Antibacterial, Mutagenic Properties and Chemical Characterisation of Sugar Bush (Protea caffra Meisn.): A South African Native Shrub Species
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material Collection, Sample Preparation and Extraction
4.2. Antibacterial Susceptibility Test
4.3. Liquid-to-Liquid Fractionation and Gas Chromatography-Mass Spectroscopy (GC-MS)
4.4. Ultra-High Performance Liquid Chromatography-MS/MS (UHPLC) Analysis of Phenolic Acids
4.5. Ames Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO; Division of Diarrhoeal and Acute Respiratory Disease Control. The Treatment of Diarrhoea. In A Manual for Physicians and Other Senior Health Workers; World Health Organisation: Geneva, Switzerland, 1990. [Google Scholar]
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [Green Version]
- Thi, P.L.N.; Yassibanda, S.; Aidara, A.; Le Bouguénec, C.; Germani, Y. Enteropathogenic Klebsiella pneumoniae HIV-infected adults, Africa. Emerg. Infect. Dis. 2003, 9, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.S.; Elgorashi, E.E.; Moodley, N.; McGaw, L.J.; Naidoo, V.; Eloff, J.N. The antimicrobial, antioxidative, anti-inflammatory activity and cytotoxicity of different fractions of four South African Bauhinia species used traditionally to treat diarrhoea. J. Ethnopharmacol. 2012, 143, 826–839. [Google Scholar] [CrossRef] [PubMed]
- Palombo, E.A. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: Modes of action and effects on intestinal function. Phytother. Res. 2006, 20, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Rout, P.; Panda, T. Ethnobotanical survey of medicinal plants used for the treatment of diarrhoea and dysentery by the tribals of Similipal forest, Mayurbhanj, Odisha, India. Appl. Sci. 2017, 19, 9–18. [Google Scholar]
- Liu, C.; Zheng, Y.; Xu, W.; Wang, H.; Lin, N. Rhubarb tannins extract inhibits the expression of aquaporins 2 and 3 in magnesium sulphate-induced diarrhoea model. BioMed Res. Int. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zhang, J.; Gao, W.; Qu, Z.; Liu, C. Anti-diarrhoeal activity of methanol extract of Santalum album L. in mice and gastrointestinal effect on the contraction of isolated jejunum in rats. J. Ethnopharmacol. 2014, 154, 704–710. [Google Scholar] [CrossRef]
- Leonti, M.; Bellot, S.; Zucca, P.; Rescigno, A. Astringent drugs for bleedings and diarrhoea: The history of Cynomorium coccineum (Maltese mushroom). J. Ethnopharmacol. 2020, 249, 112368. [Google Scholar] [CrossRef]
- Njume, C.; Goduka, N.O. Treatment of diarrhoea in rural African communities: An overview of measures to maximise the medicinal potentials of indigenous plants. Int. J. Environ. Res. Public Health 2012, 9, 3911–3933. [Google Scholar] [CrossRef] [Green Version]
- Hutching, A. Zulu Medicinal Plants: An Inventory; University of Natal Press: Pietermaritzburg, South Africa, 1996. [Google Scholar]
- Van Vuuren, S.; Nkwanyana, M.N.; De Wet, H. Antimicrobial evaluation of plants used for the treatment of diarrhoea in a rural community in northern Maputaland, KwaZulu-Natal, South Africa. BMC Complement. Altern. Med. 2015, 15, 53. [Google Scholar] [CrossRef] [Green Version]
- Mathabe, M.; Nikolova, R.; Lall, N.; Nyazema, N. Antibacterial activities of medicinal plants used for the treatment of diarrhoea in Limpopo Province, South Africa. J. Ethnopharmacol. 2006, 105, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, J.H.; Littlejohn, G.M. Protea: A floricultural crop from the Cape Floristic Kingdom. Hortic. Rev. 2010, 5, 1–48. [Google Scholar]
- Strugnell, A.M. Endemics of Mt. Mulanje. The endemic spermatophytes of Mt. Mulanje, Malawi. Sy. Geogr. Plants 2002, 72, 11–26. [Google Scholar]
- Bamford, M.; Neumann, F.; Pereira, L.; Scott, L.; Dirks, P.; Berger, L. Botanical remains from a coprolite from the Pleistocene hominin site of Malapa, Sterkfontein Valley, South Africa. S. Afr. J. Bot. 2010, 45, 23–28. [Google Scholar]
- Du Preez, P.; Venter, H. The phytosociology of the woody vegetation in the southern part of the Vredefort Dome Area. Part II: Communities of the hills. S. Afr. J. Bot. 1990, 56, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Paterson-Jones, C. Protea Family in Southern Africa; Struik Publishers (Pty) Ltd.: Cape Town, South Africa, 2000. [Google Scholar]
- Paterson-Jones, C. Protea; Struik Publishers (Pty) Ltd.: Cape Town, South Africa, 2007. [Google Scholar]
- Raimondo, D.; Staden, L.V.; Foden, W.; Victor, J.E.; Helme, N.A.; Turner, R.C.; Kamundi, D.A.; Manyama, P.A. Red List of South African Plants; South African National Biodiversity Institute: Pretoria, South Africa, 2009. [Google Scholar]
- Zukulu, S. Medicinal and Charm Plants of Pondoland; South African National Biodiversity Institute (SANBI): Cape Town, South Africa, 2012. [Google Scholar]
- Van Wyk, B.-E.; Gericke, N. People’s Plants: A Guide to Useful Plants of Southern Africa; Briza Publications: Pretoria, South Africa, 2000. [Google Scholar]
- Semenya, S.S.; Potgieter, M.J.; Erasmus, L.J.C. Exotic and indigenous problem plants species used by the Bapedi, to treat sexually transmitted infections in Limpopo Province, South Africa. Afr. Health Sci. 2013, 13, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Kuete, V. Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Med. 2010, 76, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Eloff, J.N. A Sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica 1998, 64, 711–713. [Google Scholar] [CrossRef] [Green Version]
- Cariello, N.F.; Piegorsch, W.W. The Ames test: The two-fold rule revisited. Mutat. Res. Gen. Toxicol. Environ. 1996, 369, 23–31. [Google Scholar] [CrossRef]
- Jäger, A.; Eloff, J. Evaluation of antibacterial activity of traditionally prepared South African remedies for infections. S. Afr. J. Bot. 2003, 69, 595–598. [Google Scholar] [CrossRef] [Green Version]
- Elisha, I.L.; Botha, F.; Madikizela, B.; McGaw, L.J.; Eloff, J.N. Acetone leaf extracts of some South African trees with high activity against Escherichia coli also have good antimycobacterial activity and selectivity index. BMC Complement. Altern. Med. 2017, 17, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotze, M.; Eloff, J.; Houghton, P. Extraction of antibacterial compounds from Combretum microphyllum (Combretaceae). S. Afr. J. Bot. 2002, 68, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Eloff, J.N. Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complement. Altern. Med. 2019, 19, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motlhatlego, K.; Njoya, E.M.; Abdalla, M.; Eloff, J.; McGaw, L.J. The potential use of leaf extracts of two Newtonia (Fabaceae) species to treat diarrhoea. S. Afr. J. Bot. 2018, 116, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Semenya, S.S.; Potgieter, M.J. Medicinal plants cultivated in Bapedi traditional healers homegardens, Limpopo Province, South Africa. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control. 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Hassan, G.S.; El-Emam, A.A.; Gad, L.M.; Barghash, A.E.M. Synthesis, antimicrobial and antiviral testing of some new 1-adamantyl analogues. Saudi Pharm. J. 2010, 18, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Manchand, P.S.; Cerruti, R.L.; Martin, J.A.; Hill, C.H.; Merrett, J.H.; Keech, E.; Belshe, R.B.; Connell, E.V.; Sim, I.S. Synthesis and antiviral activity of metabolites of rimantadine. J. Med. Chem. 1990, 33, 1992–1995. [Google Scholar] [CrossRef]
- El-Emam, A.A.; Al-Deeb, O.A.; Al-Omar, M.A.; Lehmann, J. Synthesis, antimicrobial, and anti-HIV-1 activity of certain 5-(1-adamantyl)-2-substituted thio-1,3,4-oxadiazoles and 5-(1-adamantyl)-3-substituted aminomethyl-1,3,4-oxadiazoline-2-thiones. Bioorganic Med. Chem. 2004, 12, 5107–5113. [Google Scholar] [CrossRef] [PubMed]
- Makarova, N.V.; Boreko, E.I.; Moiseev, I.K.; Pavlova, N.I.; Nikolaeva, S.N.; Zemtsova, M.N.; Vladyko, G.V. Antiviral activity of adamantane-containing heterocycles. Pharm. Chem. J. 2002, 36, 3–6. [Google Scholar] [CrossRef]
- Kritsanida, M.; Mouroutsou, A.; Marakos, P.; Pouli, N.; Papakonstantinou-Garoufalias, S.; Pannecouque, C.; Witvrouw, M.; De Clercq, E. Synthesis and antiviral activity evaluation of some new 6-substituted 3-(1-adamantyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles. II Farmaco 2002, 57, 253–257. [Google Scholar] [CrossRef]
- Kochetkov, N.; Sviridov, A.; Ermolenko, M.; Yashunsky, D.; Borodkin, V. Stereo-controlled synthesis of erythronolides A and B from 1, 6-anhydro-β-D-glucopyranose (levoglucosan). Skeleton assembly in (C9–C13)+(C7–C8)+(C1–C6) sequence. Tetrahedron 1989, 45, 5109–5136. [Google Scholar] [CrossRef]
- Sviridov, A.F.; Ermolenko, M.S.; Yashunskii, D.V.; Borodkin, V.S.; Kochetkov, N.K. Synthesis of macrolide antibiotics. Synthesis of erythronolide A. Bull. Acad. Sci. USSR Div. Chem. Sci. 1990, 39, 179–183. [Google Scholar] [CrossRef]
- Koay, Y.C.; Wong, K.C.; Osman, H.; Eldeen, I.; Asmawi, M.Z. Chemical constituents and biological activities of Strobilanthes crispus L. Rec. Nat. Prod. 2013, 7, 59. [Google Scholar]
- Murugan, K.; Iyer, V.V. Antioxidant activity and Gas Chromatographic-Mass Spectrometric analysis of extracts of the marine algae, Caulerpa peltata and Padina gymnospora. Indian J. Pharm. Sci. 2015, 76, 548–552. [Google Scholar]
- Ravichandiran, M.; Thiripurasalini, S.; Ravitchandirane, V.; Gopalane, S.; Stella, C. Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis. J. Coast Life Med. 2013, 1, 253–257. [Google Scholar]
- Sharma, A.; Menghani, E. Antibiotic potentials and isolation of metabolomes from microorganisms of mesophilic soil of Rajasthan, India. Afr. J. Microbiol. Res. 2017, 11, 335–344. [Google Scholar]
- Al-Abd, N.M.; Nor, Z.M.; Mansor, M.; Azhar, F.; Hasan, M.S.; Kassim, M. Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract. BMC Complement. Altern. Med. 2015, 15, 385. [Google Scholar] [CrossRef] [Green Version]
- Sultana, N.; Akhter, M.; Khan, R.A.; Afza, N.; Tareen, R.B.; Malik, A. Nematicidal natural products from the aerial parts of Buddleja crispa. Nat. Prod. Res. 2010, 24, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, P.; Suthindhiran, K.; Jayasri, M. Inhibitory potential of Turbinaria ornata against key metabolic enzymes linked to diabetes. Biomed. Res. Int. 2014, 2014, 783895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasa, N.; Masoumi, F.; Rouhani, R.; Haji, A. Chemical composition and antioxidant activity of the extract and essential oil of Rosa damascena from Iran, population of Guilan. Daru 2009, 17, 175–180. [Google Scholar]
- Alagammal, M.; Tresina, P.; Mohan, V. GC-MS determination of bioactive components of Polygala javana DC. Int. J. Curr. Pharm. Res. 2012, 4, 42–44. [Google Scholar]
- Mao, C.H.; Wang, Q.M.; Huang, R.Q.; Bi, F.C.; Chen, L.; Liu, Y.X.; Shang, J. Synthesis and insecticidal evaluation of novel N-oxalyl derivatives of tebufenozide. J. Agric. Food Chem. 2004, 52, 6737–6741. [Google Scholar] [CrossRef]
- Abubaker, M.A.; Wandruszka, R.V. Determination of phenolic herbicides in soil by peroxyoxalate chemiluminescence. Anal. Lett. 1991, 24, 93–102. [Google Scholar] [CrossRef]
- Taylor, J.L.; Elgorashi, E.E.; Maes, A.; Van Gorp, U.; De Kimpe, N.; Van Staden, J.; Verschaeve, L. Investigating the safety of plants used in South African traditional medicine: Testing for genotoxicity in the micronucleus and alkaline comet assays. Environ. Mol. Mutagen. 2003, 42, 144–154. [Google Scholar] [CrossRef]
- Ndhlala, A.; Anthonissen, R.; Stafford, G.; Finnie, J.F.; Verschaeve, L.; Van Staden, J. In vitro cytotoxic and mutagenic evaluation of thirteen commercial herbal mixtures sold in KwaZulu-Natal, South Africa. S. Afr. J. Bot. 2010, 76, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Verschaeve, L.; Kestens, V.; Taylor, J.L.S.; Elgorashi, E.E.; Maes, A.; Van Puyvelde, L.; De Kimpe, N.; Van Staden, J. Investigation of the antimutagenic effects of selected South African medicinal plant extracts. Toxicol. Vitr. 2004, 18, 29–35. [Google Scholar] [CrossRef]
- Vambe, M.; Aremu, A.; Chukwujekwu, J.; Finnie, J.F.; Van Staden, J. Antibacterial screening, synergy studies and phenolic content of seven South African medicinal plants against drug-sensitive and -resistant microbial strains. S. Afr. J. Bot. 2018, 114, 250–259. [Google Scholar] [CrossRef]
- Gruz, J.; Novák, O.; Strnad, M. Rapid analysis of phenolic acids in beverages by UPLC–MS/MS. Food Chem. 2008, 111, 789–794. [Google Scholar] [CrossRef]
- Elgorashi, E.E.; Taylor, J.L.S.; Maes, A.; Van Staden, J.; De Kimpe, N.; Verschaeve, L. Screening of medicinal plants used in South African traditional medicine for genotoxic effects. Toxicol. Lett. 2003, 143, 195–207. [Google Scholar] [CrossRef]
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 113, 173–215. [Google Scholar] [CrossRef]
Minimum Inhibitory Concentration (MIC, mg/mL) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Methanol | Dichloromethane | Petroleum Ether | |||||||||||
Plant Part | Ec | Ef | Kp | Sa | Sa D | Ec | Ef | Kp | Sa | Ec | Ef | Kp | Sa |
Bark | 1.25 | 0.63 | >2.5 | 0.31 | >2.5 | 1.25 | >2.5 | 2.5 | 1.25 | 1.25 | >2.5 | 2.5 | 1.25 |
Flowers | 1.25 | 1.25 | 1.25 | 2.5 | 2.5 | 1.25 | 0.63 | 1.25 | 0.63 | 1.25 | 0.63 | 1.25 | 0.63 |
Leaves | 2.5 | 0.63 | 1.25 | 1.25 | 0.63 | 2.5 | >2.5 | 1.25 | 2.5 | 2.5 | >2.5 | 1.25 | 2.5 |
Seeds | 0.63 | 1.25 | 0.31 | 1.25 | 1.25 | 0.63 | 0.63 | 0.31 | 1.25 | 0.63 | 0.63 | 0.31 | 1.25 |
Twigs | 0.63 | 0.31 | 0.63 | 0.31 | 0.63 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Neomycin a (µg/mL) | 0.78 | 0.39 | 1.6 | 0.65 | 6.25 |
Minimum Inhibitory Concentration (MIC, mg/mL) | |||||||
---|---|---|---|---|---|---|---|
Fraction | Ec | Ec D | Ef | Kp | Kp D | Sa | Sa D |
Acetone | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | 1.25 | >2.5 |
Cold ethyl acetate | 0.6 | >2.5 | 0.078 | 0.3 | >2.5 | 0.15 | >2.5 |
Hot ethyl acetate | >2.5 | >2.5 | 0.3 | >2.5 | >2.5 | 0.6 | >2.5 |
MeOH | >2.5 | >2.5 | >2.5 | > 2.5 | >2.5 | > 2.5 | >2.5 |
Neomycin a (µg/mL) | 0.78 | 6.4 | 0.39 | 1.6 | 8.3 | 0.65 | 6.3 |
Sub-Fraction | Chemical Name | Retention Time | Area % | Similarity % | Molecular Formulae | Molecular Weight |
---|---|---|---|---|---|---|
Cold ethyl acetate | Polygalitol | 13.35 | 34.76 | 95 | C6H12O5 | 164 |
Phenol, 4-(1,1,3,3-tetramethylbutyl)- | 15.38 | 9.8 | 89 | C14H22O | 206 | |
Spiro-1-(cyclohex-2-ene)-2’-(5’-oxabicyclol) | 14.94 | 8.2 | 77 | C14H22O | 206 | |
1-Adamantanecarboxylic acid, 2-propenyl | 15.03 | 8.07 | 89 | C14H20O2 | 220 | |
Carbamic acid, N-[1,1-bis(trifluoromethyl)ethyl | 14.85 | 7.03 | 90 | C19H25F6NO2 | 413 | |
Phenol, 2-methyl-4-(1,1,3,3-tetramethylbutyl)- | 15.27 | 6.23 | 80 | C15H24O | 220 | |
Hexestrol, O-acetyl- | 15.16 | 3.57 | 88 | C20H24O3 | 312 | |
1-Heptacosanol | 19.41 | 2.86 | 94 | C27H560 | 396 | |
1,2-Bis(p-acetoxyphenyl)ethanedione | 14.74 | 2.1 | 77 | C18H1406 | 326 | |
1,3-Benzenediol, 4-propyl- | 13.73 | 1.83 | 83 | C9H1202 | 152 | |
Phthalic acid, butyl tridecyl ester | 18.53 | 1.74 | 75 | C22H28O4 | 356 | |
1-Nonadecanol | 15.89 | 1.60 | 93 | C19H40O | 284 | |
Phenol 2,4-bis (1,1-dimethylethyl) | 12.84 | 1.16 | 94 | C14H22O | 206 | |
Hot ethyl acetate | 1-Heptacosanol | 14.16 | 70.57 | 90 | C27H560 | 396 |
1,3,5-Benzenetriol | 13.55 | 15.42 | 95 | C6H603 | 126 | |
Polygalitol | 12.99 | 7.31 | 72 | C6H12O5 | 164 | |
1,3-Benzenediol, 4-propyl- | 13.73 | 3.93 | 70 | C9H12O2 | 152 | |
ß-Glucopyranose, 1,6-anhydro-(levoglucosan) | 11.60 | 2.78 | 70 | C6H10O5 | 162 | |
1-Nonadecanol | 15.89 | 1.6 | 93 | C19H40O | 284 | |
Acetone | Oxalyl acid | 3.23 | 51.12 | 93 | C2CI2O2 | 126 |
Polygalitol | 13.22 | 48.88 | 95 | C6H12O5 | 164 |
Hydroxybenzoic Acids (µg/g DW) | |||||||
---|---|---|---|---|---|---|---|
Plant Part | Catechin Acid | Gallic Acid | p-Hydroxybenzoic Acid | p-Protocatechuic Acid | Salicylic Acid | Syringic Acid | Vanillic Acid |
Bark | 6.83 ± 1.4 c | 0.3 ± 0.3 b | 1.95 ± 0.1 d | 88.1 ± 4.4 b | 0.1 ± 0 e | 2.4 ± 0.4 a | 4.7 ± 0.2 c |
Leaves | 17.98 ± 0.51 a | 1.50 ± 0.03 a | 374.55 ± 9.14 a | 184.35 ± 4.44 a | 5.07 ± 0.08 b | 1.22 ± 0.02 c | 23.35 ± 0.13 a |
Seeds | <LOD | 0.69 ± 0.23 b | 23.74 ± 0.37 c | 44.22 ± 1.32 d | 1.55 ± 0.04 d | 0.67 ± 0.03 d | 4.8 ± 9 0.2c |
Twigs | 13.02 ± 2.03 b | 0.42 ± 0.02 b | 4.94 ± 0.36 d | 17.65 ± 0.76 e | 1.85 ± 0.03c | 1.28 ± 0.3 c | 6.66 ± 0.09 c |
Flowers | 4.08 ± 1.3 d | 1.63 ± 0.04 a | 156.87 ± 5.03 b | 50.35 ± 1.57 c | 7.73 ± 0.36 a | 1.58 ± 0.07 b,c | 10.86 ± 0.7 b |
Hydroxycinnamic Acids (µg/g DW) | |||||
---|---|---|---|---|---|
Plant Part | Caffeic Acid | Chlorogenic Acid | p-Coumaric Acid | Ferulic Acid | Sinapic Acid |
Bark | 5.69 ± 0.22 e | 0.56 ± 0.03 d | 1.69 ± 0.06 d | 14.12 ± 0.39 a | 0.2 ± 0 b |
Leaves | 266.37 ± 1.46 a | 11.67 ± 0.28 b | 21.22 ± 0.54 a | 2.68 ± 0.18 e | 0.08 ± 0 c |
Seeds | 29.09 ± 0.77 c | 3.34 ± 0.16 c | 10.03 ± 0.4 b | 4.89 ± 0.2 d | 0.09 ± 0.01 c |
Twigs | 9.36 ± 0.39 d | 29.91 ± 1.21 a | 5.3 ± 0.26 c | 5.68 ± 0.26 c | 0.23 ± 0.13 a |
Flowers | 39.36 ± 1.39 b | 4.82 ± 0.2 c | 10.77 ± 0.62 b | 6.92 ± 0.13 b | 0.24 ± 0.03 a |
Number of His+ Revertants/Plate (mg/mL) | |||||||
---|---|---|---|---|---|---|---|
TA98 | TA102 | ||||||
Plant organ | Solvent | 5 | 0.5 | 0.05 | 5 | 0.5 | 0.05 |
Bark | MeOH | 9.7 ± 2.3 | 8.3 ± 3.2 | 10.7 ± 1.5 | 248.0 ± 20.1 | 174.7 ± 11.7 | 177.3 ± 15.5 |
PE | 6.4 ± 2.1 | 19.8 ± 4.1 | 15.8 ± 6.1 | 213.5 ± 15.9 | 172.5 ± 26.2 | 245.6 ± 21.1 | |
Flowers | PE | 13.6 ± 5.2 | 8.8 ± 2.6 | 12.6 ± 3.2 | 228.0 ± 12.1 | 145.3 ± 22.5 | 207.0 ± 12.8 |
Seeds | DCM | 18.0 ± 4.6 | 7.0 ± 3.6 | 8.7 ± 4.7 | 269.3 ± 22.0 | 253.3 ± 28.3 | 264.0 ± 5.6 |
MeOH | 9.7 ± 2.1 | 10.0 ± 2.6 | 10.7 ± 2.1 | 225.3 ± 21.1 | 278.7 ± 8.5 | 260.0 ± 2.6 | |
PE | 8.7 ± 3.2 | 11.6 ± 1.9 | 21.9 ± 7.6 | 269.0 ± 33.6 | 276.0 ± 18.2 | 208.0 ± 25.6 | |
Twigs | MeOH | 22.0 ± 6.2 | 29.0 ± 8.2 | 17.3 ± 6.7 | 192.0 ± 6.2 | 235.0 ± 22.5 | 284.3 ± 27.4 |
Leaves | MeOH | 16.7 ± 1.5 | 15.7 ± 11.0 | 27.0 ± 11.4 | 278.0 ± 30.2 | 109.7 ± 22.0 | 281.0 ± 43.9 |
PE | 7.2 ± 2.3 | 22.8 ± 7.6 | 19.5 ± 4.9 | 233.6 ± 16.5 | 246.0 ± 17.7 | 217.6 ± 14.7 | |
Water (-ve control) | 19.1 ± 8.4 | 145.2 ± 17 | |||||
4-nitroquinoline-oxide (+ve control) | 191.9 ± 17.3 | 296.7 ± 20.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vambe, M.; Aremu, A.O.; Chukwujekwu, J.C.; Gruz, J.; Luterová, A.; Finnie, J.F.; Van Staden, J. Antibacterial, Mutagenic Properties and Chemical Characterisation of Sugar Bush (Protea caffra Meisn.): A South African Native Shrub Species. Plants 2020, 9, 1331. https://doi.org/10.3390/plants9101331
Vambe M, Aremu AO, Chukwujekwu JC, Gruz J, Luterová A, Finnie JF, Van Staden J. Antibacterial, Mutagenic Properties and Chemical Characterisation of Sugar Bush (Protea caffra Meisn.): A South African Native Shrub Species. Plants. 2020; 9(10):1331. https://doi.org/10.3390/plants9101331
Chicago/Turabian StyleVambe, McMaster, Adeyemi O. Aremu, Jude C. Chukwujekwu, Jiri Gruz, Andrea Luterová, Jeffrey F. Finnie, and Johannes Van Staden. 2020. "Antibacterial, Mutagenic Properties and Chemical Characterisation of Sugar Bush (Protea caffra Meisn.): A South African Native Shrub Species" Plants 9, no. 10: 1331. https://doi.org/10.3390/plants9101331
APA StyleVambe, M., Aremu, A. O., Chukwujekwu, J. C., Gruz, J., Luterová, A., Finnie, J. F., & Van Staden, J. (2020). Antibacterial, Mutagenic Properties and Chemical Characterisation of Sugar Bush (Protea caffra Meisn.): A South African Native Shrub Species. Plants, 9(10), 1331. https://doi.org/10.3390/plants9101331