Potential Phytotoxic Effect of Essential Oil of Non-Native Species Impatiens parviflora DC.
Abstract
:1. Introduction
2. Results
2.1. Content and Composition of EO
2.2. Phytotoxic Effect
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. EO Isolation
4.3. GC-MS Analysis
4.4. Compounds Identification
4.5. Model Plants
4.6. Phytotoxic Activity Assay
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Csisár, A.; Bartha, D. SMALL BALSAM (Impatiens parviflora DC.). In The Most Important Invasive Plants in Hungary; Botta-Dukát, Z., Balogh, L., Eds.; Institute of Ecology and Botany, Hungarian Academy of Sciences: Vácrátót, Hungary, 2008; pp. 139–149. [Google Scholar]
- Hejda, M. What is the impact of Impatiens parviflora on diversity and composition of herbal layer communities of temperate forests? PLoS ONE 2012, 7, e39571. [Google Scholar] [CrossRef] [PubMed]
- Quinet, M.; Descamps, C.; Coster, Q.; Lutts, S.; Jacquemart, A.L. Tolerance to water stress and shade in the invasive Impatiens parviflora. Int. J. Plant Sci. 2015, 176, 848–858. [Google Scholar] [CrossRef]
- Florianová, A.; Münzbergová, Z. The intensity of intraspecific plant-soil feedbacks in alien Impatiens species depends on the environment. Perspect. Plant Ecol. 2018, 32, 56–64. [Google Scholar] [CrossRef]
- Florianová, A.; Münzbergová, Z. Drivers of natural spread of invasive Impatiens parviflora differ between life-cycle stages. Biol. Invasions 2018, 20, 2121–2140. [Google Scholar] [CrossRef]
- Florianová, A.; Münzbergová, Z. Invasive Impatiens parviflora has negative impact on native vegetation in oak-hornbeam forests. Flora 2017, 226, 10–16. [Google Scholar]
- Barabasz-Krasny, B.; Możdżeń, K.; Sołtys-Lelek, A.; Stachurska Swakoń, A. Biological traits of Impatiens parviflora DC. under different habitat conditions. Not. Bot. Horti. Agrobo. 2018, 46, 277–285. [Google Scholar] [CrossRef]
- Jarčuška, B.; Slezák, M.; Hrivnák, R.; Senko, D. Invasibility of alien Impatiens parviflora in temperate forest understories. Flora 2016, 224, 14–23. [Google Scholar] [CrossRef]
- Medvecká, J.; Kliment, J.; Májeková, J.; Halada, Ľ.; Zaliberová, M.; Gojdičová, E.; Feráková, V.; Jarolímek, I. Inventory of the alien flora of Slovakia. Preslia 2012, 84, 257–309. [Google Scholar]
- Dobravolskaitė, R. Alien species Impatiens parviflora invasion into forest communities of Lithuania. Bot. Lith. 2012, 18, 3–12. [Google Scholar] [CrossRef]
- Kupcinskiene, E.; Zybartaite, L.; Janulioniene, R.; Zukauskiene, J.; Paulauskas, A. Molecular diversity of small balsam populations in relation to site characteristics. Cent. Eur. J. Biol. 2013, 8, 1048–1061. [Google Scholar] [CrossRef]
- Maslo, S.; Šaric, Š. Small Balsam. Impatiens parviflora DC. (Balsaminaceae): A new alien species to the flora of Bosnia and Herzegovina. Phytol. Balcan. 2019, 25, 31–35. [Google Scholar]
- Szewczyk, K. Phytochemistry of the genus impatiens (Balsaminaceae): A review. Biochem. Syst. Ecol. 2018, 80, 94–121. [Google Scholar] [CrossRef]
- Borhidi, A. Challenges of the repeated studies of phytosociological plots. Kitaibelia 1999, 4, 357–366. [Google Scholar]
- Chmura, D. Biology and Ecology of An Invasion of Impatiens Parviflora DC in Natural and Semi-Natural Habitats; Wydawnictwo Naukowe Akademii Techniczno-Humanistycznej w Bielsku-Białej: Bielsko-Biała, Poland, 2014. [Google Scholar]
- Bobuľská, L.; Macková, D.; Malina, R.; Demková, L. Occurrence and dynamics of Impatiens parviflora depending on various environmental conditions in the protected areas in Slovakia. Eur. J. Ecol. 2016, 2, 87–94. [Google Scholar] [CrossRef]
- Baležentienė, L. Phytotoxicity and allelopathic impact of Impatiens glandulifera. Biologija 2018, 64, 153–159. [Google Scholar] [CrossRef]
- Uddin, M.N.; Robinson, R.W. Allelopathy and resource competition: The effects of Phragmites australis invasion in plant communities. Bot. Stud. 2017, 58, 29–40. [Google Scholar] [CrossRef]
- Chen, B.M.; Liao, H.X.; Chen, W.B.; Wei, H.J.; Peng, S.L. Role of allelopathy in plant invasion and control of invasive plants. Allelopath. J. 2017, 41, 155–166. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Cianfaglione, K.; Nagy, D.U.; Canale, A.; Maggi, F. Evaluation of two invasive plant invaders in Europe (Solidago canadensis and Solidago gigantea) as possible sources of botanical insecticides. J. Pest Sci. 2019, 92, 805–821. [Google Scholar] [CrossRef]
- Grabowska, K.; Podolak, I.; Galanty, A.; Załuski, D.; Makowska-Wąs, J.; Sobolewska, D.; Janeczko, Z.; Żmudzki, P. In vitro anti-denaturation and antihyaluronidase activities of extracts and galactolipids from leaves of Impatiens parviflora DC. Nat. Prod. Res. 2015, 30, 1219–1223. [Google Scholar] [CrossRef]
- Grabowska, K.; Podolak, I.; Galanty, A.; Żmudzki, P.; Koczurkiewicz, P.; Piska, K.; Pękala, E.; Janeczko, Z. Two new triterpenoid saponins from the leaves of Impatiens parviflora DC. and their cytotoxic activity. Ind. Crop Prod. 2017, 96, 71–79. [Google Scholar] [CrossRef]
- Grabowska, K.; Wróbel, D.; Żmudzki, P.; Podolak, I. Anti-inflammatory activity of saponins from roots of Impatiens parviflora DC. Nat. Prod. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Reeve, M.A.; Pollard, K.M.; Kurose, D. Differentiation between closely-related Impatiens spp. and regional biotypes of Impatiens glandulifera using a highly-simplified and inexpensive method for MALDI-TOF MS. Plant Methods 2018, 14, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, K.; Zidorn, Ch.; Biernasiuk, A.; Komstae, Ł.; Granica, S. Polyphenols from Impatiens (Balsaminaceae) and their antioxidantand antimicrobial activities. Ind. Crop Prod. 2016, 86, 262–272. [Google Scholar] [CrossRef]
- Szewczyk, K.; Olech, M. Optimization of extraction method for LC–MS based determination of phenolic acid profiles in different Impatiens species. Phytochem. Lett. 2017, 20, 322–330. [Google Scholar] [CrossRef]
- Szewczyk, K.; Heise, E.M.; Piwowarski, J.P. Preliminary characterization and bioactivities of some Impatiens L. water-soluble polysaccharides. Molecules 2018, 23, 631. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, K.; Kalemba, D.; Komsta, Ł.; Nowak, R. Comparison of the essential oil composition of selected Impatiens species and its antioxidant activities. Molecules 2016, 21, 1162. [Google Scholar] [CrossRef] [PubMed]
- Hromadková, Z.; Košťálová, Z.; Vrchotová, N.; Ebringerová, A. Non-cellulosic polysaccharides from the leaves of small balsam (Impatiens parviflora DC.). Carbohydr. Res. 2014, 389, 147–153. [Google Scholar] [CrossRef]
- Vrchotová, N.; Šerá, B.; Krejčová, J. Allelopathic activity of extracts from Impatiens species. Plant. Soil. Environ. 2011, 57, 57–60. [Google Scholar] [CrossRef]
- Mardani, H.; Sekine, T.; Azizi, M.; Mishyna, M.; Fujii, Y. Identification of safranal as the main allelochemical from saffron (Crocus sativus). Nat. Prod. Commun. 2015, 10, 775–777. [Google Scholar] [CrossRef]
- Cianfaglione, K.; Papa, F.; Maggi, F. Volatile components of horsetail (Hippuris vulgaris L.) growing in central Italy. Nat. Prod. Res. 2017, 31, 2316–2320. [Google Scholar] [CrossRef]
- Kicel, A.; Wolbis, M.; Kalemba, D.; Wajs, A. Identification of volatile constituents in flowers and leaves of Trifolium repens L. J. Ess. Oil Res. 2010, 22, 624–627. [Google Scholar] [CrossRef]
- Radulović, N.; Blagojević, P.; Palić, R.; Zlatković, B. Chemical composition of the essential oil hydrodistilled from Serbian Taxus baccata L. J. Ess. Oil Bear. Pl. 2010, 22, 458–461. [Google Scholar] [CrossRef]
- Said, A.; Fawzy, G.; Abu tabl, E.S.A.; Tzakou, O. Volatile constituents of Zizyphus jujuba aerial parts and Zizyphus spina-christii fruits from Egypt. J. Ess. Oil Res. 2010, 13, 170–174. [Google Scholar]
- Tuttolomondo, T.; Dugo, G.; Ruberto, G.; Leto, C.; Napoli, E.M.; Cicero, N.; Gervasi, T.; Virga, G.; Leone, R.; Licata, M.; et al. Study of quantitative and qualitative variations in essential oils of Sicilian Rosmarinus officinalis L. Nat. Prod. Res. 2015, 29, 1928–1934. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Variation in the volatile terpenoids of two industrially important basil Ocimum basilicum L. cultivars during plant ontogeny in two different cropping seasons from India. J. Sci. Food. Agric. 2012, 92, 626–631. [Google Scholar] [CrossRef]
- Saeb, K.; Gholamrezaee, S. Variation of essential oil composition of Melissa officinalis L. leaves during different stages of plant growth. Asian. Pac. J. Trop. Biomed. 2012, 2, 547–549. [Google Scholar] [CrossRef]
- Grulova, D.; De Martino, L.; Mancini, E.; Salamon, I.; De Feo, V. Seasonal variability of the main components in essential oil of Mentha×piperita L. J. Sci. Food Agric. 2015, 95, 621–627. [Google Scholar] [CrossRef]
- Moghaddam, M.; Mehdizadeh, L. Chemistry of Essential Oils and Factors Influencing Their Constituents. In Soft Chemistry and Food Fermentation. Handbook of Food Bioengineering; Grumezescu, A.M., Holban, A.M., Eds.; Elsevier: London, UK, 2017; Volume 3, pp. 379–419. [Google Scholar]
- Gruľová, D.; De Martino, L.; Mancini, E.; Tkáčiková, Ľ.; Šalamon, I.; Fejer, J.; De Feo, V. Phytotoxic and antibacterial activity of essential oil of new peppermint cultivar. Nat. Prod.Commun. 2016, 11, 1721–1724. [Google Scholar]
- Saharkhiz, M.J.; Smaeili, S.; Merikhi, M. Essential oil analysis and phytotoxic activity of two ecotypes of Zataria multiflora Boiss. Growing in Iran. Nat. Prod. Res. 2010, 24, 1598–1609. [Google Scholar] [CrossRef]
- Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 2008, 99, 8788–8795. [Google Scholar] [CrossRef]
- Gruľová, D.; Baranová, B.; Ivanova, V.; De Martino, L.; Mancini, E.; De Feo, V. Composition and biological activity of essential oils of Solidago species and the possible impact on their invasions. Allelopath. J. 2016, 39, 129–142. [Google Scholar]
- Matoušková, M.; Jurová, J.; Gruľová, D.; Wajs-Bonikowska, A.; Renčo, M.; Sedlák, V.; Poračová, J.; Gogaľová, Z.; Kalemba, D. Phytotoxic effect of invasive Heracleum mantegazzianum essential oil on dicot and monocot ppecies. Molecules 2019, 24, 425. [Google Scholar] [CrossRef]
- Pavela, R.; Vrchotová, N.; Šerá, B. Repellency and toxicity of three Impatiens species (Balsaminaceae) extracts on Myzus persicae Sulzer (Homoptera: Aphididae). J. Biopest. 2009, 2, 48–51. [Google Scholar]
- Hochmuth, D. MassFinder 3: GC/MS Visualisation, Interpretation and Library Adminstration. Mass Spectral Library “Terpenoids and Related Constituents of Essential Oils”, (C) 1999–2006 Dr. Detlev Hochmuth: Hamburg, Germany. Available online: https://massfinder.com/wiki/MassFinder_3 (accessed on 27 June 2019).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured: Carol Stream, IL, USA, 2007. [Google Scholar]
- Mancini, E.; Camele, I.; Elshafie, H.S.; De Martino, L.; Pellegrino, C.; Gruľová, D.; De Feo, V. Chemical composition and biological activity of the essential oil of Origanum vulgare ssp. Hirtum from different areas in the Southern Apennines (Italy). Chem. Biodivers. 2014. Available online: https://doi.org/10.1002/cbdv.201300326 (accessed on 07 April 2014). [CrossRef]
References | Country | Solvents | Chem. Groups | Allelopathy | Tested Plant Model |
---|---|---|---|---|---|
[17] | Lithuania | H2O | phenols | yes | Brassica napus, |
Triticum aestivum | |||||
[21,22,23] | Poland | HCl3, MeOH | triterpenoid saponins, | no | |
galactolipids | |||||
[24] | UK | EtOH | acid-soluble proteins | no | |
[25,26,27] | Poland | EtOH, H2O, HCl3, MeOH, C3H6O | water-soluble | no | |
phenolic acids, | |||||
phenolic acids, | |||||
polysacharides, | |||||
polyphenols | |||||
[28] | Poland | H2O | essential oil - diverse | no | |
chemical groups | |||||
[29] | Czech Rep. | HCl3, MeOH, EtOh | polysaccharides | ||
Slovak Rep. | |||||
[30] | Czech Rep. | MeOH, CH2Cl2 | yes | Leucosinapis alba, | |
Brassica napus |
RIexp. | RIlit. | IP1 | IP2 | ||
---|---|---|---|---|---|
No. | Compounds | [%] | |||
1 | hexanal | 773 | 776 | n.i. | 0.2 |
2 | octane | 797 | 800 | n.i. | 0.1 |
3 | 1,6-dimethylhepta-1,3,5-triene | 833 | 837 | 0.2 | tr |
4 | heptanal | 876 | 879 | n.i. | 0.4 |
5 | nonane | 898 | 900 | n.i. | 0.2 |
6 | oct-1-en-3-ol | 963 | 963 | n.i. | 0.2 |
7 | 2-pentylfuran | 977 | 981 | 0.1 | 0.5 |
8 | octanal | 979 | 981 | 0.4 | 0.3 |
9 | p-cymene | 1012 | 1015 | 2.9 | 2.2 |
10 | limonene | 1021 | 1025 | 0.1 | 0.1 |
11 | (E)-β-ocimene | 1045 | 1041 | 0.7 | 0.3 |
12 | terpinolene | 1075 | 1082 | 3.0 | 1.1 |
13 | nonanal | 1080 | 1084 | 0.4 | 1.9 |
14 | linalool | 1081 | 1086 | 1.1 | 0.2 |
15 | cis-rose oxide | 1093 | 1110 | 0.2 | n.i. |
16 | trans-rose oxide | 1109 | 1124 | 0.1 | 0.1 |
17 | (E)-5-ethyl-6-methylhept-3-en-2-one | 1122 | 1124 | n.i. | 0.3 |
18 | nonan-1-ol | 1155 | 1152 | 0.2 | 0.2 |
19 | trans-p-mentha-1(7),8-dien-2-ol | 1154 | 1155 | n.i. | 0.2 |
20 | p-cymen-9-ol | 1158 | 1157 | 0.2 | 0.5 |
21 | octanoic acid | 1165 | 1164 | 0.1 | n.i. |
22 | safranal | 1169 | 1173 | 0.4 | tr |
23 | hexyl butyrate | 1170 | 1173 | n.i. | 1.1 |
24 | decanal | 1180 | 1180 | 0.5 | 0.8 |
25 | (E)-dec-2-enal | 1239 | 1236 | 0.2 | 0.4 |
26 | nonanoic acid | 1259 | 1260 | 0.2 | n.i. |
27 | carvacrol | 1283 | 1278 | 10.9 | 0.4 |
28 | (E,E)-deca-2,4-dienal | 1289 | 1288 | n.i. | 0.2 |
29 | (E)-undec-2-enal | 1337 | 1338 | tr | 0.8 |
30 | decanoic acid | 1355 | 1350 | 0.2 | n.i. |
31 | (E)-β-damascenone | 1358 | 1363 | 0.1 | 0.1 |
32 | (E)-undec-2-en-1-ol | 1375 | 1368 | 0.1 | 0.2 |
33 | (E)-β-bourbonene | 1379 | 1386 | 0.3 | 0.1 |
34 | hexahydropseudoionone | 1384 | 1391 | 0.3 | 1.0 |
35 | tetradecane | 1395 | 1400 | n.i. | 0.3 |
36 | α-ionone | 1402 | 1409 | 0.4 | 0.3 |
37 | (E)-β-caryophyllene | 1413 | 1420 | 0.5 | n.i. |
38 | geranylacetone | 1426 | 1430 | 0.2 | 0.2 |
39 | α-humulene | 1446 | 1455 | 0.1 | 0.1 |
40 | dehydro-β-ionone | 1453 | 1460 | 0.5 | 0.5 |
41 | β-ionone epoxide | 1456 | 1460 | 0.9 | 0.8 |
42 | β-ionone | 1459 | 1468 | 1.3 | 2.1 |
43 | germacrene D | 1471 | 1479 | 2.5 | 1.0 |
44 | tridecanal | 1486 | 1486 | 0.4 | 0.3 |
45 | germacrene A | 1493 | 1503 | n.i. | 0.4 |
46 | γ-cadinene | 1501 | 1507 | 0.1 | 0.3 |
47 | calamenene | 1506 | 1517 | 0.2 | n.i. |
48 | δ-cadinene | 1509 | 1520 | 0.6 | 0.1 |
49 | (E)-nerolidol | 1543 | 1553 | 0.1 | 0.1 |
50 | 3,7,11-trimethyldodecan-1-ol | 1549 | 1563 | 0.4 | 0.6 |
51 | caryophyllene oxide | 1565 | 1578 | 1.3 | 0.3 |
52 | salvial-4(14)-en-1-one | 1573 | 1592 | 0.5 | 0.2 |
53 | tetradecanal | 1587 | 1586 | n.i. | 0.3 |
54 | widdrol | 1620 | 1618 | 0.3 | 0.4 |
55 | ledene oxide (II) | 1657 | 1646 | 0.3 | 0.3 |
56 | germacra-4(15),5,10(14)-trien-1-α-ol | 1665 | 1680 | 9.4 | 0.5 |
57 | benzyl benzoate | 1720 | 1720 | 2.1 | 0.4 |
58 | hexahydrofarnesyl acetone | 1826 | 1833 | 15.7 | 31.0 |
59 | hexadecanoic acid | 1956 | 1958 | n.i. | 3.8 |
60 | nonacosane | 1899 | 1900 | 0.3 | n.i. |
61 | isophytol | 1931 | 1938 | 0.7 | n.i. |
62 | ethyl hexadecanoate | 1977 | 1992 | 0.3 | n.i. |
63 | phytol | 2095 | 2114 | 12.3 | 5.2 |
64 | docosane | 2197 | 2200 | n.i. | 0.2 |
65 | tricosane | 2289 | 2300 | 1.5 | 1.9 |
66 | tetracosane | 2388 | 2400 | 0.5 | 0.5 |
67 | pentacosane | 2495 | 2500 | 4.9 | 5.2 |
68 | hexacosane | 2593 | 2600 | 0.6 | n.i. |
69 | heptacosane* | 2700 | 1.1 | 2.1 | |
70 | octacosane* | 2800 | 0.7 | n.i. | |
71 | nonacosane* | 2900 | 0.9 | 1.3 | |
72 | triacontane* | 3000 | 0.6 | 0.4 | |
73 | hentriacontane* | 3100 | 1.3 | 0.7 | |
74 | dotriacontane* | 3200 | 0.4 | 0.3 | |
75 | tritriacontane* | 3300 | 0.3 | 0.2 | |
Monoterpene hydrocarbons | 6.8 | 5.3 | |||
Oxygenated derivatives of monoterpene hydrocarbons | 12.9 | 1.4 | |||
Sesquiterpene hydrocarbons | 4.4 | 2.0 | |||
Oxygenated derivatives of sesquiterpene hydrocarbons | 27.9 | 33.2 | |||
Diterpene hydrocarbons | 3.5 | 4.9 | |||
Oxygenated derivatives of diterpene hydrocarbons | n.i. | n.i. | |||
C13-norisoprenoides | 13.0 | 5.2 | |||
Non-terpene alcohols | 0.8 | 1.2 | |||
Non-terpene aldehydes | 2.2 | 5.6 | |||
Non-terpene ketones | tr | 0.3 | |||
Non-terpene esters | 2.4 | 0.4 | |||
Non-terpene oxides | 0.1 | 0.5 | |||
n-Alkanes | 12.9 | 13.2 | |||
n-Alkenes | 0.2 | tr | |||
Carboxylic acid | 0.3 | 3.8 | |||
Total identified | 87.1 | 76.2 |
EO Doses [µg/mL] | ||||||||
---|---|---|---|---|---|---|---|---|
Treated Seeds | Collection Period | Number of Germinated Seeds ± SD | ||||||
0.065 | 0.125 | 0.250 | 0.625 | 1.250 | 2.500 | Control | ||
R. sativus | IP1 | 9.3 ± 0.6 a | 8.7 ± 0.7 a | 9.3 ± 0.6 a | 9.7 ± 0.5 a | 10.0 ± 0.0 a | 9.3 ± 0.6 a | 9.0 ± 0.8 a |
IP2 | 10.0 ± 0.0 a | 10.0 ± 0.0 a | 9.6 ± 0.6 a | 9.0 ± 0.5 a | 10.0 ± 0.0 a | 10.0 ± 0.0 a | 10.0 ± 0.0 a | |
L. sativa | IP1 | 6.6 ± 0.6 b | 5.0 ± 1.0 b | 6.3 ± 1.5 b | 7.3 ± 0.6 b | 7.3 ± 0.6 b | 7.3 ± 1.2 b | 10.0 ± 0.0 a |
IP2 | 9.0 ± 0.6 a | 7.0 ± 0.9 b | 7.0 ± 1.1 b | 8.0 ± 1.5 a | 7.0 ± 1.7 b | 8.0 ± 2.0 a | 10.0 ± 0.0 a | |
L. sativum | IP1 | 10.0 ± 0.0 a | 9.0 ± 0.7 a | 9.7 ± 0.6 a | 10.0 ± 0.0 a | 10.0 ± 0.0 a | 9.3 ± 0.5 a | 9.3 ± 0.5 a |
IP2 | 9.6 ± 0.6 a | 10.0 ± 0.0 a | 9.6 ± 0.6 a | 10.0 ± 0.0 a | 10.0 ± 0.0 a | 8.0 ± 1.0 a | 10.0 ± 0.0 a | |
T. aestivum | IP1 | 7.3 ± 1.5 a | 7.7 ± 1.2 a | 6.7 ± 0.6 a | 8.3 ± 0.6 a | 7.0 ± 1.0 a | 7.7 ± 1.2 a | 9.3 ± 0.6 a |
IP2 | 8.3 ± 0.6 a | 9.3 ± 0.6 a | 9.0 ± 0.0 a | 8.0 ± 1.0 a | 7.3 ± 0.7 b | 5.3 ± 2.2 b | 9.0 ± 1.0 a |
EO Doses [µg/mL] | ||||||||
---|---|---|---|---|---|---|---|---|
Treated Seeds | Collection Period | Radical Elongation ± SD | ||||||
0.065 | 0.125 | 0.250 | 0.625 | 1.250 | 2.500 | Control | ||
R. sativus | IP1 | 3.3 ± 1.3 a | 2.4 ± 1.2 a | 3.1 ± 1. a | 2.7 ± 1.0 a | 3.0 ± 1.3 a | 2.6 ± 1.3 a | 3.3 ± 1.4 a |
IP2 | 3.8 ± 1.3 a | 3.8 ± 1.7 a | 3.7 ± 1.7 a | 2.9 ± 1.3 a | 3.2 ± 1.0 a | 3.5 ± 1.2 a | 3.7 ± 1.4 a | |
L. sativa | IP1 | 1.2 ± 0.8 a | 1.2 ± 0.6 a | 1.1 ± 0.6 a | 1.4 ± 0.7 a | 1.3 ± 0.8 a | 1.4 ± 0.7 a | 0.9 ± 0.4 a |
IP2 | 0.8 ± 0.5 a | 1.3 ± 0.7 a | 0.9 ± 0.6 a | 1.1 ± 0.6 a | 1.0 ± 0.6 a | 0.9 ± 0.5 a | 1.0 ± 0.7 a | |
L.sativum | IP1 | 5.5 ± 2.4 a | 6.5 ± 2.6 a | 5.9 ± 3.0 a | 3.6 ± 1.2 b | 6.5 ± 1.9 a | 7.6 ± 2.5 a | 5.3 ± 2.6 a |
IP2 | 6.4 ± 2.1 a | 6.7 ± 1.7 a | 6.3 ± 2.6 a | 7.6 ± 1.6 a | 6.8 ± 2.4 a | 8.1 ± 1.6 a | 8.1 ± 1.6 a | |
T. aestivum | IP1 | 2.4 ± 0.9 a | 3.0 ± 0.9 a | 2.0 ± 0.9 a | 2.4 ± 1.0 a | 2.4 ± 1.0 a | 1.9 ± 0.5 b | 2.8 ± 1.1 a |
IP2 | 2.1 ± 1.2 a | 3.5 ± 1.7 a | 2.7 ± 1.0 a | 2.8 ± 1.1 a | 2.7 ± 1.2 a | 1.9 ± 0.8 b | 2.8 ± 0.9 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurová, J.; Matoušková, M.; Wajs-Bonikowska, A.; Kalemba, D.; Renčo, M.; Sedlák, V.; Gogaľová, Z.; Poráčová, J.; Šalamún, P.; Gruľová, D. Potential Phytotoxic Effect of Essential Oil of Non-Native Species Impatiens parviflora DC. Plants 2019, 8, 241. https://doi.org/10.3390/plants8070241
Jurová J, Matoušková M, Wajs-Bonikowska A, Kalemba D, Renčo M, Sedlák V, Gogaľová Z, Poráčová J, Šalamún P, Gruľová D. Potential Phytotoxic Effect of Essential Oil of Non-Native Species Impatiens parviflora DC. Plants. 2019; 8(7):241. https://doi.org/10.3390/plants8070241
Chicago/Turabian StyleJurová, Jana, Martina Matoušková, Anna Wajs-Bonikowska, Danuta Kalemba, Marek Renčo, Vincent Sedlák, Zuzana Gogaľová, Janka Poráčová, Peter Šalamún, and Daniela Gruľová. 2019. "Potential Phytotoxic Effect of Essential Oil of Non-Native Species Impatiens parviflora DC." Plants 8, no. 7: 241. https://doi.org/10.3390/plants8070241
APA StyleJurová, J., Matoušková, M., Wajs-Bonikowska, A., Kalemba, D., Renčo, M., Sedlák, V., Gogaľová, Z., Poráčová, J., Šalamún, P., & Gruľová, D. (2019). Potential Phytotoxic Effect of Essential Oil of Non-Native Species Impatiens parviflora DC. Plants, 8(7), 241. https://doi.org/10.3390/plants8070241