 | 0.003[0.142]0.142 | −0.126[0.270]0.297 | 0.000[0.088]0.088 | −0.500[0.000]0.500 | −0.300[0.000]0.300 |
MLE | 0.014[0.404]0.404 | 0.003[0.142]0.142 | 0.124[0.486]0.501 | 0.002[0.092]0.092 | 0.006[0.102]0.102 | −0.009[0.324]0.324 | |
PMLE-o | 0.017[0.410]0.410 | 0.002[0.142]0.142 | 0.130[0.506]0.523 | 0.002[0.092]0.092 | 0.006[0.103]0.103 | −0.007[0.325]0.325 | |
PMLE-t | 0.014[0.404]0.404 | 0.003[0.142]0.142 | 0.123[0.486]0.501 | 0.002[0.092]0.092 | 0.006[0.103]0.103 | −0.009[0.324]0.324 | |
200, 2, −0.3 | MLE-r | 0.301[0.139]0.331 | 0.002[0.142]0.142 | −0.124[0.273]0.300 | 0.002[0.089]0.089 | −0.500[0.000]0.500 | 0.300[0.000]0.300 |
MLE | −0.014[0.421]0.421 | 0.002[0.142]0.142 | 0.125[0.472]0.489 | 0.002[0.094]0.094 | 0.010[0.107]0.107 | 0.012[0.332]0.333 | |
PMLE-o | −0.014[0.420]0.421 | 0.002[0.142]0.142 | 0.125[0.472]0.488 | 0.002[0.094]0.094 | 0.009[0.109]0.110 | 0.012[0.332]0.332 | |
PMLE-t | −0.015[0.421]0.421 | 0.002[0.142]0.142 | 0.125[0.472]0.489 | 0.002[0.094]0.094 | 0.009[0.107]0.108 | 0.012[0.332]0.332 | |
200, 2, 0 | MLE-r | 0.004[0.144]0.144 | 0.005[0.147]0.147 | −0.051[0.275]0.280 | −0.004[0.092]0.093 | −0.500[0.000]0.500 | 0.000[0.000]0.000 |
MLE | 0.007[0.446]0.446 | 0.006[0.148]0.149 | 0.124[0.401]0.419 | −0.002[0.098]0.098 | 0.010[0.105]0.105 | 0.001[0.370]0.370 | |
PMLE-o | 0.007[0.446]0.446 | 0.006[0.148]0.149 | 0.123[0.400]0.419 | −0.002[0.098]0.098 | 0.010[0.106]0.106 | 0.002[0.369]0.369 | |
PMLE-t | 0.007[0.446]0.446 | 0.006[0.148]0.149 | 0.123[0.400]0.419 | −0.002[0.098]0.098 | 0.010[0.106]0.106 | 0.002[0.369]0.369 | |
200, 0.5, 0.7 | MLE-r | −0.356[0.059]0.361 | 0.002[0.064]0.064 | −0.130[0.054]0.141 | −0.000[0.090]0.090 | −0.500[0.000]0.500 | −0.700[0.000]0.700 |
MLE | −0.009[0.158]0.158 | 0.002[0.065]0.065 | 0.012[0.127]0.127 | −0.001[0.097]0.097 | 0.016[0.103]0.104 | −0.033[0.227]0.229 | |
PMLE-o | −0.009[0.158]0.158 | 0.002[0.065]0.065 | 0.012[0.127]0.127 | −0.001[0.097]0.097 | 0.016[0.103]0.104 | −0.033[0.227]0.229 | |
PMLE-t | −0.009[0.158]0.158 | 0.002[0.065]0.065 | 0.012[0.127]0.127 | −0.001[0.097]0.097 | 0.016[0.103]0.104 | −0.033[0.227]0.229 | |
200, 0.5, −0.7 | MLE-r | 0.350[0.063]0.356 | −0.000[0.062]0.062 | −0.133[0.056]0.144 | −0.003[0.088]0.088 | −0.500[0.000]0.500 | 0.700[0.000]0.700 |
MLE | 0.009[0.147]0.147 | −0.000[0.060]0.060 | 0.001[0.125]0.125 | −0.001[0.093]0.093 | 0.017[0.102]0.104 | 0.038[0.204]0.207 | |
PMLE-o | 0.010[0.151]0.151 | −0.000[0.061]0.061 | 0.002[0.125]0.126 | −0.001[0.093]0.093 | 0.017[0.103]0.104 | 0.039[0.210]0.214 | |
PMLE-t | 0.009[0.147]0.147 | −0.000[0.060]0.060 | 0.001[0.125]0.125 | −0.001[0.093]0.093 | 0.017[0.102]0.104 | 0.038[0.204]0.207 | |
200, 0.5, 0.3 | MLE-r | −0.145[0.070]0.161 | −0.000[0.068]0.068 | −0.035[0.068]0.076 | 0.005[0.090]0.090 | −0.500[0.000]0.500 | −0.300[0.000]0.300 |
MLE | 0.006[0.212]0.212 | −0.000[0.069]0.069 | 0.027[0.123]0.126 | 0.003[0.096]0.096 | 0.007[0.109]0.110 | −0.028[0.338]0.339 | |
PMLE-o | 0.006[0.212]0.212 | −0.000[0.069]0.069 | 0.028[0.123]0.126 | 0.003[0.096]0.096 | 0.006[0.111]0.111 | −0.028[0.338]0.339 | |
PMLE-t | 0.006[0.212]0.212 | −0.000[0.069]0.069 | 0.028[0.123]0.126 | 0.003[0.096]0.096 | 0.007[0.109]0.110 | −0.028[0.338]0.339 | |
200, 0.5, −0.3 | MLE-r | 0.152[0.068]0.167 | 0.003[0.070]0.070 | −0.032[0.065]0.072 | 0.004[0.088]0.088 | −0.500[0.000]0.500 | 0.300[0.000]0.300 |
MLE | 0.009[0.203]0.203 | 0.003[0.071]0.071 | 0.025[0.105]0.108 | 0.003[0.092]0.092 | 0.010[0.106]0.106 | 0.036[0.331]0.333 | |
PMLE-o | 0.010[0.202]0.202 | 0.003[0.071]0.071 | 0.024[0.105]0.108 | 0.003[0.092]0.092 | 0.009[0.108]0.108 | 0.036[0.330]0.332 | |
PMLE-t | 0.010[0.202]0.202 | 0.003[0.071]0.071 | 0.024[0.105]0.108 | 0.003[0.092]0.092 | 0.009[0.108]0.108 | 0.036[0.330]0.332 | |
200, 0.5, 0 | MLE-r | −0.000[0.072]0.072 | −0.001[0.070]0.070 | −0.010[0.071]0.072 | −0.001[0.086]0.086 | −0.500[0.000]0.500 | 0.000[0.000]0.000 |
MLE | 0.004[0.216]0.216 | −0.002[0.071]0.071 | 0.032[0.104]0.108 | −0.001[0.090]0.090 | 0.005[0.107]0.107 | 0.007[0.360]0.360 | |
PMLE-o | 0.003[0.219]0.219 | −0.002[0.071]0.071 | 0.033[0.107]0.112 | −0.001[0.090]0.090 | 0.004[0.110]0.110 | 0.006[0.363]0.363 | |
PMLE-t | 0.005[0.215]0.216 | −0.002[0.071]0.071 | 0.031[0.104]0.108 | −0.001[0.090]0.090 | 0.005[0.108]0.109 | 0.008[0.360]0.360 | |
600, 2, 0.7 | MLE-r | −0.707[0.072]0.711 | −0.004[0.069]0.069 | −0.506[0.124]0.521 | 0.001[0.050]0.050 | −0.500[0.000]0.500 | −0.700[0.000]0.700 |
MLE | −0.003[0.172]0.172 | −0.004[0.066]0.066 | 0.015[0.287]0.288 | 0.001[0.052]0.052 | −0.000[0.059]0.059 | −0.010[0.106]0.106 | |
PMLE-o | −0.003[0.172]0.172 | −0.004[0.066]0.066 | 0.015[0.287]0.288 | 0.001[0.052]0.052 | −0.000[0.059]0.059 | −0.010[0.106]0.106 | |
PMLE-t | −0.003[0.172]0.172 | −0.004[0.066]0.066 | 0.015[0.287]0.288 | 0.001[0.052]0.052 | −0.000[0.059]0.059 | −0.010[0.106]0.106 | |
600, 2, −0.7 | MLE-r | 0.709[0.071]0.712 | 0.002[0.070]0.070 | −0.518[0.124]0.533 | −0.002[0.050]0.050 | −0.500[0.000]0.500 | 0.700[0.000]0.700 |
MLE | 0.010[0.166]0.166 | 0.002[0.069]0.069 | −0.009[0.279]0.280 | −0.002[0.052]0.052 | 0.005[0.056]0.057 | 0.012[0.106]0.106 | |
PMLE-o | 0.010[0.166]0.166 | 0.002[0.069]0.069 | −0.009[0.279]0.280 | −0.002[0.052]0.052 | 0.005[0.056]0.057 | 0.012[0.106]0.106 | |
PMLE-t | 0.010[0.166]0.166 | 0.002[0.069]0.069 | −0.009[0.279]0.280 | −0.002[0.052]0.052 | 0.005[0.056]0.057 | 0.012[0.106]0.106 | |
600, 2, 0.3 | MLE-r | −0.303[0.079]0.313 | 0.000[0.081]0.081 | −0.100[0.163]0.191 | −0.001[0.050]0.050 | −0.500[0.000]0.500 | −0.300[0.000]0.300 |
MLE | 0.009[0.231]0.231 | 0.001[0.081]0.081 | 0.044[0.239]0.243 | 0.000[0.052]0.052 | 0.003[0.058]0.058 | −0.001[0.196]0.196 | |
PMLE-o | 0.009[0.231]0.231 | 0.001[0.081]0.081 | 0.044[0.239]0.243 | 0.000[0.052]0.052 | 0.003[0.058]0.058 | −0.001[0.196]0.196 | |
PMLE-t | 0.009[0.231]0.231 | 0.001[0.081]0.081 | 0.044[0.239]0.243 | 0.000[0.052]0.052 | 0.003[0.058]0.058 | −0.001[0.196]0.196 | |
600, 2, −0.3 | MLE-r | 0.305[0.082]0.316 | −0.001[0.079]0.079 | −0.104[0.158]0.189 | −0.000[0.053]0.053 | −0.500[0.000]0.500 | 0.300[0.000]0.300 |
MLE | 0.012[0.229]0.229 | −0.000[0.079]0.079 | 0.028[0.228]0.229 | −0.000[0.055]0.055 | 0.002[0.057]0.057 | 0.018[0.196]0.197 | |
PMLE-o | 0.012[0.229]0.229 | −0.000[0.079]0.079 | 0.028[0.228]0.229 | −0.000[0.055]0.055 | 0.002[0.057]0.057 | 0.018[0.196]0.197 | |
PMLE-t | 0.012[0.229]0.229 | −0.000[0.079]0.079 | 0.028[0.228]0.229 | −0.000[0.055]0.055 | 0.002[0.057]0.057 | 0.018[0.196]0.197 | |
600, 2, 0 | MLE-r | 0.002[0.082]0.082 | 0.001[0.082]0.082 | −0.011[0.154]0.155 | 0.004[0.050]0.051 | −0.500[0.000]0.500 | 0.000[0.000]0.000 |
MLE | −0.003[0.226]0.226 | 0.001[0.082]0.082 | 0.035[0.176]0.180 | 0.003[0.051]0.052 | 0.001[0.061]0.061 | −0.005[0.205]0.205 | |
PMLE-o | −0.003[0.226]0.226 | 0.001[0.082]0.082 | 0.035[0.176]0.180 | 0.003[0.051]0.052 | 0.001[0.061]0.061 | −0.005[0.205]0.205 | |
PMLE-t | −0.003[0.226]0.226 | 0.001[0.082]0.082 | 0.035[0.176]0.180 | 0.003[0.051]0.052 | 0.001[0.061]0.061 | −0.005[0.205]0.205 | |
600, 0.5, 0.7 | MLE-r | −0.351[0.036]0.353 | 0.000[0.035]0.035 | −0.127[0.031]0.130 | −0.001[0.050]0.050 | −0.500[0.000]0.500 | −0.700[0.000]0.700 |
MLE | −0.001[0.084]0.084 | −0.001[0.034]0.034 | 0.002[0.070]0.070 | −0.001[0.053]0.053 | 0.002[0.059]0.059 | −0.013[0.109]0.110 | |
PMLE-o | −0.001[0.084]0.084 | −0.001[0.034]0.034 | 0.002[0.070]0.070 | −0.001[0.053]0.053 | 0.002[0.059]0.059 | −0.013[0.109]0.110 | |
PMLE-t | −0.001[0.084]0.084 | −0.001[0.034]0.034 | 0.002[0.070]0.070 | −0.001[0.053]0.053 | 0.002[0.059]0.059 | −0.013[0.109]0.110 | |
600, 0.5, −0.7 | MLE-r | 0.353[0.036]0.355 | 0.001[0.036]0.036 | −0.128[0.030]0.131 | −0.002[0.051]0.051 | −0.500[0.000]0.500 | 0.700[0.000]0.700 |
MLE | 0.002[0.081]0.081 | 0.001[0.034]0.034 | 0.001[0.069]0.069 | −0.002[0.054]0.054 | 0.003[0.058]0.058 | 0.010[0.101]0.101 | |
PMLE-o | 0.002[0.081]0.081 | 0.001[0.034]0.034 | 0.001[0.069]0.069 | −0.002[0.054]0.054 | 0.003[0.058]0.058 | 0.010[0.101]0.101 | |
PMLE-t | 0.002[0.081]0.081 | 0.001[0.034]0.034 | 0.001[0.069]0.069 | −0.002[0.054]0.054 | 0.003[0.058]0.058 | 0.010[0.101]0.101 | |
600, 0.5, 0.3 | MLE-r | −0.149[0.040]0.154 | −0.002[0.039]0.039 | −0.025[0.039]0.047 | 0.002[0.051]0.051 | −0.500[0.000]0.500 | −0.300[0.000]0.300 |
MLE | 0.006[0.114]0.114 | −0.002[0.039]0.039 | 0.010[0.057]0.058 | 0.002[0.054]0.054 | 0.003[0.059]0.059 | −0.000[0.188]0.188 | |
PMLE-o | 0.006[0.114]0.114 | −0.002[0.039]0.039 | 0.010[0.057]0.058 | 0.002[0.054]0.054 | 0.003[0.059]0.059 | −0.000[0.188]0.188 | |
PMLE-t | 0.006[0.114]0.114 | −0.002[0.039]0.039 | 0.010[0.057]0.058 | 0.002[0.054]0.054 | 0.003[0.059]0.059 | −0.000[0.188]0.188 | |
600, 0.5, −0.3 | MLE-r | 0.152[0.039]0.157 | −0.002[0.040]0.040 | −0.026[0.040]0.047 | 0.001[0.053]0.053 | −0.500[0.000]0.500 | 0.300[0.000]0.300 |
MLE | 0.003[0.110]0.110 | −0.002[0.040]0.040 | 0.006[0.056]0.057 | 0.000[0.055]0.055 | 0.002[0.059]0.060 | 0.014[0.188]0.188 | |
PMLE-o | 0.003[0.110]0.110 | −0.002[0.040]0.040 | 0.006[0.056]0.057 | 0.000[0.055]0.055 | 0.002[0.059]0.060 | 0.014[0.188]0.188 | |
PMLE-t | 0.003[0.110]0.110 | −0.002[0.040]0.040 | 0.006[0.056]0.057 | 0.000[0.055]0.055 | 0.002[0.059]0.060 | 0.014[0.188]0.188 | |
600, 0.5, 0 | MLE-r | 0.001[0.040]0.040 | 0.000[0.042]0.042 | −0.004[0.041]0.042 | −0.001[0.052]0.052 | −0.500[0.000]0.500 | 0.000[0.000]0.000 |
MLE | −0.003[0.119]0.119 | 0.000[0.042]0.042 | 0.008[0.047]0.047 | −0.001[0.053]0.053 | 0.002[0.060]0.060 | −0.007[0.212]0.213 | |
PMLE-o | −0.003[0.119]0.119 | 0.000[0.042]0.042 | 0.008[0.047]0.047 | −0.001[0.053]0.053 | 0.002[0.060]0.060 | −0.007[0.212]0.213 | |
PMLE-t | −0.003[0.119]0.119 | 0.000[0.042]0.042 | 0.008[0.047]0.047 | −0.001[0.053]0.053 | 0.002[0.060]0.060 | −0.007[0.212]0.213 |
n, , | |||||||
---|---|---|---|---|---|---|---|
200, 2, 0.7 | MLE-r | −0.792[0.118]0.801 | −0.002[0.121]0.121 | −0.647[0.199]0.677 | −0.001[0.091]0.091 | 0.000[0.000]0.000 | −0.700[0.000]0.700 |
MLE | −0.482[0.884]1.007 | −0.001[0.124]0.124 | 0.210[0.666]0.698 | −0.002[0.092]0.092 | −0.004[0.096]0.096 | −0.459[0.698]0.835 | |
PMLE-o | −0.743[0.333]0.814 | −0.001[0.122]0.122 | −0.546[0.510]0.747 | −0.002[0.099]0.099 | −0.000[0.036]0.036 | −0.666[0.215]0.699 | |
PMLE-t | −0.665[0.521]0.845 | −0.001[0.122]0.122 | −0.376[0.639]0.741 | −0.001[0.091]0.091 | −0.001[0.050]0.050 | −0.606[0.382]0.717 | |
200, 2, −0.7 | MLE-r | 0.786[0.114]0.794 | 0.004[0.115]0.115 | −0.649[0.191]0.676 | −0.001[0.089]0.089 | 0.000[0.000]0.000 | 0.700[0.000]0.700 |
MLE | 0.420[0.867]0.963 | 0.004[0.116]0.117 | 0.213[0.650]0.684 | −0.001[0.090]0.090 | −0.001[0.098]0.098 | 0.421[0.687]0.806 | |
PMLE-o | 0.735[0.326]0.804 | 0.004[0.115]0.115 | −0.550[0.462]0.718 | −0.000[0.090]0.090 | −0.002[0.043]0.043 | 0.664[0.226]0.701 | |
PMLE-t | 0.648[0.538]0.842 | 0.004[0.116]0.116 | −0.361[0.636]0.731 | −0.001[0.089]0.089 | −0.003[0.055]0.055 | 0.598[0.396]0.718 | |
200, 2, 0.3 | MLE-r | −0.343[0.136]0.369 | 0.008[0.139]0.139 | −0.158[0.263]0.307 | 0.000[0.093]0.093 | 0.000[0.000]0.000 | −0.300[0.000]0.300 |
MLE | −0.302[1.047]1.089 | 0.008[0.143]0.143 | 0.908[0.847]1.242 | −0.000[0.093]0.093 | 0.005[0.098]0.099 | −0.270[0.719]0.768 | |
PMLE-o | −0.340[0.332]0.475 | 0.009[0.141]0.141 | −0.071[0.555]0.559 | 0.000[0.099]0.099 | −0.001[0.037]0.037 | −0.296[0.180]0.347 | |
PMLE-t | −0.326[0.569]0.656 | 0.008[0.141]0.141 | 0.145[0.789]0.802 | 0.000[0.093]0.093 | −0.001[0.051]0.051 | −0.289[0.362]0.463 | |
200, 2, −0.3 | MLE-r | 0.340[0.142]0.368 | 0.001[0.138]0.138 | −0.161[0.261]0.307 | 0.002[0.089]0.089 | 0.000[0.000]0.000 | 0.300[0.000]0.300 |
MLE | 0.347[1.029]1.086 | 0.001[0.142]0.142 | 0.878[0.827]1.206 | 0.002[0.091]0.091 | 0.001[0.102]0.102 | 0.304[0.712]0.774 | |
PMLE-o | 0.353[0.285]0.454 | 0.001[0.139]0.139 | −0.095[0.466]0.476 | 0.001[0.094]0.094 | 0.001[0.041]0.041 | 0.309[0.164]0.350 | |
PMLE-t | 0.376[0.567]0.680 | 0.001[0.139]0.139 | 0.142[0.777]0.790 | 0.002[0.090]0.090 | −0.000[0.054]0.054 | 0.323[0.361]0.484 | |
200, 0.5, 0.7 | MLE-r | −0.397[0.061]0.402 | −0.001[0.060]0.060 | −0.161[0.048]0.168 | 0.001[0.091]0.091 | 0.000[0.000]0.000 | −0.700[0.000]0.700 |
MLE | −0.240[0.425]0.488 | −0.001[0.061]0.061 | 0.037[0.158]0.163 | 0.001[0.091]0.091 | 0.002[0.100]0.100 | −0.464[0.679]0.822 | |
PMLE-o | −0.378[0.152]0.408 | −0.001[0.060]0.060 | −0.142[0.111]0.180 | 0.001[0.094]0.094 | 0.002[0.040]0.040 | −0.673[0.192]0.700 | |
PMLE-t | −0.341[0.242]0.418 | −0.001[0.060]0.060 | −0.105[0.148]0.181 | 0.001[0.091]0.091 | 0.002[0.054]0.054 | −0.617[0.347]0.708 | |
200, 0.5, −0.7 | MLE-r | 0.397[0.059]0.401 | 0.004[0.060]0.060 | −0.166[0.048]0.173 | −0.001[0.093]0.093 | 0.000[0.000]0.000 | 0.700[0.000]0.700 |
MLE | 0.241[0.434]0.496 | 0.004[0.060]0.061 | 0.039[0.161]0.166 | −0.001[0.093]0.093 | 0.001[0.097]0.097 | 0.463[0.692]0.833 | |
PMLE-o | 0.382[0.139]0.407 | 0.004[0.060]0.060 | −0.151[0.096]0.179 | −0.001[0.094]0.094 | 0.001[0.040]0.040 | 0.679[0.180]0.702 | |
PMLE-t | 0.342[0.247]0.422 | 0.004[0.060]0.060 | −0.107[0.148]0.182 | −0.000[0.093]0.093 | 0.002[0.054]0.054 | 0.618[0.364]0.717 | |
200, 0.5, 0.3 | MLE-r | −0.171[0.070]0.184 | 0.002[0.071]0.071 | −0.042[0.066]0.078 | 0.004[0.093]0.093 | 0.000[0.000]0.000 | −0.300[0.000]0.300 |
MLE | −0.173[0.518]0.547 | 0.002[0.072]0.072 | 0.220[0.209]0.304 | 0.004[0.094]0.094 | −0.003[0.104]0.104 | −0.308[0.715]0.779 | |
PMLE-o | −0.167[0.174]0.241 | 0.002[0.071]0.071 | −0.017[0.139]0.140 | 0.003[0.095]0.095 | −0.001[0.043]0.043 | −0.294[0.198]0.354 | |
PMLE-t | −0.158[0.288]0.328 | 0.002[0.071]0.071 | 0.037[0.192]0.196 | 0.004[0.093]0.093 | −0.002[0.055]0.056 | −0.285[0.374]0.470 | |
200, 0.5, −0.3 | MLE-r | 0.167[0.071]0.181 | 0.002[0.069]0.069 | −0.039[0.068]0.079 | −0.003[0.088]0.088 | 0.000[0.000]0.000 | 0.300[0.000]0.300 |
MLE | 0.157[0.517]0.540 | 0.002[0.070]0.070 | 0.222[0.216]0.309 | −0.003[0.089]0.089 | 0.002[0.100]0.100 | 0.285[0.711]0.766 | |
PMLE-o | 0.164[0.154]0.225 | 0.002[0.069]0.069 | −0.020[0.144]0.145 | −0.002[0.090]0.090 | 0.000[0.034]0.034 | 0.295[0.159]0.336 | |
PMLE-t | 0.174[0.269]0.320 | 0.002[0.069]0.069 | 0.028[0.196]0.198 | −0.003[0.088]0.088 | −0.000[0.046]0.046 | 0.306[0.335]0.454 | |
600, 2, 0.7 | MLE-r | −0.786[0.068]0.789 | −0.002[0.070]0.070 | −0.634[0.114]0.645 | 0.001[0.051]0.051 | 0.000[0.000]0.000 | −0.700[0.000]0.700 |
MLE | −0.322[0.645]0.721 | −0.002[0.070]0.070 | 0.001[0.415]0.415 | 0.001[0.051]0.051 | 0.002[0.053]0.053 | −0.317[0.561]0.644 | |
PMLE-o | −0.771[0.147]0.785 | −0.001[0.070]0.070 | −0.616[0.202]0.648 | 0.001[0.061]0.061 | 0.000[0.011]0.011 | −0.688[0.100]0.695 | |
PMLE-t | −0.581[0.466]0.745 | −0.002[0.070]0.070 | −0.378[0.452]0.589 | 0.001[0.051]0.051 | 0.001[0.029]0.029 | −0.531[0.384]0.656 | |
600, 2, −0.7 | MLE-r | 0.788[0.068]0.790 | 0.002[0.069]0.069 | −0.637[0.114]0.647 | −0.001[0.049]0.049 | 0.000[0.000]0.000 | 0.700[0.000]0.700 |
MLE | 0.281[0.623]0.683 | 0.002[0.069]0.069 | 0.007[0.408]0.408 | −0.001[0.050]0.050 | −0.000[0.050]0.050 | 0.280[0.539]0.607 | |
PMLE-o | 0.779[0.116]0.787 | 0.001[0.069]0.069 | −0.627[0.164]0.648 | 0.000[0.048]0.048 | 0.000[0.005]0.005 | 0.694[0.075]0.698 | |
PMLE-t | 0.572[0.465]0.737 | 0.002[0.069]0.069 | −0.378[0.435]0.576 | −0.001[0.049]0.049 | −0.000[0.029]0.029 | 0.522[0.388]0.651 | |
600, 2, 0.3 | MLE-r | −0.339[0.079]0.348 | 0.001[0.082]0.082 | −0.132[0.152]0.201 | 0.001[0.052]0.052 | 0.000[0.000]0.000 | −0.300[0.000]0.300 |
MLE | −0.326[0.844]0.904 | 0.001[0.083]0.083 | 0.565[0.508]0.760 | 0.001[0.052]0.052 | 0.002[0.057]0.057 | −0.290[0.626]0.690 | |
PMLE-o | −0.341[0.106]0.357 | 0.002[0.082]0.082 | −0.127[0.174]0.216 | 0.001[0.060]0.060 | 0.000[0.009]0.009 | −0.301[0.046]0.304 | |
PMLE-t | −0.330[0.504]0.602 | 0.001[0.083]0.083 | 0.113[0.516]0.528 | 0.001[0.052]0.052 | 0.002[0.029]0.029 | −0.294[0.358]0.463 | |
600, 2, −0.3 | MLE-r | 0.343[0.075]0.351 | −0.002[0.082]0.082 | −0.122[0.151]0.194 | 0.001[0.052]0.052 | 0.000[0.000]0.000 | 0.300[0.000]0.300 |
MLE | 0.311[0.838]0.894 | −0.002[0.082]0.082 | 0.564[0.509]0.760 | 0.001[0.052]0.052 | −0.002[0.055]0.055 | 0.279[0.621]0.681 | |
PMLE-o | 0.342[0.102]0.357 | −0.002[0.081]0.081 | −0.118[0.183]0.217 | 0.001[0.054]0.054 | −0.000[0.007]0.007 | 0.300[0.042]0.303 | |
PMLE-t | 0.335[0.492]0.595 | −0.002[0.081]0.081 | 0.111[0.499]0.511 | 0.001[0.052]0.052 | −0.001[0.032]0.032 | 0.296[0.352]0.460 | |
600, 0.5, 0.7 | MLE-r | −0.394[0.035]0.396 | −0.000[0.036]0.036 | −0.159[0.028]0.161 | −0.001[0.051]0.051 | 0.000[0.000]0.000 | −0.700[0.000]0.700 |
MLE | −0.159[0.323]0.360 | −0.000[0.036]0.036 | −0.001[0.107]0.107 | −0.001[0.051]0.051 | 0.002[0.054]0.054 | −0.312[0.552]0.634 | |
PMLE-o | −0.390[0.064]0.395 | −0.000[0.036]0.036 | −0.156[0.044]0.162 | −0.001[0.056]0.056 | 0.000[0.009]0.009 | −0.693[0.076]0.697 | |
PMLE-t | −0.304[0.222]0.377 | −0.000[0.036]0.036 | −0.102[0.111]0.151 | −0.001[0.051]0.051 | −0.001[0.028]0.028 | −0.554[0.362]0.662 | |
600, 0.5, −0.7 | MLE-r | 0.394[0.033]0.396 | −0.000[0.034]0.034 | −0.158[0.028]0.160 | −0.002[0.050]0.050 | 0.000[0.000]0.000 | 0.700[0.000]0.700 |
MLE | 0.148[0.313]0.347 | −0.000[0.034]0.034 | −0.002[0.106]0.106 | −0.002[0.050]0.050 | 0.002[0.055]0.055 | 0.293[0.535]0.610 | |
PMLE-o | 0.389[0.067]0.394 | −0.001[0.034]0.034 | −0.154[0.046]0.161 | −0.003[0.050]0.050 | −0.000[0.011]0.011 | 0.691[0.088]0.697 | |
PMLE-t | 0.302[0.210]0.368 | −0.001[0.034]0.034 | −0.107[0.106]0.151 | −0.002[0.050]0.050 | 0.000[0.027]0.027 | 0.549[0.339]0.645 | |
600, 0.5, 0.3 | MLE-r | −0.169[0.041]0.174 | −0.003[0.040]0.040 | −0.030[0.039]0.050 | −0.000[0.050]0.050 | 0.000[0.000]0.000 | −0.300[0.000]0.300 |
MLE | −0.154[0.413]0.441 | −0.004[0.040]0.040 | 0.138[0.125]0.186 | −0.000[0.051]0.051 | −0.000[0.055]0.055 | −0.281[0.616]0.677 | |
PMLE-o | −0.169[0.048]0.176 | −0.003[0.040]0.040 | −0.030[0.042]0.052 | −0.001[0.053]0.053 | 0.000[0.006]0.006 | −0.300[0.034]0.302 | |
PMLE-t | −0.163[0.235]0.285 | −0.004[0.040]0.040 | 0.023[0.120]0.122 | −0.000[0.050]0.050 | 0.000[0.027]0.027 | −0.293[0.336]0.446 | |
600, 0.5, −0.3 | MLE-r | 0.170[0.039]0.174 | −0.000[0.040]0.040 | −0.031[0.039]0.050 | −0.001[0.051]0.051 | 0.000[0.000]0.000 | 0.300[0.000]0.300 |
MLE | 0.148[0.422]0.447 | −0.001[0.040]0.040 | 0.145[0.127]0.193 | −0.001[0.051]0.051 | 0.000[0.053]0.053 | 0.268[0.627]0.682 | |
PMLE-o | 0.170[0.044]0.176 | −0.000[0.040]0.040 | −0.030[0.041]0.051 | −0.002[0.052]0.052 | 0.000[0.002]0.002 | 0.301[0.028]0.302 | |
PMLE-t | 0.166[0.225]0.280 | −0.000[0.040]0.040 | 0.018[0.116]0.118 | −0.001[0.051]0.051 | 0.000[0.023]0.023 | 0.295[0.323]0.438 |
n, | |||||||
---|---|---|---|---|---|---|---|
200, 2 | MLE-r | 0.003[0.141]0.141 | −0.005[0.136]0.137 | −0.040[0.284]0.287 | 0.003[0.092]0.092 | 0.000[0.000]0.000 | 0.000[0.000]0.000 |
MLE | 0.000[1.076]1.076 | −0.004[0.138]0.138 | 1.062[0.887]1.383 | 0.002[0.093]0.093 | −0.001[0.100]0.100 | −0.004[0.712]0.712 | |
PMLE-o | 0.001[0.319]0.319 | −0.004[0.137]0.137 | 0.041[0.521]0.522 | 0.001[0.098]0.098 | −0.001[0.041]0.041 | 0.000[0.176]0.176 | |
PMLE-t | 0.024[0.581]0.581 | −0.005[0.137]0.137 | 0.271[0.801]0.845 | 0.003[0.092]0.092 | −0.001[0.053]0.053 | 0.014[0.359]0.359 | |
200, 0.5 | MLE-r | 0.004[0.071]0.072 | 0.000[0.073]0.073 | −0.014[0.074]0.075 | −0.002[0.086]0.086 | 0.000[0.000]0.000 | 0.000[0.000]0.000 |
MLE | 0.012[0.535]0.535 | −0.001[0.074]0.074 | 0.261[0.232]0.349 | −0.002[0.087]0.087 | −0.002[0.101]0.101 | 0.012[0.709]0.709 | |
PMLE-o | 0.001[0.156]0.156 | 0.000[0.074]0.074 | 0.005[0.135]0.135 | −0.003[0.089]0.089 | −0.001[0.031]0.031 | −0.004[0.164]0.164 | |
PMLE-t | 0.009[0.290]0.290 | 0.000[0.074]0.074 | 0.061[0.200]0.209 | −0.002[0.086]0.086 | −0.002[0.048]0.048 | 0.006[0.353]0.353 | |
600, 2 | MLE-r | 0.002[0.082]0.082 | −0.006[0.081]0.081 | −0.018[0.167]0.168 | −0.001[0.051]0.051 | 0.000[0.000]0.000 | 0.000[0.000]0.000 |
MLE | −0.014[0.864]0.864 | −0.006[0.082]0.082 | 0.713[0.537]0.893 | −0.001[0.051]0.051 | −0.001[0.056]0.056 | −0.011[0.623]0.623 | |
PMLE-o | 0.002[0.115]0.115 | −0.006[0.081]0.081 | −0.011[0.211]0.211 | −0.001[0.057]0.057 | −0.000[0.008]0.008 | 0.000[0.049]0.049 | |
PMLE-t | 0.017[0.539]0.539 | −0.006[0.081]0.081 | 0.261[0.547]0.606 | −0.001[0.051]0.051 | 0.000[0.032]0.032 | 0.010[0.375]0.375 | |
600, 0.5 | MLE-r | 0.001[0.041]0.041 | 0.002[0.041]0.041 | −0.003[0.040]0.040 | −0.001[0.051]0.051 | 0.000[0.000]0.000 | 0.000[0.000]0.000 |
MLE | 0.025[0.437]0.438 | 0.001[0.041]0.041 | 0.185[0.134]0.229 | −0.001[0.051]0.051 | −0.002[0.056]0.056 | 0.033[0.629]0.630 | |
PMLE-o | −0.000[0.053]0.053 | 0.002[0.041]0.041 | −0.002[0.046]0.046 | −0.001[0.053]0.053 | 0.000[0.007]0.007 | −0.001[0.046]0.046 | |
PMLE-t | 0.013[0.250]0.250 | 0.001[0.041]0.041 | 0.057[0.131]0.143 | −0.001[0.051]0.051 | 0.000[0.028]0.028 | 0.015[0.346]0.346 |
PMLE-o | PMLE-t | PMLE-o | PMLE-t | ||
---|---|---|---|---|---|
0.822 | 0.838 | 0.991 | 0.991 | ||
0.170 | 0.289 | 0.196 | 0.271 | ||
= 0.5 | 0.071 | 0.184 | 0.025 | 0.082 | |
= 0.25 | 0.054 | 0.132 | 0.012 | 0.065 | |
= 0.1 | 0.050 | 0.159 | 0.015 | 0.059 | |
0.961 | 0.856 | 0.990 | 0.925 |
n, | ||||||
---|---|---|---|---|---|---|
200, 2 | MLE-r | −1.595[0.112]1.599 | 0.002[0.114]0.114 | −0.001[0.057]0.057 | −2.574[0.264]2.588 | −2.000[0.000]2.000 |
MLE | −0.034[0.301]0.303 | 0.002[0.110]0.110 | −0.002[0.055]0.055 | −0.050[0.996]0.998 | 0.115[0.724]0.733 | |
PMLE-o | −0.235[0.662]0.703 | 0.002[0.111]0.111 | −0.002[0.056]0.056 | −0.291[1.348]1.379 | −0.093[1.047]1.051 | |
PMLE-t | −0.215[0.640]0.675 | 0.002[0.111]0.111 | −0.002[0.055]0.055 | −0.266[1.319]1.345 | −0.072[1.021]1.024 | |
200, 1 | MLE-r | −0.795[0.082]0.799 | 0.002[0.082]0.082 | 0.001[0.041]0.041 | −0.657[0.134]0.671 | −1.000[0.000]1.000 |
MLE | −0.136[0.426]0.447 | 0.002[0.082]0.082 | 0.001[0.042]0.042 | −0.050[0.522]0.524 | −0.077[0.657]0.661 | |
PMLE-o | −0.602[0.438]0.744 | 0.002[0.082]0.082 | 0.001[0.042]0.042 | −0.434[0.536]0.690 | −0.684[0.713]0.988 | |
PMLE-t | −0.499[0.484]0.695 | 0.002[0.082]0.082 | 0.001[0.042]0.042 | −0.343[0.561]0.657 | −0.546[0.756]0.932 | |
200, 0.5 | MLE-r | −0.395[0.073]0.401 | 0.002[0.070]0.070 | 0.000[0.039]0.039 | −0.178[0.106]0.207 | −0.500[0.000]0.500 |
MLE | −0.014[0.380]0.380 | 0.002[0.071]0.071 | 0.000[0.039]0.039 | 0.106[0.363]0.378 | 0.068[0.600]0.604 | |
PMLE-o | −0.324[0.267]0.420 | 0.002[0.071]0.071 | 0.000[0.039]0.039 | −0.107[0.284]0.304 | −0.373[0.470]0.600 | |
PMLE-t | −0.242[0.341]0.418 | 0.002[0.071]0.071 | 0.000[0.039]0.039 | −0.045[0.326]0.330 | −0.251[0.559]0.613 | |
200, 0.25 | MLE-r | −0.199[0.071]0.211 | −0.003[0.071]0.071 | −0.001[0.034]0.034 | −0.052[0.102]0.115 | −0.250[0.000]0.250 |
MLE | 0.120[0.362]0.382 | −0.003[0.071]0.071 | −0.002[0.034]0.034 | 0.177[0.329]0.373 | 0.235[0.572]0.618 | |
PMLE-o | −0.147[0.232]0.275 | −0.003[0.071]0.071 | −0.002[0.034]0.034 | −0.002[0.244]0.244 | −0.158[0.389]0.420 | |
PMLE-t | −0.093[0.288]0.302 | −0.003[0.071]0.071 | −0.002[0.034]0.034 | 0.037[0.271]0.273 | −0.075[0.472]0.478 | |
200, 0.1 | MLE-r | −0.079[0.073]0.108 | −0.002[0.071]0.071 | 0.002[0.037]0.037 | −0.018[0.105]0.107 | −0.100[0.000]0.100 |
MLE | 0.240[0.355]0.429 | −0.002[0.071]0.071 | 0.002[0.037]0.037 | 0.208[0.314]0.377 | 0.391[0.573]0.694 | |
PMLE-o | −0.032[0.214]0.216 | −0.002[0.071]0.071 | 0.002[0.037]0.037 | 0.027[0.229]0.231 | −0.013[0.384]0.384 | |
PMLE-t | 0.046[0.296]0.299 | −0.002[0.071]0.071 | 0.002[0.037]0.037 | 0.085[0.278]0.291 | 0.108[0.503]0.514 | |
600, 2 | MLE-r | −1.595[0.066]1.596 | −0.004[0.065]0.066 | 0.001[0.033]0.033 | −2.558[0.151]2.563 | −2.000[0.000]2.000 |
MLE | −0.007[0.142]0.142 | −0.003[0.061]0.061 | 0.000[0.031]0.031 | −0.016[0.540]0.541 | 0.038[0.349]0.351 | |
PMLE-o | −0.017[0.204]0.204 | −0.004[0.061]0.061 | 0.000[0.031]0.031 | −0.028[0.582]0.583 | 0.028[0.390]0.391 | |
PMLE-t | −0.017[0.204]0.204 | −0.004[0.061]0.061 | 0.000[0.031]0.031 | −0.028[0.582]0.583 | 0.028[0.390]0.391 | |
600, 1 | MLE-r | −0.796[0.047]0.797 | 0.004[0.048]0.049 | 0.001[0.025]0.025 | −0.640[0.079]0.645 | −1.000[0.000]1.000 |
MLE | −0.073[0.288]0.297 | 0.004[0.048]0.048 | 0.000[0.025]0.025 | −0.036[0.350]0.352 | −0.062[0.417]0.422 | |
PMLE-o | −0.597[0.406]0.722 | 0.004[0.048]0.048 | 0.000[0.025]0.025 | −0.438[0.431]0.614 | −0.717[0.577]0.921 | |
PMLE-t | −0.536[0.433]0.689 | 0.004[0.048]0.048 | 0.000[0.025]0.025 | −0.387[0.445]0.590 | −0.639[0.605]0.880 | |
600, 0.5 | MLE-r | −0.397[0.042]0.399 | −0.002[0.043]0.043 | −0.000[0.022]0.022 | −0.165[0.063]0.176 | −0.500[0.000]0.500 |
MLE | −0.062[0.316]0.322 | −0.002[0.043]0.043 | −0.000[0.022]0.022 | 0.047[0.248]0.252 | −0.040[0.449]0.451 | |
PMLE-o | −0.375[0.142]0.401 | −0.002[0.043]0.043 | −0.000[0.022]0.022 | −0.145[0.141]0.202 | −0.466[0.215]0.513 | |
PMLE-t | −0.336[0.210]0.396 | −0.002[0.043]0.043 | −0.000[0.022]0.022 | −0.118[0.177]0.212 | −0.410[0.309]0.513 | |
600, 0.25 | MLE-r | −0.200[0.041]0.204 | 0.001[0.042]0.042 | 0.001[0.021]0.021 | −0.046[0.059]0.075 | −0.250[0.000]0.250 |
MLE | 0.065[0.289]0.296 | 0.001[0.042]0.042 | 0.001[0.021]0.021 | 0.107[0.202]0.229 | 0.121[0.414]0.432 | |
PMLE-o | −0.190[0.101]0.215 | 0.001[0.042]0.042 | 0.001[0.021]0.021 | −0.037[0.100]0.107 | −0.234[0.149]0.277 | |
PMLE-t | −0.158[0.170]0.232 | 0.001[0.042]0.042 | 0.001[0.021]0.021 | −0.017[0.131]0.132 | −0.187[0.247]0.310 | |
600, 0.1 | MLE-r | −0.080[0.040]0.089 | −0.003[0.041]0.041 | −0.001[0.020]0.020 | −0.011[0.058]0.059 | −0.100[0.000]0.100 |
MLE | 0.187[0.295]0.350 | −0.003[0.041]0.041 | −0.001[0.020]0.020 | 0.145[0.205]0.251 | 0.279[0.427]0.510 | |
PMLE-o | −0.067[0.110]0.129 | −0.003[0.041]0.041 | −0.001[0.020]0.020 | −0.000[0.100]0.100 | −0.079[0.169]0.187 | |
PMLE-t | −0.039[0.172]0.176 | −0.003[0.041]0.041 | −0.001[0.020]0.020 | 0.018[0.132]0.133 | −0.037[0.258]0.261 |
n, | ||||||
---|---|---|---|---|---|---|
200, 0 | MLE-r | −0.000[0.074]0.074 | −0.001[0.073]0.073 | −0.001[0.037]0.037 | −0.016[0.100]0.101 | 0.000[0.000]0.000 |
MLE | 0.302[0.347]0.460 | −0.001[0.073]0.073 | −0.002[0.037]0.037 | 0.191[0.295]0.351 | 0.462[0.549]0.718 | |
PMLE-o | 0.037[0.198]0.202 | −0.001[0.073]0.073 | −0.002[0.037]0.037 | 0.018[0.202]0.203 | 0.067[0.337]0.344 | |
PMLE-t | 0.109[0.278]0.298 | −0.001[0.073]0.073 | −0.002[0.037]0.037 | 0.069[0.248]0.257 | 0.178[0.459]0.492 | |
600, 0 | MLE-r | 0.001[0.040]0.040 | −0.001[0.041]0.042 | −0.001[0.022]0.022 | −0.002[0.057]0.057 | 0.000[0.000]0.000 |
MLE | 0.268[0.292]0.396 | −0.001[0.042]0.042 | −0.001[0.022]0.022 | 0.153[0.206]0.257 | 0.377[0.419]0.564 | |
PMLE-o | 0.009[0.093]0.093 | −0.001[0.042]0.042 | −0.001[0.022]0.022 | 0.005[0.089]0.089 | 0.014[0.138]0.139 | |
PMLE-t | 0.049[0.178]0.185 | −0.001[0.042]0.042 | −0.001[0.022]0.022 | 0.031[0.132]0.135 | 0.072[0.262]0.272 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, F.; Lee, L.-f. Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices. Econometrics 2018, 6, 8. https://doi.org/10.3390/econometrics6010008
Jin F, Lee L-f. Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices. Econometrics. 2018; 6(1):8. https://doi.org/10.3390/econometrics6010008
Chicago/Turabian StyleJin, Fei, and Lung-fei Lee. 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices" Econometrics 6, no. 1: 8. https://doi.org/10.3390/econometrics6010008
APA StyleJin, F., & Lee, L. -f. (2018). Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices. Econometrics, 6(1), 8. https://doi.org/10.3390/econometrics6010008