AI-Driven Differentiation and Quantification of Metal Ions Using ITIES Electrochemical Sensors
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Electrode Fabrication and Electrochemical Experiments
2.3. AI Modeling
3. Results and Discussion
3.1. Classification of Good and Faulty Signals for Cd2+ and Cu2+
3.2. CNN Modeling
3.3. ANN Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johri, N.; Jacquillet, G.; Unwin, R. Heavy metal poisoning: The effects of cadmium on the kidney. BioMetals 2010, 23, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.S.; Pandey, P.K.; Martín-Ramos, P.; Corns, W.T.; Varol, S.; Bhattacharya, P.; Zhu, Y. A review on arsenic in the environment: Contamination, mobility, sources, and exposure. RSC Adv. 2023, 13, 8803–8821. [Google Scholar] [CrossRef]
- Custodio, M.; Peñaloza, R.; Cuadrado, W.; Ochoa, S.; Álvarez, D.; Chanamé, F. Data on the detection of essential and toxic metals in soil and corn and barley grains by atomic absorption spectrophotometry and their effect on human health. Chem. Data Collect. 2021, 32, 100650. [Google Scholar] [CrossRef]
- Gundlach-Graham, A.; Günther, D. Toward faster and higher resolution LA-ICPMS imaging: On the co-evolution of la cell design and ICPMS instrumentation Young Investigators in Analytical and Bioanalytical Science. Anal. Bioanal. Chem. 2016, 408, 2687–2695. [Google Scholar] [CrossRef]
- Song, Y.; Ma, Z.; Fang, H.; Zhang, Q.; Zhou, Q.; Chen, Z.; Yang, H.; Wang, F. Au Sputtered Paper Chromatography Tandem Raman Platform for Sensitive Detection of Heavy Metal Ions. ACS Sens. 2020, 5, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. J. Hazard. Mater. 2023, 441, 129889. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Choi, H.; Shin, W.H.; Oh, J.M.; Koo, S.M.; Kim, Y.; Lee, T.; Yu, B.J.; Park, C. Development of colorimetric whole-cell biosensor for detection of heavy metals in environment for public health. Int. J. Environ. Res. Public Health 2021, 18, 12721. [Google Scholar] [CrossRef]
- Lajin, B.; Feldmann, J.; Goessler, W. Elution with 1,2-Hexanediol Enables Coupling of ICPMS with Reversed-Pase Liquid Chromatography under Standard Conditions. Anal. Chem. 2022, 94, 8802–8810. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Li, T.; Li, H.; Yu, Z.; Song, L.; Xu, J. Sequential speciation analysis of heavy metals on suspended particulate matter in water using electrochemical mass spectrometry. J. Anal. Spectrom. 2023, 38, 716–720. [Google Scholar] [CrossRef]
- Shan, Q.; Tian, J.; Ding, Q.; Wu, W. Electrochemical sensor based on metal-free materials composed of graphene and graphene oxide for sensitive detection of cadmium ions in water. Mater. Chem. Phys. 2022, 284, 126064. [Google Scholar] [CrossRef]
- Sacara, A.M.; Pitzalis, F.; Salis, A.; Turdean, G.L.; Muresan, L.M. Glassy Carbon Electrodes Modified with Ordered Mesoporous Silica for the Electrochemical Detection of Cadmium Ions. ACS Omega 2019, 4, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Manring, N.; Strini, M.; Smeltz, J.L.; Pathirathna, P. Simultaneous detection of neurotransmitters and Cu2+ using double-bore carbon fiber microelectrodes via fast-scan cyclic voltammetry. RSC Adv. 2023, 13, 33844–33851. [Google Scholar] [CrossRef] [PubMed]
- Manring, N.; Ahmed, M.M.N.; Smeltz, J.L.; Pathirathna, P. Electrodeposition of dopamine onto carbon fiber microelectrodes to enhance the detection of Cu2+ via fast-scan cyclic voltammetry. Anal. Bioanal. Chem. 2023, 415, 4289–4296. [Google Scholar] [CrossRef] [PubMed]
- Manring, N.; Strini, M.; Koifman, G.; Smeltz, J.L.; Pathirathna, P. Gold Nanoparticle-Modified Carbon-Fiber Microelectrodes for the Electrochemical Detection of Cd2+ via Fast-Scan Cyclic Voltammetry. Micromachines 2024, 15, 294. [Google Scholar] [CrossRef]
- Manring, N.; Strini, M.; Koifman, G.; Xavier, J.; Smeltz, J.L.; Pathirathna, P. Ultrafast Detection of Arsenic Using Carbon-Fiber Microelectrodes and Fast-Scan Cyclic Voltammetry. Micromachines 2024, 15, 733. [Google Scholar] [CrossRef]
- Benvidi, A.; Lanjwani, S.N.; Ding, Z. Cd2+ transfer across water/1,2-dichloroethane microinterfaces facilitated by complex formation with 1,10-Phenanthroline. Electrochim. Acta 2010, 55, 2196–2200. [Google Scholar] [CrossRef]
- Chen, R.; Yang, A.; Chang, A.; Oweimrin, P.F.; Romero, J.; Vichitcharoenpaisarn, P.; Tapia, S.; Ha, K.; Villaflor, C.; Shen, M. A Newly Synthesized Tris(crown ether) Ionophore for Assisted Ion Transfer at NanoITIES Electrodes. ChemElectroChem 2020, 7, 967–974. [Google Scholar] [CrossRef]
- Ishimatsu, R.; Izadyar, A.; Kabagambe, B.; Kim, Y.; Kim, J.; Amemiya, S. Electrochemical mechanism of ion-ionophore recognition at plasticized polymer membrane/water interfaces. J. Am. Chem. Soc. 2011, 133, 16300–16308. [Google Scholar] [CrossRef]
- Ahmed, M.M.N.; Bodowara, F.S.; Zhou, W.; Penteado, J.F.; Smeltz, J.L.; Pathirathna, P. Electrochemical detection of Cd(ii) ions in complex matrices with nanopipets. RSC Adv. 2022, 12, 1077–1083. [Google Scholar] [CrossRef]
- Anupriya, E.S.; Shen, M. New Method in Surface Treatment of Nanopipette for Interface between Two Immiscible Electrolyte Solutions (ITIES) Experiment. J. Electrochem. Soc. 2022, 169, 046501. [Google Scholar] [CrossRef]
- Wang, X.; Lin, W.; Chen, C.; Kong, L.; Huang, Z.; Kirsanov, D.; Legin, A.; Wan, H.; Wang, P. Neural networks based fluorescence and electrochemistry dual-modal sensor for sensitive and precise detection of cadmium and lead simultaneously. Sens. Actuators B Chem. 2022, 366, 131922. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, F.; Zou, R.; Liao, J.; Zhang, Y.; Zhu, Z.; Yan, X.; Jiang, Z.; Tan, F. A CNN-Based Method for Heavy-Metal Ion Detection. Appl. Sci. 2023, 13, 4520. [Google Scholar] [CrossRef]
- Choi, H.; Shin, H.; Cho, H.U.; Blaha, C.D.; Heien, M.L.; Oh, Y.; Lee, K.H.; Jang, D.P. Neurochemical Concentration Prediction Using Deep Learning vs Principal Component Regression in Fast Scan Cyclic Voltammetry: A Comparison Study. ACS Chem. Neurosci. 2022, 13, 2288–2297. [Google Scholar] [CrossRef]
- Kudr, J.; Nguyen, H.V.; Gumulec, J.; Nejdl, L.; Blazkova, I.; Ruttkay-Nedecky, B.; Hynek, D.; Kynicky, J.; Adam, V.; Kizek, R. Simultaneous automatic electrochemical detection of zinc, cadmium, copper and lead ions in environmental samples using a thin-film mercury electrode and an artificial neural network. Sensors 2015, 15, 592–610. [Google Scholar] [CrossRef]
- Cetó, X.; Céspedes, F.; Pividori, M.I.; Gutiérrez, J.M.; Del Valle, M. Resolution of phenolic antioxidant mixtures employing a voltammetric bio-electronic tongue. Analyst 2012, 137, 349–356. [Google Scholar] [CrossRef]
- Kennedy, G.F.; Zhang, J.; Bond, A.M. Automatically Identifying Electrode Reaction Mechanisms Using Deep Neural Networks. Anal. Chem. 2019, 91, 12220–12227. [Google Scholar] [CrossRef]
- Bonet-San-Emeterio, M.; González-Calabuig, A.; del Valle, M. Artificial Neural Networks for the Resolution of Dopamine and Serotonin Complex Mixtures Using a Graphene-Modified Carbon Electrode. Electroanalysis 2019, 31, 390–397. [Google Scholar] [CrossRef]
- Dean, S.N.; Shriver-Lake, L.C.; Stenger, D.A.; Erickson, J.S.; Golden, J.P.; Trammell, S.A. Machine learning techniques for chemical identification using cyclic square wave voltammetry. Sensors 2019, 19, 2392. [Google Scholar] [CrossRef]
- Shriver-Lake, L.C.; Myers-Ward, R.L.; Dean, S.N.; Erickson, J.S.; Stenger, D.A.; Trammell, S.A. Multilayer epitaxial graphene on silicon carbide: A stable working electrode for seawater samples spiked with environmental contaminants. Sensors 2020, 20, 4006. [Google Scholar] [CrossRef]
- Guo, J.; Amemiya, S. Voltammetric heparin-selective electrode based on thin liquid membrane with conducting polymer-modified solid support. Anal. Chem. 2006, 78, 6893–6902. [Google Scholar] [CrossRef]
- Wilke, S.; Wang, H. Transfer of heavy metal ions across the water∣nitrobenzene microinterface facilitated by the cadmium selective ionophore ETH1062. J. Electroanal. Chem. 1999, 475, 9–19. [Google Scholar] [CrossRef]
- Muzammil, M.; Ahmed, N. Using Nano-ITIES for Detection of Metal Ions in Complex Aqueous Using Nano-ITIES for Detection of Metal Ions in Complex Aqueous Solutions Solutions. 2024. Available online: https://repository.fit.edu/etd (accessed on 15 January 2025).
- Guna, A.; Ganeriwala, P.; Bhattacharyya, S. Exploring Machine Learning Engineering for Object Detection and Tracking by Unmanned Aerial Vehicle (UAV). arXiv 2024, arXiv:2412.15347. Available online: http://arxiv.org/abs/2412.15347 (accessed on 1 March 2025).
- Ganeriwala, P.; Alvarez, A.; AlQahtani, A.; Bhattacharyya, S.; Khan, M.A.H.; Neogi, N. Runway vs. Taxiway: Challenges in Automated Line Identification and Notation Approaches. arXiv 2025, arXiv:2501.18494. Available online: http://arxiv.org/abs/2501.18494 (accessed on 10 April 2025).
- Kamble, B.C. Speech Recognition Using Artificial Neural Network—A Review. Int. J. Comput. Commun. Instrum. Eng. 2016, 3. [Google Scholar] [CrossRef]
- Kim, C.G.; Hwang, Y.J.; Kamyod, C. A Study of Profanity Effect in Sentiment Analysis on Natural Language Processing Using ANN. J. Web Eng. 2022, 21, 751–766. [Google Scholar] [CrossRef]
- Aguilar-Lira, G.Y.; Hernandez, P.; Álvarez-Romero, G.A.; Gutiérrez, J.M. Simultaneous Quantification of Four Principal NSAIDs through Voltammetry and Artificial Neural Networks Using a Modified Carbon Paste Electrode in Pharmaceutical Samples. Chem. Proc. 2021, 5, 3. [Google Scholar] [CrossRef]
CNN Classification | Training Accuracy | Validation Accuracy | Testing Accuracy | Learning Rate |
---|---|---|---|---|
Cd2+ vs. Cu2+ | 99.20% | 99.15% | 99.14% | 0.0005 |
Good vs. Faulty for Cd2+ | 99.96% | 96.12% | 95.37% | 0.001 |
Good vs. Faulty for Cu2+ | 99.62% | 98.68% | 98.34% | 0.001 |
Faulty—Cd2+ | 96.80% | 87.71% | 92.45% | 0.001 |
Faulty—Cu2+ | 93.63% | 85.14% | 89.19% | 0.001 |
CV | MAE | MSE | Learning Rate |
---|---|---|---|
Cd2+ | 0.0158 | 4.0896 × 10−4 | 0.01 |
Cu2+ | 0.0127 | 2.6129 × 10−4 | 0.01 |
Cd2+ Concentration (mM) | Cu2+ Concentration (mM) | ||
---|---|---|---|
Actual | Predicted | Actual | Predicted |
0.10 | 0.120909 | 0.05 | 0.032442 |
0.40 | 0.392451 | 0.05 | 0.039273 |
0.05 | 0.036781 | 0.05 | 0.056565 |
0.10 | 0.120909 | 0.10 | 0.109722 |
0.05 | 0.036781 | 0.05 | 0.017079 |
0.20 | 0.182019 | 0.10 | 0.099719 |
0.05 | 0.058828 | 0.20 | 0.209858 |
0.40 | 0.392429 | 0.05 | 0.046686 |
Ref. | Type of Sensor | Electrochemical Technique | Target Analytes | AI Model | Number of Datasets | Pros/Cons |
---|---|---|---|---|---|---|
[25] | Graphite–epoxy biosensor array, modified with enzymes and Cu nanoparticles | Cyclic Voltammetry | Catechol Caffeic acid Catechin | ANN | 37 signals (27 train, 10 test) | Redox-active analytes only Small dataset used for training Features manually selected—possible selection bias |
[26] | Synthetic generated data | Cyclic Voltammetry | Ferrocene polyoxometalate complexes | CNN | Synthetic data only | Simple models—lacks complexity Signal generation via simulation package Lacks non-ideal behavior in signals |
[27] | Graphene-modified carbon electrode | Cyclic Voltammetry | Dopamine Serotonin Ascorbic acid Uric acid | ANN + DWT | 45 signals (36 train, 9 test) | Redox-active analytes only Small dataset used for training Complex preprocessing of data leads to loss of valuable information |
[28] | Screen-printed electrodes (carbon-based) | CSWV | CuSO4, PbCl2, HgCl2, CdCl2, Paraquat, Diquat, TNT, TNB, Bisphenol-A, Nonyl phenol | FCN, LSTM, ALSTM-FCN | 36–80 signals per class for metals, 6 signals per class (explosives) | Redox-active analytes only Model trained on small dataset Intensive computational work with 2000 epochs on GPU hardware |
[29] | Multilayer epitaxial graphene on silicon carbide substrate | CSWV | CuSO4, PbCl2, HgCl2, CdCl2, Diquat dibromide (DQBr2), Paraquat dichloride, Methyl parathion, Bisphenol A | ALSTM-FCN | 16 samples per class including heavy metals and herbicides, total of 128 signals | Redox-active analytes only Small dataset used for training Multiple analytes without focus on closely interfering signals Declined classification accuracy for lower concentrations of analytes Intensive computational work with 2000 epochs on GPU hardware |
This Study | Borosilicate glass-based electrode | ITIES | CdCl2, CuSO4 | ANN, CNN | Large dataset with randomized data split: training—1522, validation—435, test—217 | Analytes need not be redox-active Accounts for both ideal and faulty signals CNN—utilized raw unprocessed data, avoiding loss of valuable information ANN—data extracted using MATLAB code which removes selection bias Concentration prediction using ANN model Light weight model that converges within 20 epochs No GPU is needed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.M.N.; Ganeriwala, P.; Savvidou, A.; Breen, N.; Bhattacharyya, S.; Pathirathna, P. AI-Driven Differentiation and Quantification of Metal Ions Using ITIES Electrochemical Sensors. J. Sens. Actuator Netw. 2025, 14, 70. https://doi.org/10.3390/jsan14040070
Ahmed MMN, Ganeriwala P, Savvidou A, Breen N, Bhattacharyya S, Pathirathna P. AI-Driven Differentiation and Quantification of Metal Ions Using ITIES Electrochemical Sensors. Journal of Sensor and Actuator Networks. 2025; 14(4):70. https://doi.org/10.3390/jsan14040070
Chicago/Turabian StyleAhmed, Muzammil M. N., Parth Ganeriwala, Anthi Savvidou, Nicholas Breen, Siddhartha Bhattacharyya, and Pavithra Pathirathna. 2025. "AI-Driven Differentiation and Quantification of Metal Ions Using ITIES Electrochemical Sensors" Journal of Sensor and Actuator Networks 14, no. 4: 70. https://doi.org/10.3390/jsan14040070
APA StyleAhmed, M. M. N., Ganeriwala, P., Savvidou, A., Breen, N., Bhattacharyya, S., & Pathirathna, P. (2025). AI-Driven Differentiation and Quantification of Metal Ions Using ITIES Electrochemical Sensors. Journal of Sensor and Actuator Networks, 14(4), 70. https://doi.org/10.3390/jsan14040070