Forecasting Real GDP Growth for Africa
Abstract
:1. Introduction
2. Methodology
- Step 1:
- Step 2:
- Step 3:
- Step 4:
3. Forecasting GDP Growth in Africa
3.1. Botswana
3.2. 52 Countries in Africa
4. A Simulation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | We are aware of the literature on the potential problems with macroeconomic data for Africa; see for example Jerven (2013). However, the data that we use are publicly available through the World Bank and for most countries start in 1960. For some series we have imputed missing values using regression models, including a range of available explanatory variables. |
2 | In a sense, our approach bears similarities with a recent pairwise-based approach to model a macroeconomic variable that is the weighted average of many components, see Carlomagno and Espasa (2021). |
3 | The IMA(1,1) model for the levels of the data is recommended as a benchmark in Franses (2020). It is of course not certain that this univariate model fits the data best, and hence also alternative univariate benchmark models are considered. Given the data at hand, it is difficult to propose a multivariate benchmark model, although we do consider a Principal Components Regression for the growth rates. |
4 | In an online appendix, all results and the complete code that was used to write this paper are publicly available on https://github.com/mwelz/sefm-africa. |
5 | Their methods build on those proposed in Bai and Ng (2002) and Stock and Watson (2002), using modern tools like Lasso and Elastic Net to reduce the number of parameters. |
6 | In further research, one could think of allowing non-zero correlations where perhaps cluster techniques can be used on the estimated residuals to put zeroes in the large covariance matrix. For the particular illustration in the present paper, we estimated 52 × 51 divided by 2 is 1326 cross-equation correlations and these are almost all in between −0.2 and 0.2. Given the large diversity across the African countries, this comes as no surprise. Our model bears similarities with the autoregressive distributed lag model in Pesaran et al. (2001). |
7 | Note that the and parameters are not identified under the null hypothesis that . |
8 | If we would have used , there would not have been a cointegration relation, and if we would have chosen , more variables would have been included in the cointegration relation. |
9 | As mentioned, various other decisions can be made, and these may have an impact on forecast quality. It is not our intention in this paper to look for configurations that yield the highest forecast accuracy, although there may be search routines that can do that. |
10 | For 17 countries we have imputed data. The average MAE for these countries is 5.391, while the average MAE of all countries is 4.388. Hence, the differences are not substantial. A regression of MAE on a constant and a dummy for missingness of data give an estimate of 1.534 with a standard error of 1.784. Hence, we conclude that there are no significant differences in MAE. |
References
- Bai, Jushan, and Serena Ng. 2002. Determining the number of factors in approximate factor models. Econometrica 70: 191–221. [Google Scholar] [CrossRef] [Green Version]
- Boswijk, H. Peter. 1994. Testing for an unstable root in conditional and structural error correction models. Journal of Econometrics 63: 37–60. [Google Scholar] [CrossRef]
- Carlomagno, Guillerma, and Antonio Espasa. 2021. Discovering specific common trends in a large set of disaggregates: Statistical procedures, their properties and an empirical application. Oxford Bulletin of Economics & Statistics. in print. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1111/obes.12412 (accessed on 20 August 2021).
- Franses, Philip Hans. 2020. IMA(1,1) as a new benchmark for forecast evaluation. Applied Economics Letters 27: 1419–23. [Google Scholar] [CrossRef] [Green Version]
- Franses, Philip Hans, and Simeon Vasilev. 2019. Real GDP Growth in Africa, 1963–2016. Econometric Institute Report EI2019-23. Rotterdam: Erasmus School of Economics. [Google Scholar]
- Jerven, Morten. 2013. Poor Numbers: How We are Misled by African Development Statistics and What to Do about It. Ithaca: Cornell University Press. [Google Scholar]
- Johansen, Soren. 1991. Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica 59: 1551–80. [Google Scholar] [CrossRef]
- Kim, Hyun Hak, and Norman R. Swanson. 2018. Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods. International Journal of Forecasting 34: 339–54. [Google Scholar] [CrossRef]
- Koo, Bonsoo, Heather Anderson, Myung Hwan Seo, and Wenying Yao. 2020. High-dimensional predictive regression in the presence of cointegration. Journal of Econometrics 219: 456–77. [Google Scholar] [CrossRef]
- Pesaran, M. Hashem, Yongcheol Shin, and Richard J. Smith. 2001. Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics 16: 289–326. [Google Scholar] [CrossRef]
- Sargan, J. Dennis, and Alok Bhargava. 1983. Testing residuals from least squares regression for being generated by the Gaussian random walk. Econometrica 51: 153–74. [Google Scholar] [CrossRef]
- Stock, James H., and Mark W. Watson. 2002. Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association 97: 1167–79. [Google Scholar] [CrossRef] [Green Version]
SEFM | MA(1) | ||||||
---|---|---|---|---|---|---|---|
Estimation | ME | MAE | RMSE | ME | MAE | RMSE | |
ALGERIA | NLS | −3.93 | 3.93 | 4.79 | −0.48 | 0.51 | 0.63 |
ANGOLA | OLS | 0.78 | 2.9 | 3.94 | −0.01 | 1.48 | 2.01 |
BENIN | NLS | −0.71 | 2.44 | 3.09 | 0.98 | 1.66 | 2.00 |
BOTSWANA | NLS | −4.53 | 6.1 | 6.69 | −2.93 | 3.92 | 4.80 |
BURKINAFASO | NLS | 2.52 | 2.66 | 3.08 | 1.25 | 1.38 | 1.64 |
BURUNDI | NLS | 0.59 | 2.14 | 3.29 | −0.42 | 2.74 | 3.28 |
CABOVERDE | OLS | −4.28 | 4.28 | 4.53 | −3.09 | 3.09 | 3.40 |
CAMEROON | NLS | 0.57 | 1.17 | 1.37 | 1.16 | 1.16 | 1.28 |
CAR | NLS w/o | −7.30 | 13.59 | 2.01 | −8.87 | 12.96 | 2.07 |
CHAD | NLS | −3.70 | 4.95 | 5.82 | −1.17 | 4.69 | 5.58 |
COMOROS | NLS | −0.27 | 0.55 | 0.67 | −0.65 | 0.78 | 1.00 |
CONGODR | NLS w/o | 2.74 | 2.74 | 3.26 | 3.95 | 3.97 | 4.44 |
CONGOREPUB | NLS | 1.08 | 3.33 | 3.48 | −1.31 | 2.37 | 2.81 |
DJIBOUTI | NLS | 1.06 | 1.26 | 1.68 | 2.33 | 2.33 | 2.36 |
EGYPT | NLS | −1.00 | 1.29 | 1.65 | −1.42 | 1.42 | 1.84 |
EQGUINEA | NLS w/o | −8.39 | 8.39 | 9.29 | −10.35 | 10.35 | 12.26 |
ERITREA | OLS | 0.64 | 1.8 | 2.85 | 1.37 | 2.13 | 3.87 |
ETHIOPIA | NLS w/o | 3.94 | 4.28 | 4.81 | 3.93 | 3.93 | 4.11 |
GABON | NLS | 1.28 | 3.38 | 4.02 | 0.39 | 0.99 | 1.25 |
GAMBIA | NLS | 1.03 | 2.74 | 3.17 | −1.85 | 2.29 | 3.55 |
GHANA | OLS | 0.23 | 2.81 | 3.28 | 2.38 | 2.56 | 3.92 |
GUINEA | NLS | 1.55 | 1.55 | 1.84 | 1.48 | 1.48 | 1.89 |
GUINEABISSAU | NLS | 0.48 | 4.05 | 4.54 | 2.48 | 3.28 | 4.00 |
IVORYCOAST | NLS | 7.36 | 9.41 | 10.16 | 2.54 | 5.08 | 5.59 |
KENYA | NLS | 0.73 | 1.28 | 1.33 | 0.84 | 0.86 | 0.95 |
LESOTHO | NLS | −3.78 | 6.55 | 8.97 | −0.98 | 1.71 | 1.89 |
LIBERIA | NLS w/o | −0.99 | 4.36 | 4.65 | 2.28 | 3.70 | 4.28 |
LIBYA | NLS w/o | −8.32 | 43.53 | 57.26 | −10.85 | 40.83 | 56.38 |
MADAGASCAR | NLS | 1.02 | 3.69 | 4.09 | 1.11 | 1.23 | 1.39 |
MALAWI | NLS | 2.48 | 5.12 | 8.41 | −0.36 | 1.40 | 1.48 |
MALI | NLS | 1.63 | 6.32 | 7.53 | 0.39 | 2.43 | 2.76 |
MAURITANIA | OLS | −0.88 | 2.38 | 2.72 | 0.46 | 1.89 | 1.95 |
MAURITIUS | OLS | −1.16 | 1.16 | 1.51 | −1.77 | 1.77 | 1.78 |
MOROCCO | NLS | −0.41 | 1.46 | 1.63 | −1.79 | 1.79 | 2.17 |
MOZAMBIQUE | NLS | −4.17 | 4.31 | 6.07 | 0.75 | 1.32 | 1.36 |
NAMIBIA | NLS | 0.08 | 1.41 | 2.15 | 0.41 | 1.50 | 1.77 |
NIGER | NLS | 2.67 | 2.85 | 3.69 | 3.26 | 3.34 | 4.45 |
NIGERIA | NLS | −2.57 | 2.57 | 3.30 | −0.47 | 1.72 | 2.24 |
RWANDA | NLS | 6.38 | 8.3 | 9.52 | 3.52 | 3.52 | 3.80 |
SAOTOME | NLS | 4.31 | 4.69 | 6.12 | −0.18 | 1.10 | 1.34 |
SENEGAL | OLS | 1.90 | 2.40 | 2.86 | 2.25 | 2.36 | 2.88 |
SEYCHELLES | NLS | −2.24 | 2.54 | 3.44 | 0.78 | 1.44 | 1.74 |
SIERRALEONE | NLS | 0.63 | 9.80 | 13.79 | 1.87 | 10.46 | 13.59 |
SOMALIA | NLS | −0.94 | 3.98 | 6.08 | −1.32 | 3.17 | 5.61 |
SOUTHAFRICA | NLS | −1.44 | 1.69 | 2.11 | −1.05 | 1.05 | 1.21 |
SUDAN | OLS | −3.93 | 3.93 | 5.26 | −0.95 | 1.95 | 2.65 |
TANZANIA | NLS | 1.02 | 1.49 | 2.19 | 1.71 | 1.86 | 2.07 |
TOGO | OLS | −0.48 | 0.98 | 1.40 | 1.20 | 1.20 | 1.32 |
TUNISIA | NLS | −2.48 | 2.55 | 3.80 | −3.17 | 3.17 | 3.67 |
UGANDA | OLS | 0.36 | 1.87 | 2.46 | −0.04 | 1.34 | 2.05 |
ZAMBIA | NLS | −0.21 | 1.62 | 2.00 | 1.61 | 1.73 | 2.17 |
ZIMBABWE | NLS w/o | 1.14 | 3.79 | 4.63 | 2.53 | 3.63 | 5.46 |
Home | Cointegration Relations with |
---|---|
ALGERIA | BOTSWANA, BURUNDI, CAMEROON, CAR, COMOROS, CONGOREPUB, GABON, GAMBIA, IVORYCOAST, KENYA, LESOTHO, MALAWI, MAURITIUS, MOROCCO, SEYCHELLES, SOUTHAFRICA, TOGO, TUNISIA |
ANGOLA | NIGER, ZAMBIA |
BENIN | BURKINAFASO, CABOVERDE, CAR, GUINEA, GUINEABISSAU, MALI, SENEGAL, SUDAN |
BOTSWANA | ALGERIA, CAR |
BURKINAFASO | BENIN, CAR, MALI, SENEGAL, SUDAN |
BURUNDI | ALGERIA, CAR, CONGOREPUB |
CABOVERDE | BENIN, CAR, MALI, SENEGAL |
CAMEROON | ALGERIA, CAR, COMOROS, CONGOREPUB, RWANDA |
CAR | NA |
CHAD | GHANA, MADAGASCAR, NIGER |
COMOROS | ALGERIA, CAR, CONGOREPUB |
CONGODR | NA |
CONGOREPUB | ALGERIA, CAMEROON, CAR, COMOROS |
DJIBOUTI | CAR, RWANDA, SIERRALEONE |
EGYPT | CAR, GAMBIA, GUINEABISSAU, LESOTHO |
EQGUINEA | NA |
ERITREA | GUINEABISSAU |
ETHIOPIA | NA |
GABON | ALGERIA, CAR, IVORYCOAST |
GAMBIA | ALGERIA, CAR, EGYPT, GUINEABISSAU, KENYA, LESOTHO, MALAWI, MALI, MAURITIUS, MOROCCO, SEYCHELLES, TUNISIA |
GHANA | CHAD, MADAGASCAR, NIGER |
GUINEA | BENIN, CAR, GUINEABISSAU, MALI, SENEGAL |
GUINEABISSAU | BENIN, BOTSWANA, BURKINAFASO, CABOVERDE, CAR, EGYPT, ERITREA, GAMBIA, GUINEA, LESOTHO, MALAWI, MALI, MOROCCO, SEYCHELLES, SUDAN, TANZANIA, TUNISIA |
IVORYCOAST | ALGERIA, CAR, GABON |
KENYA | ALGERIA, CAR, GAMBIA, LESOTHO, MALAWI, MOROCCO, SEYCHELLES, TOGO |
LESOTHO | ALGERIA, CAR, EGYPT, GAMBIA, GUINEABISSAU, KENYA, MALAWI, MALI, MAURITIUS, MOROCCO, SEYCHELLES, SOMALIA, TUNISIA |
LIBERIA | NA |
LIBYA | NA |
MADAGASCAR | BURKINAFASO, CAR, CHAD, GHANA, MALI, MAURITANIA, MOZAMBIQUE, NIGERIA, RWANDA, SENEGAL, SUDAN, TANZANIA, UGANDA, ZAMBIA |
MALAWI | ALGERIA, CAR, GAMBIA, GUINEABISSAU, KENYA, LESOTHO, MALI, MAURITANIA, MAURITIUS, MOROCCO, NAMIBIA, SEYCHELLES, SOUTHAFRICA, TOGO, TUNISIA |
MALI | BENIN, BURKINAFASO, CABOVERDE, CAR, GAMBIA, GUINEA, GUINEABISSAU, LESOTHO, MALAWI, MAURITANIA, SENEGAL, SUDAN, TANZANIA, UGANDA |
MAURITANIA | ALGERIA, BENIN, BURKINAFASO, CAR, GUINEA, MADAGASCAR, MALAWI, MALI, NAMIBIA, RWANDA, SENEGAL, SOMALIA, SOUTHAFRICA, SUDAN, TANZANIA, TOGO, UGANDA |
MAURITIUS | ALGERIA, CAR, GAMBIA, LESOTHO, MALAWI, MOROCCO, SEYCHELLES, TOGO, TUNISIA |
MOROCCO | ALGERIA, CAR, GAMBIA, GUINEABISSAU, KENYA, LESOTHO, MALAWI, MAURITIUS, SEYCHELLES, TOGO, TUNISIA |
MOZAMBIQUE | CAR, MADAGASCAR |
NAMIBIA | ALGERIA, CAR, MALAWI, MAURITANIA, SOUTHAFRICA, TOGO |
NIGER | ANGOLA, CHAD, EQGUINEA, GHANA, MADAGASCAR, ZAMBIA |
NIGERIA | CAR, MADAGASCAR, RWANDA, ZAMBIA |
RWANDA | ALGERIA, CAMEROON, CAR, MADAGASCAR, MALI, MAURITANIA, MOROCCO, NAMIBIA, NIGERIA, SIERRALEONE, SOUTHAFRICA, TANZANIA, TOGO |
SAOTOME | CAR |
SENEGAL | BENIN, BURKINAFASO, CABOVERDE, CAR, GUINEA, MADAGASCAR, MALI, MAURITANIA, SUDAN, TANZANIA |
SEYCHELLES | ALGERIA, CAR, GAMBIA, GUINEABISSAU, KENYA, LESOTHO, MALAWI, MAURITIUS, MOROCCO, TOGO, TUNISIA |
SIERRALEONE | DJIBOUTI, RWANDA |
SOMALIA | CABOVERDE, CAR, GAMBIA, LESOTHO, MALI, SEYCHELLES, TUNISIA |
SOUTHAFRICA | ALGERIA, CAR, MALAWI, MALI, MAURITANIA, NAMIBIA, RWANDA, TOGO |
SUDAN | BENIN, BURKINAFASO, CAR, MADAGASCAR, MALI, SENEGAL |
TANZANIA | CAR, GUINEABISSAU, MALI, MAURITANIA, SENEGAL, SUDAN |
TOGO | ALGERIA, BURUNDI, CAR, COMOROS, GAMBIA, KENYA, LESOTHO, MALAWI, MALI, MAURITANIA, MAURITIUS, MOROCCO, NAMIBIA, RWANDA, SEYCHELLES, SOMALIA, SOUTHAFRICA, TUNISIA |
TUNISIA | ALGERIA, CAR, GAMBIA, GUINEABISSAU, LESOTHO, MALAWI, MAURITIUS, MOROCCO, SEYCHELLES, SOMALIA |
UGANDA | CAR, MADAGASCAR, MALI, MAURITANIA |
ZAMBIA | ANGOLA, MADAGASCAR, NIGER, NIGERIA |
ZIMBABWE | NA |
Strongest Positive Correlations | Strongest Negative Correlations | |
---|---|---|
ALGERIA | KENYA, CONGODR, MOROCCO | MAURITANIA, BENIN, SENEGAL |
ANGOLA | ETHIOPIA, SIERRALEONE, CONGODR | COMOROS, ERITREA, GAMBIA |
BENIN | TUNISIA, SEYCHELLES, CABOVERDE | MAURITIUS, CAR, BURKINAFASO |
BOTSWANA | ZIMBABWE, KENYA, MAURITIUS | BENIN, BURKINAFASO, ETHIOPIA |
BURKINAFASO | BENIN, TANZANIA, ANGOLA | MOROCCO, BOTSWANA, SAOTOME |
BURUNDI | SIERRALEONE, EGYPT, DJIBOUTI | CABOVERDE, UGANDA, LESOTHO |
CABOVERDE | EQGUINEA, ALGERIA, EGYPT | DJIBOUTI, CONGODR, BURUNDI |
CAMEROON | LESOTHO, EGYPT, LIBERIA | SEYCHELLES, SENEGAL, GUINEABISSAU |
CAR | CABOVERDE, MALI, SOMALIA | LIBYA, NIGER, SIERRALEONE |
CHAD | SIERRALEONE, SUDAN, TANZANIA | SEYCHELLES, IVORYCOAST, BOTSWANA |
COMOROS | CAMEROON, LIBERIA, GAMBIA | ETHIOPIA, UGANDA, ZAMBIA |
CONGODR | DJIBOUTI, SIERRALEONE, ZAMBIA | CABOVERDE, EQGUINEA, TUNISIA |
CONGOREPUB | CAMEROON, BOTSWANA, DJIBOUTI | GUINEA, SEYCHELLES, MOROCCO |
DJIBOUTI | CONGODR, SIERRALEONE, LIBERIA | EGYPT, SUDAN, CABOVERDE |
EGYPT | SUDAN, SENEGAL, CAMEROON | GHANA, UGANDA, BENIN |
EQGUINEA | CABOVERDE, BURKINAFASO, GHANA | DJIBOUTI, BURUNDI, CONGODR |
ERITREA | COMOROS, CONGOREPUB, BOTSWANA | SAOTOME, ANGOLA, SOUTHAFRICA |
ETHIOPIA | NIGER, ANGOLA, GHANA | BOTSWANA, GABON, TUNISIA |
GABON | CONGOREPUB, DJIBOUTI, BOTSWANA | NIGER, EGYPT, BENIN |
GAMBIA | SAOTOME, ALGERIA, MAURITIUS | GHANA, ETHIOPIA, GUINEABISSAU |
GHANA | TANZANIA, GUINEA, ETHIOPIA | CONGOREPUB, SOUTHAFRICA, GABON |
GUINEA | MOZAMBIQUE, ETHIOPIA, ZIMBABWE | SIERRALEONE, CONGOREPUB, CAMEROON |
GUINEABISSAU | CONGODR, CHAD, KENYA | LIBERIA, SEYCHELLES, EQGUINEA |
IVORYCOAST | TOGO, SAOTOME, MOROCCO | ERITREA, CONGOREPUB, ETHIOPIA |
KENYA | BURUNDI, MAURITANIA, NIGER | EQGUINEA, CABOVERDE, BENIN |
LESOTHO | SOMALIA, EGYPT, BOTSWANA | GHANA, DJIBOUTI, MADAGASCAR |
LIBERIA | ANGOLA, MOZAMBIQUE, CAMEROON | ERITREA, BURUNDI, BOTSWANA |
LIBYA | CAR, UGANDA, MAURITIUS | GAMBIA, EGYPT, CHAD |
MADAGASCAR | SEYCHELLES, LIBERIA, CABOVERDE | EGYPT, CONGOREPUB, TUNISIA |
MALAWI | ANGOLA, TOGO, UGANDA | BURKINAFASO, RWANDA, COMOROS |
MALI | TANZANIA, COMOROS, SEYCHELLES | MAURITANIA, ZIMBABWE, BOTSWANA |
MAURITANIA | ALGERIA, SAOTOME, ANGOLA | ERITREA, SUDAN, RWANDA |
MAURITIUS | BOTSWANA, UGANDA, IVORYCOAST | NIGER, BENIN, ETHIOPIA |
MOROCCO | SOUTHAFRICA, MALAWI, IVORYCOAST | ERITREA, NAMIBIA, NIGERIA |
MOZAMBIQUE | GHANA, MADAGASCAR, ETHIOPIA | ERITREA, EGYPT, CONGOREPUB |
NAMIBIA | SAOTOME, TANZANIA, MOZAMBIQUE | ERITREA, CABOVERDE, EGYPT |
NIGER | GHANA, TANZANIA, LESOTHO | TUNISIA, BOTSWANA, ALGERIA |
NIGERIA | UGANDA, SIERRALEONE, MOZAMBIQUE | ERITREA, ZIMBABWE, BENIN |
RWANDA | ANGOLA, TOGO, CAMEROON | GUINEA, SEYCHELLES, COMOROS |
SAOTOME | SOUTHAFRICA, IVORYCOAST, GABON | ERITREA, BURKINAFASO, MALI |
SENEGAL | TANZANIA, GHANA, CHAD | BOTSWANA, EGYPT, TUNISIA |
SEYCHELLES | TOGO, MAURITIUS, CHAD | BENIN, SENEGAL, CONGOREPUB |
SIERRALEONE | DJIBOUTI, ZAMBIA, RWANDA | MALAWI, ERITREA, SUDAN |
SOMALIA | SUDAN, GABON, LIBERIA | TANZANIA, ANGOLA, BURUNDI |
SOUTHAFRICA | SAOTOME, MAURITANIA, CONGODR | ERITREA, GUINEABISSAU, BURKINAFASO |
SUDAN | BURKINAFASO, GABON, TANZANIA | KENYA, LESOTHO, BOTSWANA |
TANZANIA | CONGODR, DJIBOUTI, CHAD | BOTSWANA, CONGOREPUB, ZIMBABWE |
TOGO | SAOTOME, ETHIOPIA, SOUTHAFRICA | CHAD, CONGOREPUB, ERITREA |
TUNISIA | BOTSWANA, MALAWI, LESOTHO | BENIN, ZAMBIA, ALGERIA |
UGANDA | MOZAMBIQUE, ETHIOPIA, CABOVERDE | CAMEROON, ERITREA, COMOROS |
ZAMBIA | ANGOLA, TANZANIA, CONGODR | ERITREA, MAURITIUS, ZIMBABWE |
ZIMBABWE | CONGOREPUB, COMOROS, MADAGASCAR | SUDAN, CHAD, BURKINAFASO |
SEFM | MA(1) | SEFM | MA(1) | |
Average RMSE (over 25 replications) | 0.888 | 0.851 | 0.807 | 0.795 |
Average number of cases ) where SEFM | 21.4 | 21.6 | ||
outperforms the MA(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franses, P.H.; Welz, M. Forecasting Real GDP Growth for Africa. Econometrics 2022, 10, 3. https://doi.org/10.3390/econometrics10010003
Franses PH, Welz M. Forecasting Real GDP Growth for Africa. Econometrics. 2022; 10(1):3. https://doi.org/10.3390/econometrics10010003
Chicago/Turabian StyleFranses, Philip Hans, and Max Welz. 2022. "Forecasting Real GDP Growth for Africa" Econometrics 10, no. 1: 3. https://doi.org/10.3390/econometrics10010003
APA StyleFranses, P. H., & Welz, M. (2022). Forecasting Real GDP Growth for Africa. Econometrics, 10(1), 3. https://doi.org/10.3390/econometrics10010003