Salt Distribution and Potato Response to Irrigation Regimes under Varying Mulching Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Experimental Design and Treatments
2.2.1. Mulching Treatments
2.2.2. Irrigation Treatments
2.3. Irrigation Water Applied (IWA)
2.4. Soil Sampling
2.5. Vegetative Growth Parameters and Potato Yield
2.6. Crop Water Productivity (CWP)
2.7. Yield Response Factor (Ky)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Potato Yield and Its Components
3.2. Crop Water Productivity (CWP)
3.3. Yield Response Factor (Ky)
3.4. Distribution of Salt
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdelhafez, A.A.; Metwalley, S.M.; Abbas, H.H. Irrigation: Water Resources, Types and Common Problems in Egypt. In Technological and Modern Irrigation Environment in Egypt. Springer Water; Omran, E.S., Negm, A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Forouzani, M.; Karami, E. Agricultural water poverty index and sustainability. Agron. Sustain. Dev. 2011, 31, 415–432. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Gong, J.D.; Wei, X.H. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China. J. Arid Environ. 2000, 46, 371–382. [Google Scholar] [CrossRef]
- Valipour, M. Future of agricultural water management in Africa. Arch. Agron. Soil Sci. 2015, 61, 907–927. [Google Scholar] [CrossRef]
- Gaballah, M.S.; Ouda, S.A.; Khalil, F.A. Effect of water stress on the yield of soybean and maize grown under different intercropping patterns. In Twelfth international water technology conference, IWTC12. Alexandria: Inter. Water Tech. J. 2008, 27–30. [Google Scholar]
- Jha, G.A. Review on Drip Irrigation using Saline Irrigation Water in Potato (Solanum tuberosum L.). J. Agroecol. Nat. Res. Manag. 2016, 3, 43–46. [Google Scholar]
- Abdelraouf, R.E. Effect of Partial Root Zone Drying and Deficit Irrigation Techniques for Saving Water and Improving Productivity of Potato. Int. J. Chem. Tech. Res. 2016, 9, 170–177. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; FAO, Irrigation and drainage paper; FAO: Rome, Italy, 2012; Volume 66, pp. 184–188. [Google Scholar]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, T.C.; Steduto, P.; Fereres, E.A. systematic and quantitative approach to improve water use efficiency in agriculture. Irrig. Sci. 2007, 25, 209–231. [Google Scholar] [CrossRef]
- Shahnazari, A.; Liu, F.; Andersen, M.N.; Jacobsen, S.E.; Jensen, C.R. Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under filed conditions. Field Crops Res. 2007, 100, 117–124. [Google Scholar] [CrossRef]
- Zin El-Abedin, T.K.; Mattar, M.A.; Al-Ghobari, H.M.; Alazba, A.A. Water-Saving Irrigation Strategies in Potato Fields: Effects on Physiological Characteristics and Water Use in Arid Region. Agronomy 2019, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, S.H.; Andersen, M.N.; Plauborg, F.; Poulsen, R.T.; Jensen, C.R.; Sepaskhah, A.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agric. Water Manag. 2010, 97, 1923–1930. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Zhao, X.; Wang, F. Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China. Agric. Water Manag. 2015, 154, 20–28. [Google Scholar] [CrossRef]
- Liu, H.; Yang, H.; Zheng, J.; Jia, D.; Wang, J.; Li, Y.; Huang, G. Irrigation scheduling strategies based on soil matric potential on yield and fruit quality of mulched-drip irrigated chili pepper in Northwest China. Agric. Water Manag. 2012, 115, 232–241. [Google Scholar] [CrossRef]
- Wang, J.; Pang, H.; Ren, T.; Li, Y.; Zhao, Y. Effect of plastic film mulching and straw buried on soil water-salt dynamic in Hetao plain. Trans. Chin. Soc. Agril. Eng. 2012, 28, 52–59. [Google Scholar]
- El-Wahed, M.A.; Baker, G.; Ali, M.; El-Fattah, F.A.A. Effect of drip deficit irrigation and soil mulching on growth of common bean plant, water use efficiency and soil salinity. Sci. Hortic. 2017, 225, 235–242. [Google Scholar] [CrossRef]
- Qiao, H.L.; Liu, X.J.; Li, W.Q.; Huang, W. Effects of straw deep mulching on soil moisture infiltration and evaporation. Sci. Soil Water Conserv. 2006, 4, 34–38. [Google Scholar]
- Al-Omran, A.M.; Sheta, A.S.; Falatah, A.M.; Al-Harbi, A.R. Effects of drip irrigation on squash (Cucurbita pepo L.) yields and water-use efficiency in sandy calcareous soils amended with clay deposits. Agric. Water Manag. 2005, 73, 43–55. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirements; FAO Irrigation and Drainage. Paper, No. 24; FAO: Rome, Italy, 1992; p. 144. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements FAO 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Keller, J.; Karmeli, D. Trickle irrigation design parameters. Trans. ASAE 1974, 17, 678–684. [Google Scholar] [CrossRef]
- Lal, R.; Shukla, M.K. Principles of Soil Physics; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Jensen, M.E. Design and Operation of Farm Irrigation Systems; ASAE: St. Joseph, MI, USA, 1983; p. 827. [Google Scholar]
- Stewart, J.I.; Cuenca, R.H.; Pruitt, W.O.; Hagan, R.M.; Tosso, J. Determination and Utilization of Water Production Functions for Principal California Crops; W-67 California Contributing Project Report; University of California: Davis, CA, USA, 1977. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Analysis Procedures for Agricultural Research; John Wiley and Sons: New York, NY, USA, 1984; pp. 25–30. [Google Scholar]
- InfoStat. InfoStat Software Estadistico User’s Guide. Version 26/01/2016 InfoStat Institute. 2016. Available online: https://www.infostat.com.ar/index.php (accessed on 26 January 2016).
- Liu, X.E.; Li, X.G.; Hai, L.; Wang, Y.P.; Li, F.M. How efficient is film fully-mulched ridge-furrow cropping to conserve rainfall in soil at a rainfed site? Field Crops Res. 2014, 169, 107–115. [Google Scholar] [CrossRef]
- Bittelli, M.; Ventura, F.; Campbell, G.S.; Snyder, R.L.; Gallegati, F.; Pisa, P.R. Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. J. Hydrol. 2008, 3, 191–205. [Google Scholar] [CrossRef]
- Abouziena, H.F.; Radwan, S.M. Allelopathic effects of sawdust, rice straw, burclover weed and cogongrass on weed control and development of onion. Int. J. ChemTech Res. 2015, 7, 337–345. [Google Scholar]
- Boyd, N.; van Acker, R. The effects of depth and fluctuating soil moisture on the emergence of eight annual and six perennial plant species. Weed Sci. 2003, 51, 725–730. [Google Scholar] [CrossRef]
- Abou El-Magd, M.M.; Zaki, M.F.; Abou-Hussein, S.D. Effect of organic manure and different levels of saline irrigation water on growth, green yield and chemical content of sweet fennel. Aust. J. Basic Appl. Sci. 2008, 2, 90–98. [Google Scholar]
- Biswas, S.K.; Akanda, A.R.; Rahman, M.S.; Hossain, M.A. Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant Soil Environ. 2015, 3, 97–102. [Google Scholar]
- Wan, S.; Kang, Y. Effect of drip irrigation frecuency on radish (Raphanus sativus L.) growth and water use. Irrig. Sci. 2006, 24, 161–174. [Google Scholar] [CrossRef]
- Abd El-Wahed, M.H.; Ali, E.A. Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit. Agric. Water Manag. 2013, 120, 64–71. [Google Scholar] [CrossRef]
- Nasrullah, M.; Khan, M.B.; Ahmad, R.; Ahmad, S.; Hanif, M.; Nazeer, W. Sustainable cotton production and water economy through different planting methods and mulching techniques. Pakistan J. Bot. 2011, 43, 1971–1983. [Google Scholar]
- Bailey, R.J. Practical use of soil water measurement in potato production. In Management of Nitrogen and Water in Potato Production; Haverkort, A.J., MacKerron, D.K.L., Eds.; Wageningen Pers: Wageningen, The Netherlands, 2000; pp. 206–218. [Google Scholar]
- Egúsquiza, B.R. La Papa: Producción, Transformación y Comercialización, Primeraedición ed.; Editorial International Potato Center: Lima, Perú, 2000; p. 192. [Google Scholar]
- Dvořák, P.; Tomášek, J.; Perla Karel, K.; Hajšlová, H.J.; Schulzová, V. Effect of mulching materials on potato production in different soil-climatic conditions. Rom. Agril. Res. 2012, 29, 201–209. [Google Scholar]
- Alva, A.K.; Moore, A.D.; Collins, H.P. Impact of deficit irrigation on tuber yield and quality of potato cultivars. J. Crop Improv. 2012, 26, 211–227. [Google Scholar] [CrossRef]
- Shock, C.C.; Feibert, E.B.G.; Saunders, L.D. Umatilla Russet and Russet Legend Potato yield and quality response to irrigation. HortScience 2003, 38, 1117–1121. [Google Scholar] [CrossRef]
- Snowden, C.; Ritchie, G.; Thompson, T. Water use efficiency and Irrigation response of cotton cultivars on subsurface drip in West Texas. J. Cotton Sci. 2013, 17, 1–9. [Google Scholar]
- Lovelli, S.; Perniola, M.; Ferrara, A.; Tommaso, T.D. Yield response factor to water (K_y) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L. Agric. Water Manag. 2007, 92, 73–80. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; FAO Irrigation and Drainage Paper No.33; Food and Agriculture Organization: Rome, Italy, 1979; p. 193. [Google Scholar]
- Liu, J.H. Research progress of development and control of saline land. J. Shanxi Agric. Sci. 2008, 12, 51–53. [Google Scholar]
- Chen, M.; Kang, Y.H.; Wan, S.Q.; Liu, S.P. Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.). Agric. Water Manag. 2009, 96, 1766–1772. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M.; Abd El-Wahed, M.H. Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil. Agric. Water Manag. 2016, 173, 1–12. [Google Scholar] [CrossRef]
- Zhang, Q.T.; Ahmed, O.A.B.; Inoue, M.; Saxena, M.C.; Inosako, K.; Kondo, K. Effects of mulching on evapotranspiration, yield and water use efficiency of Swiss chard (Beta vulgaris L. varflavescens) irrigated with diluted seawater. J. Food Agric. Environ. 2009, 7, 650–654. [Google Scholar]
- Li, S.; Wang, Z.; Li, S.; Gao, Y.; Tian, X. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dry land areas of China. Agric. Water Manag. 2013, 116, 39–49. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, Q.; Yang, S.J.; Hu, W.; Chen, X.P. Diurnal and seasonal soil CO2 flux patterns in spring maize fields on the Loess Plateau, China. Acta Agric. Scand. B Soil Plant Sci. 2010, 60, 245–255. [Google Scholar]
- Ogundare, S.K.; Babatunde, I.J.; Etukudo, O.O. Response of tomato variety (Roma F) yield to different mulching materials and staking in KabbaKogi State Nigeria. J. Agric. Stud. 2015, 3, 61–70. [Google Scholar]
Soil Depth, cm | Particle Size Distribution | ρb, Mg m−3 | FC % | WP % | AW % | |||
---|---|---|---|---|---|---|---|---|
Sand, % | Silt, % | Clay, % | Texture Class | |||||
0–20 | 72.50 | 12.90 | 14.60 | SL | 1.46 | 19.79 | 5.69 | 14.10 |
20–40 | 74.60 | 12.00 | 13.40 | SL | 1.57 | 17.42 | 3.64 | 13.78 |
40–60 | 74.20 | 12.10 | 13.70 | SL | 1.58 | 18.62 | 4.37 | 14.25 |
Soil Depth, cm | ECe, dSm−1 | pH | CaCO3 % | OM * | Total N mg kg−1 | Available Nutrients (mg kg−1) | ||||
---|---|---|---|---|---|---|---|---|---|---|
P | K | Fe | Mn | Zn | ||||||
0–20 | 4.70 | 7.86 | 7.5 | 0.90 | 14.81 | 3.25 | 42.57 | 4.45 | 1.25 | 0.87 |
20–40 | 4.40 | 7.78 | 6.6 | 0.82 | 13.24 | 3.28 | 39.87 | 4.35 | 1.08 | 0.79 |
40–60 | 4.10 | 7.92 | 7.4 | 0.65 | 13.21 | 3.15 | 39.24 | 4.21 | 0.88 | 0.82 |
Properties | PMM | RSM |
---|---|---|
Total N (%) | 1.65 | 0.54 |
Total P (%) | 2.4 | 0.101 |
Total (K%) | 2.1 | 0.379 |
OM (%) | 37.2 | 74.0 |
C (%) | 32.3 | 42.9 |
C/N ratio | 19.6:1 | 79:1 |
Month | Tmin | Tmax | RH | Ws | Epan |
---|---|---|---|---|---|
(°C) | (°C) | (%) | (m s−1) | (mm d−1) | |
2016 | |||||
February | 9.9 | 25.8 | 59.2 | 2.7 | 2.37 |
March | 13.4 | 28.0 | 56.7 | 3.2 | 3.74 |
April | 17.0 | 36.1 | 53.2 | 4.0 | 5.22 |
May | 19.8 | 36.0 | 51.8 | 4.6 | 6.94 |
June | 24.3 | 37.3 | 54.1 | 4.5 | 7.65 |
2017 | |||||
February | 10.6 | 26.1 | 56.9 | 2.5 | 2.54 |
March | 13.9 | 28.9 | 57.9 | 3.8 | 3.87 |
April | 18.919.5 | 35.2 | 56.0 | 4.2 | 5.66 |
May | 19.3 | 36.5 | 52.7 | 4.9 | 7.03 |
June | 24.919.5 | 36.4 | 50.7 | 4.7 | 7.68 |
Months | Decade | Stage | Kc | ETo (mm d−1) | ETc (mm d−1) | IWA m3 ha−1 | |||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | ||||
February | 2 | Init. | 0.5 | 1.9 | 2.03 | 0.95 | 1.02 | 13.41 | 14.33 |
3 | Init. | 0.5 | 1.9 | 2.03 | 0.95 | 1.02 | 26.82 | 28.66 | |
March | 1 | Init./Dev. | 0.55 | 2.99 | 3.1 | 1.64 | 2.48 | 67.71 | 102.12 |
2 | Dev. | 0.8 | 2.99 | 3.1 | 2.39 | 2.48 | 132.26 | 137.13 | |
3 | Dev. | 1 | 2.99 | 3.1 | 2.99 | 3.10 | 207.54 | 215.18 | |
April | 1 | Dev./Mid | 1.1 | 4.18 | 4.53 | 4.6 | 4.98 | 378.66 | 410.36 |
2 | Mid | 1.15 | 4.18 | 4.53 | 4.81 | 5.21 | 463.73 | 502.56 | |
3 | Mid | 1.15 | 4.18 | 4.53 | 4.81 | 5.21 | 463.73 | 502.56 | |
May | 1 | Mid | 1.15 | 5.55 | 5.62 | 6.38 | 6.46 | 705.83 | 714.73 |
2 | Mid | 1.15 | 5.55 | 5.62 | 6.38 | 6.46 | 705.83 | 714.73 | |
3 | Late | 1 | 5.55 | 5.62 | 5.55 | 5.62 | 652.94 | 661.18 | |
June | 1 | Late | 0.85 | 6.12 | 6.14 | 5.2 | 5.22 | 612.00 | 614.00 |
2 | Late | 0.75 | 6.12 | 6.14 | 4.59 | 4.61 | 540.00 | 541.76 | |
4970.48 | 5159.31 |
Treatments | Plant Height (cm) | Number of Branches | Total Yield (t ha−1) | ||||
---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | ||
I100% | 61.79 A | 61.96 A | 2.73 A | 3.20 A | 36.37 A | 37.58 A | |
I80% | 55.69 B | 55.55 B | 2.67 AB | 3.20 A | 31.94 B | 33.27 B | |
I60% | 48.51 C | 49.09 C | 2.00 B | 2.40 A | 28.16 C | 28.70 C | |
WM | 46.87 D | 47.01 D | 2.00 B | 2.11 C | 22.63 E | 24.54 E | |
PMM | 60.97 A | 60.88 A | 2.78 A | 3.11 AB | 39.67 A | 40.67 A | |
RSM | 58.76 B | 59.00 AB | 2.78 A | 3.33 A | 35.49 B | 36.89 B | |
WPM | 55.90 C | 56.39 BC | 2.67 AB | 3.33 A | 32.84 C | 33.72 C | |
BPM | 54.17 C | 54.38 D | 2.11 AB | 2.78 B | 30.11 D | 30.08 D | |
I100% | WM | 53.20 g | 53.87 e | 4.13 cd | 4.17 fg | 27.35 hi | 29.35 e |
PMM | 67.03 a | 66.90 a | 4.57 abc | 4.8 bc | 44.91 a | 45.79 a | |
RSM | 64.67 ab | 64.70 ab | 5.03 a | 5.10 a | 39.22 b | 41.20 b | |
WPM | 62.27 b | 62.80 abc | 4.37 bcd | 4.57 cd | 36.41 c | 37.39 c | |
BPM | 61.80 bc | 61.53 bcd | 4.17 cd | 4.27 efg | 33.89 de | 34.18 d | |
I80% | WM | 46.80 h | 45.87 fg | 4.07 cd | 4.03 gh | 21.92 j | 23.68 g |
PMM | 61.00 bcd | 61.17 bcd | 4.37 bcd | 4.50 de | 39.17 b | 41.22 b | |
RSM | 57.63 def | 57.90 de | 4.83 ab | 4.90 ab | 35.32 cd | 37.03 c | |
WPM | 58.33 cde | 58.27 cde | 4.23 bcd | 4.30 defg | 33.18 de | 34.77 cd | |
BPM | 54.67 efg | 54.53 e | 4.03 cd | 4.10 gh | 30.11 fg | 29.61 e | |
I60% | WM | 40.60 i | 41.30 g | 3.77 d | 3.87 h | 18.64 k | 20.59 h |
PMM | 54.87 efg | 54.57 e | 4.07 cd | 4.43 def | 34.92 cd | 35.03 cd | |
RSM | 53.97 fg | 54.40 e | 4.30 bcd | 4.50 de | 31.89 ef | 32.44 d | |
WPM | 47.10 h | 48.10 f | 3.90 d | 4.27 efg | 28.96 gh | 29.01 ef | |
BPM | 46.03 h | 47.07 f | 3.83 d | 4.03 gh | 26.32 i | 26.44 f |
Treatments | A Grade (>60 mm) | M-1 (30–60 mm) | M-2 (˂30 mm) | ||||
---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | ||
I100% | 20.04 A | 20.63 A | 10.71 A | 11.07 A | 5.62 A | 5.86 A | |
I80% | 17.71 B | 18.42 B | 9.42 B | 9.81 B | 4.81 B | 5.05 B | |
I60% | 15.66 C | 15.87 C | 8.31 C | 8.47 C | 4.19 C | 4.38 C | |
WM | 6.78 E | 7.35 E | 6.78 D | 7.35 E | 9.04 A | 9.81 A | |
PMM | 27.77 A | 28.49 A | 7.93 C | 8.14 D | 3.98 C | 4.07 C | |
RSM | 21.30 B | 22.13 B | 10.64 B | 11.07 B | 3.55 D | 3.69 D | |
WPM | 18.06 C | 18.54 C | 11.50 A | 11.80 A | 3.28 D | 3.38 E | |
BPM | 15.04 D | 15.04 D | 10.54 B | 10.52 C | 4.52 B | 4.50 B | |
I100% | WM | 8.21 i | 8.81 i | 8.21 fg | 8.81 hi | 10.95 a | 11.73 a |
PMM | 31.44 a | 32.06 a | 8.97 ef | 9.16 ghi | 4.50 ef | 4.57 e | |
RSM | 23.54 c | 24.73 c | 11.78 b | 12.35 ab | 3.93 g | 4.12 fgh | |
WPM | 20.02 de | 20.56 e | 12.73 a | 13.09 a | 3.64 gh | 3.74 ij | |
BPM | 16.95 g | 17.09 f | 11.85 b | 11.97 bc | 5.09 d | 5.12 d | |
I80% | WM | 6.57 j | 7.12 j | 6.57 h | 7.12 j | 8.76 b | 9.47 b |
PMM | 27.44 b | 28.87 b | 7.85 g | 8.26 i | 3.927 g | 4.12 fg | |
RSM | 21.21 d | 22.23 d | 10.59 c | 11.11 cd | 3.52 gh | 3.71 ij | |
WPM | 18.25 f | 19.11 e | 11.61 b | 12.16 b | 3.33 h | 3.21 jk | |
BPM | 15.04 h | 14.80 g | 10.54 c | 10.35 de | 4.52 e | 4.43 ef | |
I60% | WM | 5.59 k | 6.19 j | 5.59 i | 6.19 k | 7.45 c | 8.23 c |
PMM | 24.44 c | 24.51 c | 6.97 h | 7.00 jk | 3.50 gh | 3.50 jk | |
RSM | 19.15 ef | 19.47 e | 9.57 de | 9.73 efg | 3.19 hi | 3.24 kl | |
WPM | 15.92 gh | 15.97 fg | 10.14 cd | 10.16 ef | 2.90 i | 2.90 l | |
BPM | 13.16 i | 13.23 h | 9.21 e | 9.26f gi | 3.95 fg | 3.97 ghi |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Wahed, M.H.; Al-Omran, A.M.; Hegazi, M.M.; Ali, M.M.; Ibrahim, Y.A.M.; EL Sabagh, A. Salt Distribution and Potato Response to Irrigation Regimes under Varying Mulching Materials. Plants 2020, 9, 701. https://doi.org/10.3390/plants9060701
Abd El-Wahed MH, Al-Omran AM, Hegazi MM, Ali MM, Ibrahim YAM, EL Sabagh A. Salt Distribution and Potato Response to Irrigation Regimes under Varying Mulching Materials. Plants. 2020; 9(6):701. https://doi.org/10.3390/plants9060701
Chicago/Turabian StyleAbd El-Wahed, Mohamed Hassan, Abdulrasoul Mosa Al-Omran, Mahmoud Mohamed Hegazi, Mahmoud Mohamed Ali, Yahia Abdelaty Mohamed Ibrahim, and Ayman EL Sabagh. 2020. "Salt Distribution and Potato Response to Irrigation Regimes under Varying Mulching Materials" Plants 9, no. 6: 701. https://doi.org/10.3390/plants9060701