Next Article in Journal
Legume Crops and Biotrophic Pathogen Interactions: A Continuous Cross-Talk of a Multilayered Array of Defense Mechanisms
Previous Article in Journal
Screening of Native Plants Growing on a Pb/Zn Mining Area in Eastern Morocco: Perspectives for Phytoremediation
Previous Article in Special Issue
Enhanced Agronomic Efficiency Using a New Controlled-Released, Polymeric-Coated Nitrogen Fertilizer in Rice
Open AccessArticle

Metabolite Profiling and Network Analysis Reveal Coordinated Changes in Low-N Tolerant and Low-N Sensitive Maize Genotypes under Nitrogen Deficiency and Restoration Conditions

1
Department of Botany, Jamia Hamdard, New Delhi 110062, India
2
Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
3
Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
*
Author to whom correspondence should be addressed.
Plants 2020, 9(11), 1459; https://doi.org/10.3390/plants9111459
Received: 29 September 2020 / Revised: 20 October 2020 / Accepted: 25 October 2020 / Published: 29 October 2020
Nitrogen (N), applied in the form of a nitrogenous fertilizer, is one of the main inputs for agricultural production. Food production is closely associated with the application of N. However, the application of nitrogenous fertilizers to agricultural fields is associated with heavy production of nitrous oxide because agricultural crops can only utilize 30–40% of applied N, leaving behind unused 60–70% N in the environment. The global warming effect of this greenhouse gas is approximately 300 times more than of carbon dioxide. Under the present scenario of climate change, it is critical to maintain the natural balance between food production and environmental sustainability by targeting traits responsible for improving nitrogen-use-efficiency (NUE). Understanding of the molecular mechanisms behind the metabolic alterations due to nitrogen status needs to be addressed. Additionally, mineral nutrient deficiencies and their associated metabolic networks have not yet been studied well. Given this, the alterations in core metabolic pathways of low-N tolerant (LNT) and low-N sensitive (LNS) genotypes of maize under N-deficiency and their efficiency of recovering the changes upon resupplying N were investigated by us, using the GC–MS and LC–MS based metabolomic approach. Significant genotype-specific changes were noted in response to low-N. The N limitation affected the whole plant metabolism, most significantly the precursors of primary metabolic pathways. These precursors may act as important targets for improving the NUE. Limited availability of N reduced the levels of N-containing metabolites, organic acids and amino acids, but soluble sugars increased. Major variations were encountered in LNS, as compared to LNT. This study has revealed potential metabolic targets in response to the N status, which are indeed the prospective targets for crop improvement. View Full-Text
Keywords: maize; GC–MS; LC–MS; metabolomics; nitrogen deficiency; nitrogen-use-efficiency; low-N tolerance maize; GC–MS; LC–MS; metabolomics; nitrogen deficiency; nitrogen-use-efficiency; low-N tolerance
Show Figures

Figure 1

MDPI and ACS Style

Ganie, A.H.; Pandey, R.; Kumar, M.N.; Chinnusamy, V.; Iqbal, M.; Ahmad, A. Metabolite Profiling and Network Analysis Reveal Coordinated Changes in Low-N Tolerant and Low-N Sensitive Maize Genotypes under Nitrogen Deficiency and Restoration Conditions. Plants 2020, 9, 1459. https://doi.org/10.3390/plants9111459

AMA Style

Ganie AH, Pandey R, Kumar MN, Chinnusamy V, Iqbal M, Ahmad A. Metabolite Profiling and Network Analysis Reveal Coordinated Changes in Low-N Tolerant and Low-N Sensitive Maize Genotypes under Nitrogen Deficiency and Restoration Conditions. Plants. 2020; 9(11):1459. https://doi.org/10.3390/plants9111459

Chicago/Turabian Style

Ganie, Arshid H.; Pandey, Renu; Kumar, M. N.; Chinnusamy, Viswanathan; Iqbal, Muhammad; Ahmad, Altaf. 2020. "Metabolite Profiling and Network Analysis Reveal Coordinated Changes in Low-N Tolerant and Low-N Sensitive Maize Genotypes under Nitrogen Deficiency and Restoration Conditions" Plants 9, no. 11: 1459. https://doi.org/10.3390/plants9111459

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop