Information Recovery in a Dynamic Statistical Markov Model
Abstract
:1. Introduction
2. The Markov Econometric Model and the Information Recovery Process
2.1. Sample Analogs of the Markov Process
2.2. Modeling the Conditional Transition Probabilities
3. Cressie-Read Power Divergence (PD) Criterion
Minimum Power Divergence (MPD) Models
4. The Optimal MPD Estimator Choice under KL and Quadratic Loss
4.1. Distance-Divergence Measures
4.2. A Minimum Quadratic Risk (QR) Estimation Rule
4.3. The Case of Two Alternatives
5. Sampling Properties of the MPD Estimators
- B1: There exists such that for all j, k, and t.
- B2: The sample analog Equation (3.2) is consistent such that
- B3: The moment condition Equation (3.2) is asymptotically normal as
- Proposition 1: The MPD estimator is consistent such that under Assumptions B1 and B2 plus:
- there exists function that is uniquely maximized at
- m(λ) is twice continuously differentiable and concave
- for all λ
- Proposition 2: The MPD estimator is asymptotically normal as
- under the conditions of Proposition 1 plus Assumption B3 and
- there exists continuous in λ such that
- is nonsingular
6. Applications of MPD Estimators
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- A. Wissner-Gross, and C. Freer. “Causal entropic forces.” Phys. Rev. Lett. 110 (2013). [Google Scholar] [CrossRef] [PubMed]
- D. Miller. Behavioral Foundations for Conditional Markov Models for Aggregate Data. Working Paper; Columbia, MO, USA: University of Missouri, 2007. [Google Scholar]
- A.N. Gorban, P.A. Gorban, and G. Judge. “Entropy: The Markov ordering approach.” Entropy 12 (2010): 1145–1193. [Google Scholar] [CrossRef]
- N. Cressie, and T. Read. “Multinomial goodness-of-fit tests.” J. R. Stat. Soc. Ser. B 46 (1984): 440–464. [Google Scholar]
- J. Rust. “Maximum likelihood estimation of discrete control processes.” SIAM J. Control Optim. 26 (1988): 1006–1024. [Google Scholar] [CrossRef]
- J. Rust. “Structural estimation of Markov decision processes.” In Handbook of Econometrics. Edited by R. Engle and D. McFadden. Amsterdam, The Netherlands: Elsevier, 1994. [Google Scholar]
- V.J. Hotz, and R.A. Miller. “Conditional choice probabilities and the estimation of dynamic models.” Rev. Econ. Stud. 60 (1993): 397–429. [Google Scholar] [CrossRef]
- T. Lee, G. Judge, and A. Zellner. Estimating the Parameters of the Markov Probability Model from Aggregate Time Series Data, 2nd ed. Amsterdam, The Netherlands: North-Holland, 1977. [Google Scholar]
- E.C. MacRae. “Estimation of time-varying Markov processes with aggregate data.” Econometrica 45 (1977): 183–198. [Google Scholar] [CrossRef]
- H. Theil. “A multinomial extension of the linear logit model.” Int. Econ. Rev. 10 (1969): 251–259. [Google Scholar] [CrossRef]
- D. Commenges, and A. D’egout. “A general dynamical statistical model with causal interpretation.” J. R. Stat. Soc. B 71 (2009): 1–18. [Google Scholar] [CrossRef]
- T. Read, and N. Cressie. Goodness-of-Fit Statistics for Discrete Multivariate Data. New York, NY, USA: Springer-Verlag, 1988. [Google Scholar]
- K. Baggerly. “Empirical likelihood as a goodness-of-fit measure.” Biometrika 85 (1998): 535–547. [Google Scholar] [CrossRef]
- G. Judge, and R. Mittelhammer. An Information Approach to Econometrics. Cambridge, UK: Cambridge University Press, 2011. [Google Scholar]
- G. Judge, and R. Mittelhammer. “Implications of the Cressie-Read family of additive divergences for information recovery.” Entropy 14 (2012): 2427–2438. [Google Scholar] [CrossRef]
- A. Owen. Empirical Likelihood. Boca Raton, FL, USA: Chapman and Hall, 2001. [Google Scholar]
- S. Kullback. Information Theory and Statistics. New York, NY, USA: John Wiley and Sons, 1959. [Google Scholar]
- D. Gokhale, and S. Kullback. The Information in Contingency Tables. New York, NY, USA: Marcel Dekker, 1978. [Google Scholar]
- A.N. Gorban. Equilibrium Encircling Equations of Chemical Kinetics and Their Thermodynamic Analysis. Novovosibirsk, Russia: Nauka, 1984. [Google Scholar]
- A.N. Gorban, and I.V. Karlin. “Family of additive entropy functions out of thermodynamic limit.” Phys. Rev. E 67 (2003): 016104. [Google Scholar] [CrossRef]
- W. Newey, and D. McFadden. “Large sample estimation and hypothesis testing.” In Handbook of Econometrics. Edited by R. Engle and D. McFadden. Amsterdam, The Netherlands: Elsevier, 1994. [Google Scholar]
- W. Kelton, and C. Kelton. “Hypothesis tests for Markov process models from aggregate frequency data.” J. Am. Stat. Assoc. 79 (1984): 922–928. [Google Scholar]
- W. Newey, and K. West. “A simple positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix.” Econometrica 55 (1987): 703–708. [Google Scholar] [CrossRef]
- H. White. Asymptotic Theory for Econometricians. San Diego, CA, USA: Orlando: Academic Press, 1984, p. 228. [Google Scholar]
- N. Gospodinov, and D. Lkhagvasuren. “A New Method for Approximating Vector Autoregressive Processes by Finite-State Markov Chains.” Available online: http://mpra.ub.uni-muenchen.de/33827/1/MPRA_paper_33827.pdf (accessed on 3 November 2014).
- H. Tanaka, and A.A. Toda. “Discrete approximations of continuous distributions by maximum entropy.” Econ. Lett. 118 (2013): 445–450. [Google Scholar] [CrossRef]
- A. Golan, G. Judge, and D. Miller. Maximum Entropy Econometrics: Robust Estimation with Limited Data. Chichester, UK: Wiley, 1996. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, D.J.; Judge, G. Information Recovery in a Dynamic Statistical Markov Model. Econometrics 2015, 3, 187-198. https://doi.org/10.3390/econometrics3020187
Miller DJ, Judge G. Information Recovery in a Dynamic Statistical Markov Model. Econometrics. 2015; 3(2):187-198. https://doi.org/10.3390/econometrics3020187
Chicago/Turabian StyleMiller, Douglas J., and George Judge. 2015. "Information Recovery in a Dynamic Statistical Markov Model" Econometrics 3, no. 2: 187-198. https://doi.org/10.3390/econometrics3020187
APA StyleMiller, D. J., & Judge, G. (2015). Information Recovery in a Dynamic Statistical Markov Model. Econometrics, 3(2), 187-198. https://doi.org/10.3390/econometrics3020187