Decorative Magnolia Plants: A Comparison of the Content of Their Biologically Active Components Showing Antimicrobial Effects
Abstract
1. Introduction
2. Results
3. Conclusions
4. Experimental Section
4.1. Plant Material
4.2. Preparation of Extracts
4.3. RP-HPLC Analysis
4.4. Antimicrobial Activity of Extracts
- ∆Afraction—the OD difference at the beginning and at the 18th hour of the measurement of the antimicrobial samples,
- ∆Acontrol—the OD difference at the beginning and at the 18th hour of the measurement for the unaffected microorganism.
Author Contributions
Funding
Conflicts of Interest
References
- Lee, Y.J.; Lee, Y.M.; Lee, C.-K.; Jung, J.K.; Han, S.B.; Hong, J.T. Therapeutic applications of compounds in the Magnolia family. Pharmacol. Ther. 2011, 130, 157. [Google Scholar] [CrossRef] [PubMed]
- Song, Q. A Phytochemical Study of Members of the Genus Magnolia (Magnoliaceae) and Biosynthetic Studies of Secondary Metabolites in Asteraceae Hairy Root Cultures. Ph.D. Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, LA, USA, 1995. [Google Scholar]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, Z.; Bildziukevich, U.; Wimmerová, M.; Macůrková, A.; Lovecká, P.; Wimmer, Z. Plant adaptogens: Natural medicaments for 21st century? ChemistrySelect 2018, 3, 2196. [Google Scholar] [CrossRef]
- Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.V.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; et al. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res. 2019, 144, 192. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.D.; Maruyama, Y. Magnolia: The Genus Magnolia; Taylor & Francis: London, UK, 2002. [Google Scholar]
- Vu, V.; Liu, X.; Nguyen, M.; Lin, Y.; Kong, L.; Luo, J. New obovatol trimeric neolignans with NO inhibitory activity from the leaves of Magnolia officinalis var. biloba. Bioorg. Chem. 2020, 96, 103586. [Google Scholar] [CrossRef] [PubMed]
- Cunfang, L.I.U. Determination content of the magnolol from Magnolia officinalia leaves by HPLC. Agric. Bas. Sci. Technol. 2016, 17, 251. [Google Scholar]
- Zálešák, F.; Bon, D.J.Y.D.; Pospíšil, J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol. Res. 2019, 146, 104284. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Wu, H.; Yu, X.; Zhang, X.; Lu, Y.; Fan, J.; Tang, J.; Wang, Z. A review of the phytochemistry and pharmacological activities of Magnoliae officinalis cortex. J. Ethnopharmacol. 2019, 236, 412. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.Z.; Dong, C.H.; She, J. Modern Study of Traditional Chinese Medicine; Xue Yuan Publisher: Beijing, China, 1999. [Google Scholar]
- Joo, J.; Lee, D.; Wu, Z.; Shin, J.H.; Lee, H.S.; Kwon, B.M.; Huh, T.L.; Kim, Y.W.; Lee, S.J.; Kim, T.W.; et al. In vitro metabolism of obovatol and its effect on cytochrome P450 enzyme activities in human liver microsomes. Biopharm. Drug Disposit. 2013, 34, 195. [Google Scholar] [CrossRef] [PubMed]
- Woodbury, A.; Yu, S.P.; Wei, L.; Garcia, P. Neuro-modulating effects of honokiol: A review. Front. Neurol. 2013, 4, 130. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Iida, T.; Ichino, K.; Tsunezuka, M.; Hattori, M.; Namba, T. Obovatol and obovatal, novel biphenyl ether lignans from the leaves of Magnolia obovata THUNB. Chem. Pharm. Bull. 1982, 30, 3347. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Kageura, T.; Oda, M.; Morikawa, T.; Sakamoto, Y.; Yoshikawa, M. Effects of constituents from the bark of Magnolia obovata on nitric oxide production in lipopolysaccharide-activated macrophages. Chem. Pharm. Bull. 2001, 49, 716. [Google Scholar] [CrossRef] [PubMed]
- Jun, Y.; Jian, G.W.; Jin, Y.W.; Yan, B.W. Quality evaluation of the leaves of Magnolia officinalis var. biloba using high performance liquid chromatography fingerprint analysis of phenolic compounds. J. Separ. Sci. 2016, 39, 784. [Google Scholar]
- Teponno, R.B.; Kusari, S.; Spiteller, M. Recent advance in research on lignans and neolignans. Nat. Prod. Rep. 2016, 33, 1044. [Google Scholar] [CrossRef] [PubMed]
- Hartini, Y.S.; Nugroho, L.H. The accumulation of two neolignan in the leaves, stems, and flower of red betel (Piper crocatum Ruiz & Pav.). J. Phys. Conf. Series 2017, 835, 012017. [Google Scholar]
- Simpson, S.A. Other Plant Metabolites. In Pharmacognosy; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 12. [Google Scholar]
- Kim, S.Y.; Kim, J.; Jeong, S.-I.; Jahng, K.Y.; Yu, K.-Y. Antimicrobial effects and resistant regulation of magnolol and honokiol on methicillin-resistant Staphylococcus aureus. BioMed Res. Int. 2015, 2015, 283630. [Google Scholar] [CrossRef] [PubMed]
- Yongjin, H.; Jinling, Q.; Xi, Z.; Changrong, G. Antimicrobial effect of Magnolia officinaliss extract against Staphylococcus aureus. J. Sci. Food Agric. 2011, 91, 1050. [Google Scholar]
- Harborne, J.B. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis; Chapman & Hall: London, UK, 1998. [Google Scholar]
Fraction | RT a | Identified Substance | Main Mass Fragments (m/z) |
---|---|---|---|
1 | 6.3 min | unidentified | - |
2 | 44.1 min | honokiol | 209.0597; 224.0844; 250.0999 |
3 | 45.5 min | obovatol | 133.0657, 164.0478. 240.0775 |
4 | 46.0 min | magnolol | 223.0785; 245.0968, 247.1124 |
5 | 47.5 min | unidentified | - |
6 | 48.0 min | unidentified | - |
Plant | Part of Plant | Honokiol (mg·g−1 Dry Mass) | Obovatol (mg·g−1 Dry Mass) | Magnolol (mg·g−1 Dry Mass) | |
---|---|---|---|---|---|
Magnolia hybrid plants | MPR 0131 | L | 3.64 ± 0.04 | 0.68 ± 0.05 | 1.01 ± 0.08 |
FP | 7.25 ± 0.01 | 8.98 ± 0.2 | 2.95 ± 0.00 | ||
SP | 47.43 ± 7.11 | 92.13 ± 13.82 | 25.81 ± 3.87 | ||
MPR 0151 | L | 2.01 ± 0.02 | 0.90 ± 0.01 | 0.76 ± 0.01 | |
FP | 13.01 ± 1.95 | 24.59 ± 3.69 | 6.00 ± 0.90 | ||
SP | 35.95 ± 5.39 | 80.67 ± 12.10 | 18.79 ± 2.82 | ||
MPR 0271 | L | 0.39 ± 0.06 | 0.09 ± 0.01 | 0.21 ± 0.03 | |
FP | 13.04 ± 1.96 | 26.28 ± 3.94 | 5.91 ± 0.89 | ||
SP | 47.25 ± 7.09 | 115.57 ± 17.34 | 22.51 ± 3.38 | ||
MPR 1501 | L | 3.03 ± 0.01 | 1.85 ± 0.03 | 1.26 ± 0.01 | |
FP | 25.23 ± 3.78 | 37.38 ± 5.61 | 10.41 ± 1.56 | ||
SP | 55.34 ± 8.30 | 117.49 ± 17.62 | 28.24 ± 4.24 | ||
MPR 1511 | L | 8.26 ± 1.24 | 2.21 ± 0.33 | 2.07 ± 0.31 | |
FP | 13.09 ± 1.96 | 19.84 ± 2.98 | 6.49 ± 0.97 | ||
SP | 26.10 ± 3.91 | 60.43 ± 9.06 | 13.15 ± 1.97 | ||
MPR 1531 | L | 0.11 ± 0.02 | 0.06 ± 0.01 | 0.06 ± 0.01 | |
FP | 18.90 ± 2.84 | 22.86 ± 3.43 | 8.30 ± 1.24 | ||
SP | 17.13 ± 2.57 | 39.95 ± 5.99 | 10.54 ± 1.58 | ||
Magnolia parent plants | MOB 1511 | L | 0.70 ± 0.01 | 54.18 ± 2.76 | 5.55 ± 0.25 |
FP | 1.74 ± 0.26 | 271.63 ± 40.74 | 13.04 ± 1.96 | ||
SP | 4.70 ± 0.70 | 649.38 ± 97.41 | 30.99 ± 4.65 | ||
MTR 1531 | L | 191.62 ± 28.74 | 4.03 ± 0.60 | 53.61 ± 8.04 | |
FP | 252.26 ± 37.84 | 71.85 ± 10.78 | 83.16 ± 12.47 | ||
SP | 230.82 ± 34.62 | 269.31 ± 40.40 | 99.91 ± 14.99 |
Plant | Part of Plant | I (%) for Concentration of Extract | ||
---|---|---|---|---|
125 μg·mL−1 | 62.5 μg·mL−1 | |||
Magnolia hybrid plants | MPR 0131 | L | 63.3 ± 3.7 | 54.3 ± 1.4 |
FP | 98.3 ± 3.2 | 84.9 ± 1.8 | ||
SP | 100.0 ± 7.2 | 81.7 ± 2.1 | ||
MPR 0151 | L | 88.4 ± 2.2 | 81.4 ± 4.0 | |
FP | 96.1 ± 1.8 | 13.9 ± 5.0 | ||
SP | 97.2 ± 3.3 | 77.1 ± 2.5 | ||
MPR 0271 | L | 98.4 ± 1.8 | 62.5 ± 2.1 | |
FP | 97.0 ± 0.8 | 15.0 ± 4.7 | ||
SP | 95.9 ± 0.5 | 62.5 ± 4.0 | ||
MPR 1501 | L | 56.2 ± 1.2 | 57.1 ± 5.8 | |
FP | 84.5 ± 2.1 | 83.9 ± 2.4 | ||
SP | 93.6 ± 4.6 | 87.9 ± 7.9 | ||
MPR 1511 | L | 51.4 ± 3.0 | 53.5 ± 6.4 | |
FP | 42.9 ± 4.4 | 0.0 ± 0.0 | ||
SP | 96.6 ± 1.4 | 82.7 ± 4.0 | ||
MPR 1531 | L | 64.3 ± 3.6 | 34.5 ± 4.0 | |
FP | 100.0 ± 2.0 | 37.2 ± 9.6 | ||
SP | 94.1 ± 0.3 | 48.8 ± 4.1 | ||
Magnolia parent plants | MOB 1511 | L | 80.4 ± 17.7 | 58.4 ± 11.3 |
FP | 65.1 ± 3.5 | 41.8 ± 6.7 | ||
SP | 98.4 ± 2.9 | 100.0 ± 4.0 | ||
MTR 1531 | L | 66.6 ± 18.8 | 68.7 ± 3.8 | |
FP | 65.4 ± 3.9 | 100.0 ± 4.6 | ||
SP | 92.0 ± 6.7 | 68.6 ± 35.6 |
Plant | Part of Plant | IC50 (μg·mL−1) | MIC b (μg·mL−1) | |
---|---|---|---|---|
Magnolia hybrid plants | MPR 0131 | L | - | >125 |
FP | 56.6 ± 0.8 c | 125 ± 6.3 | ||
SP | 46.9 ± 2.0 c | 125 ± 6.3 | ||
MPR 0151 | L | 002D | 125 | |
FP | - | >125 | ||
SP | 57.6 ± 0.1 c | 125 ± 6.3 | ||
MPR 0271 | L | 62.9 ± 10.9 c | 125 ± 6.3 | |
FP | - | >125 | ||
SP | - | >125 | ||
MPR 1501 | L | - | >125 | |
FP | - | >125 | ||
SP | - | > 25 | ||
MPR 1511 | L | - | >125 | |
FP | - | >125 | ||
SP | - | >125 | ||
MPR 1531 | L | - | >125 | |
FP | 71.0 ± 5.4 c | 125 ± 6.3 | ||
SP | - | >125 | ||
Mgnolia parent plants | MOB 1511 | L | - | >125 |
FP | - | >125 | ||
SP | 40.1 ± 7.4 c | 62.5 ± 3.1 | ||
MTR 1531 | L | - | >125 | |
FP | 31.6 ± 0.2 c | 62.5 ± 3.1 | ||
SP | 60.2 ± 26.4 c | 62.5 ± 3.1 |
Time (min) | Methanol | 10 mM Formic Acid |
---|---|---|
2 | 5% | 95% |
45 | 90% | 10% |
50 | 100% | 0% |
60 | 100% | 0% |
65 | 5% | 95% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovecká, P.; Svobodová, A.; Macůrková, A.; Vrchotová, B.; Demnerová, K.; Wimmer, Z. Decorative Magnolia Plants: A Comparison of the Content of Their Biologically Active Components Showing Antimicrobial Effects. Plants 2020, 9, 879. https://doi.org/10.3390/plants9070879
Lovecká P, Svobodová A, Macůrková A, Vrchotová B, Demnerová K, Wimmer Z. Decorative Magnolia Plants: A Comparison of the Content of Their Biologically Active Components Showing Antimicrobial Effects. Plants. 2020; 9(7):879. https://doi.org/10.3390/plants9070879
Chicago/Turabian StyleLovecká, Petra, Alžběta Svobodová, Anna Macůrková, Blanka Vrchotová, Kateřina Demnerová, and Zdeněk Wimmer. 2020. "Decorative Magnolia Plants: A Comparison of the Content of Their Biologically Active Components Showing Antimicrobial Effects" Plants 9, no. 7: 879. https://doi.org/10.3390/plants9070879
APA StyleLovecká, P., Svobodová, A., Macůrková, A., Vrchotová, B., Demnerová, K., & Wimmer, Z. (2020). Decorative Magnolia Plants: A Comparison of the Content of Their Biologically Active Components Showing Antimicrobial Effects. Plants, 9(7), 879. https://doi.org/10.3390/plants9070879