Assessment of Sulfur Deficiency under Field Conditions by Single Measurements of Sulfur, Chloride and Phosphorus in Mature Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experiments and Plant Sampling
2.1.1. Field Experiment 1: Study of Different Fertilization Rates on an S-Deficient Field
2.1.2. Field Experiment 2: Study of 45 Commercial Varieties before Fertilization and Flowering
2.1.3. Field Experiment 3: Study of 56 Commercial Varieties after Fertilization and Flowering
2.2. Multispecies Experiment under Controlled Conditions
2.3. SO42−, PO43−, Cl− and NO3−Analysis
2.4. S, P, Cl and N Analysis
3. Statistical Analysis
4. Results
4.1. Under Field Conditions, a Decrease in the SO42− Content Was Compensated by an Increase in the (Cl−+NO3−+PO43−) Contents in Oilseed Rape Leaves Leading to an Increase in the ([Cl−]+[NO3−]+[PO43−]):[SO42−]Ratio
4.2. The ([Cl−]+[NO3−]+[PO43−]):[SO42−]Ratio Can Be Used in Other Plant Species to Detect S Deficiency under Controlled Conditions
4.3. The Simplified ([Cl]+[P]):[S] Ratio Could Be Used for an Easier and Faster Determination of S Deficiency under Field Conditions
4.4. Determination of Threshold Values of the ([Cl]+[P]):[S]Ratio and Their Use on Independent Fields
5. Discussion
5.1. The ([Cl−]+[NO3−]+[PO43−]):[SO42−] Ratio as an Indicator of S Nutrition under Field Conditions
5.2. Using the ([Cl]+[P]):[S] Ratio Instead of the ([Cl−]+[NO3−]+[PO43−]):[SO42−] Ratio
5.3. Potential Thresholds of the ([Cl]+[P]):[S] Ratio
6. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
DW | dry weight |
HPLC | high performance liquid chromatography |
HR ICP-MS | high resolution inductively coupled plasma mass spectrometry |
XRF | X-ray fluorescence |
References
- Janzen, H.H.; Bettany, J.R. Sulfur nutrition of rapeseed: I. Influence of fertilizer nitrogen and sulfur rates. Soil Sci. Soc. Am. J. 1984, 48, 100–107. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, F.J. Sulphur uptake, yield responses and the interactions between nitrogen and sulphur in winter oilseed rape (Brassica napus). J. Agric. Sci. 1996, 126, 53–62. [Google Scholar] [CrossRef]
- Scherer, H.W. Sulphur in crop production. Eur. J. Agron. 2001, 14, 81–111. [Google Scholar] [CrossRef]
- Malhi, S.S.; Gan, Y.; Raney, J.P. Yield, seed quality, and sulfur uptake of oilseed crops in response to sulfur fertilization. Agron. J. 2007, 99, 570–577. [Google Scholar] [CrossRef]
- D’Hooghe, P.; Dubousset, L.; Gallardo, K.; Kopriva, S.; Avice, J.C.; Trouverie, J. Evidence for proteomic and metabolic adaptations associated with alterations of seed yield and quality in Sulfur-limited Brassica napus L. Mol. Cell. Proteom. 2014, 13, 1165–1183. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Hawkesford, M.J.; McGrath, S.P. Sulphur assimilation and effects on yield and quality of wheat. J. Cereal Sci. 1999, 30, 1–17. [Google Scholar] [CrossRef]
- Blake-Kalff, M.M.A.; Zhao, F.J.; Hawkesford, M.J.; McGrath, S.P. Using plant analysis to predict yield losses caused by sulphur deficiency. Ann. Appl. Biol. 2001, 138, 123–127. [Google Scholar] [CrossRef]
- McNeill, A.M.; Eriksen, J.; Bergström, L.; Bergström, L.; Smith, K.A.; Marstorp, H.; Kirchmann, H.; Nilsson, I. Nitrogen and sulphur management: Challenges for organic sources in temperate agricultural systems. Soil Use Manag. 2005, 21, 82–93. [Google Scholar] [CrossRef]
- Grant, C.A.; Mahli, S.S.; Karamanos, R.E. Sulfur management for rapeseed. Field Crops Res. 2012, 128, 119–128. [Google Scholar] [CrossRef]
- Sarda, X.; Diquelou, S.; Abdallah, M.; Nési, N.; Cantat, O.; Le Gouee, P.; Avice, J.-C.; Ourry, A. Assessment of sulphur deficiency in commercial oilseed rape crops from plant analysis. J. Agric. Sci. 2014, 152, 616–633. [Google Scholar] [CrossRef]
- Ayala-Silva, T.; Beyl, C.A. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Adv. Space Res. 2005, 35, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Zuber, H.; Poignavent, G.; Le Signor, C.; Aimé, D.; Vieren, E.; Tadla, C.; Lugan, R.; Belghazi, M.; Labas, V.; Santoni, A.L.; et al. Legume adaptation to sulfur deficiency revealed by comparing nutrient allocation and seed traits in Medicago truncatula. Plant J. 2013, 76, 982–996. [Google Scholar] [CrossRef] [PubMed]
- Scherer, H.W. Sulfur in soils. J. Plant Nutr. Soil Sci. 2009, 172, 326–335. [Google Scholar] [CrossRef]
- Malhi, S.S.; Schoenau, J.J.; Grant, C.A. A review of sulphur fertilizer management for optimum yield and quality of canola in the Canadian Great Plains. Can. J. Plant Sci. 2005, 85, 297–307. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, F.J. A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data. Soil Use Manag. 1995, 11, 110–114. [Google Scholar] [CrossRef]
- Brunel-Muguet, S.; Mollier, A.; Kauffmann, F.; Avice, J.C.; Sénécal, E.; Goudier, D.; Bataillé, M.P.; Etienne, P. SuMoToRI, an ecophysiological model to predict growth and sulfur allocation and partitioning in oilseed rape (Brassica napus L.). Front. Plant Sci. 2015, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Melsted, S.W.; Motto, H.L.; Peck, T.R. Critical plant nutrient composition values useful in interpreting plant analysis data. Agron. J. 1969, 61, 17–20. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Ramig, R.E.; Rohde, C.R. Tissue analyses guidelines for diagnosing sulfur deficiency in white wheat. Plant Soil 1977, 46, 153–163. [Google Scholar] [CrossRef]
- Spencer, K.; Freney, J.R. Assessing the sulfur status of field-grown wheat by plant analysis. Agron. J. 1980, 72, 469–472. [Google Scholar] [CrossRef]
- Scaife, A.; Burns, I.G. The sulphate-S/total S ratio in plants as an index of their sulphur status. Plant Soil 1986, 91, 61–71. [Google Scholar] [CrossRef]
- Pinkerton, A. Critical sulfur concentrations in oilseed rape (Brassica napus) in relation to nitrogen supply and to plant age. Aust. J. Exp. Agric. 1998, 38, 511–522. [Google Scholar] [CrossRef]
- Blake-Kalff, M.M.A.; Hawkesford, M.J.; Zhao, F.J.; McGrath, S.P. Diagnosing sulfur deficiency in field-grown oilseed rape (Brassica napus L.) and wheat (Triticum aestivum L.). Plant Soil 2000, 225, 95–107. [Google Scholar] [CrossRef]
- Maillard, A.; Sorin, E.; Etienne, P.; Diquélou, S.; Kopriva, A.; Kopriva, S.; Arkoun, M.; Gallardo, K.; Turner, M.; Cruz, F.; et al. Non-specific root transport of nutrient gives access to an early nutritional indicator: The case of sulfate and molybdate. PLoS ONE 2016, 11, e0166910. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Hawkesford, M.J.; Warrilow, A.G.S.; McGrath, S.P.; Clarkson, D.T. Responses of two wheat commercial to sulphur addition and diagnosis of sulphur deficiency. Plant Soil 1996, 181, 317–327. [Google Scholar] [CrossRef]
- Howarth, J.R.; Parmar, S.; Barraclough, P.B.; Hawkesford, M.J. A sulphur deficiency-induced gene, sdi1, involved in the utilization of stored sulphate pools under sulphur-limiting conditions has potential as a diagnostic indicator of sulphur nutritional status. Plant Biotechnol. J. 2009, 7, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Sorin, E.; Etienne, P.; Maillard, A.; Zamarreno, A.M.; Garcia-Mina, J.M.; Arkoun, M.; Jamois, F.; Cruz, F.; Yvin, J.C.; Ourry, A. Effect of sulphur deprivation on osmotic potential components and nitrogen metabolism in oilseed rape leaves: Identification of a new early indicator. J. Exp. Bot. 2015, 66, 6175–6189. [Google Scholar] [CrossRef] [PubMed]
- Blake-Kalff, M.M.A.; Harrison, K.R.; Hawkesford, M.J.; Zhao, F.J.; McGrath, S.P. Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol. 1998, 118, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Honsel, A.; Kojima, M.; Haas, R.; Frank, W.; Sakakabara, H.; Herschbach, C.; Heinz, R. Sulphur limitation and early sulphur deficiency responses in poplar: Significance of gene expression, metabolites, and plant hormones. J. Exp. Bot. 2012, 63, 1873–1893. [Google Scholar] [CrossRef] [PubMed]
- Rabe, E. Altered nitrogen metabolism under environmental stress conditions. In Handbook of Plant and Crop Stress, 2nd ed.; Pessarakli, M., Ed.; Marcel Dekker: New York, NY, USA, 1999; pp. 349–363. ISBN 978-1439813966. [Google Scholar]
- Tausz, M. The role of glutathione in plant response and adaptation to natural stress. In Significance of Glutathione to Plant Adaptation to the Environment; Grill, D., Tausz, M., Kok, L.J.D., Eds.; Springer: Houten, The Netherlands, 2001; pp. 101–122. ISBN 978-1402001789. [Google Scholar]
- Maynard, D.; Stewart, J.; Bettany, J. Use of plant analysis to predict sulfur deficiency in rapeseed (Brassica napus and B. campestris). Can. J. Soil Sci. 1983, 63, 387–396. [Google Scholar] [CrossRef]
- Blake-Kalff, M.M.A.; Zhao, F.J.; McGrath, S.P.; Withers, P.J.A. Development of the Malate:Sulphate Ratio Test for Sulphur Deficiency in Winter Wheat and Oilseed Rape; HGCA Project Report; No. 327; Home-Grown Cereals Authority: London, UK, 2004. [Google Scholar]
- Carver, M.F.F. Monitoring Winter Barley, Wheat, Oilseed Rape and Spring Barley for Sulphur in England and Wales to Predict Fertiliser Need; HGCA Project Report; Rep, No. 374; Home-Grown Cereals Authority: London, UK, 2005. [Google Scholar]
- Reussi, N.; Echeverría, H.; Rozas, H.S. Diagnosing sulfur deficiency in spring red wheat; plant analysis. J. Plant Nutr. 2011, 34, 573–589. [Google Scholar] [CrossRef]
- Maillard, A.; Diquélou, S.; Billard, V.; Laîné, P.; Garnica, M.; Prudent, M.; Garcia-Mina, J.-M.; Yvin, J.C.; Ourry, A. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front. Plant Sci. 2015, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Evans, E.J.; Bilsborrow, P.E.; Syers, J.K. Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rape (Brassica napus L.). J. Sci. Food Agric. 1993, 63, 29–37. [Google Scholar] [CrossRef]
- Dubousset, L.; Etienne, P.; Avice, J.C. Is the remobilization of S and N reserves for seed filling of winter oilseed rape modulated by sulphate restrictions occurring at different growth stages? J. Exp. Bot. 2010, 61, 4313–4324. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.; Etienne, P.; Ourry, A.; Meuriot, F. Do initial S reserves and mineral S availability alter leaf S-N mobilization and leaf senescence in oilseed rape? Plant Sci. 2011, 180, 511–520. [Google Scholar] [CrossRef] [PubMed]
Species | Day of Treatment | SO42− Content (mg g−1 DW) | (Cl−+NO3−+PO42−) Content (mg g−1 DW) | ([Cl−]+[NO3−]+[PO42−])/[SO42−] Ratio | |||
---|---|---|---|---|---|---|---|
+S | −S | +S | −S | +S | −S | ||
B. napus | 0 | 24.38 ± 1.83 | 59.79 ± 7.37 | 2.32 ± 0.28 | |||
3 | 26.20 ± 1.23 | 15.90 ± 1.44*** | 63.65 ± 0.96 | 70.86 ± 5.68 | 2.43 ± 0.11 | 4.46 ± 0.39** | |
13 | 29.85 ± 0.50 | 8.05 ± 0.48*** | 62.83 ± 5.86 | 86.42 ± 4.66** | 2.10 ± 0.20 | 10.74 ± 0.17*** | |
B. oleracea | 135 | 7.05 ± 1.22 | 0.35 ± 0.04*** | 44.9 ± 6.85 | 61.87 ± 3.27* | 6.36 ± 1.06 | 176.77 ± 40.89** |
T. aestivum | 0 | 3.03 ± 0.09 | 63.58 ± 0.80 | 20.98 ± 0.76 | |||
8 | 1.94 ± 0.05 | 1.15 ± 0.03 | 59.34 ± 2.10 | 68.04 ± 0.84** | 30.58 ± 0.53 | 59.16 ± 2.36*** | |
16 | 2.17 ± 0.06 | 0.50 ± 0.05*** | 64.79 ± 1.29 | 70.19 ± 1.80* | 29.85 ± 0.53 | 140.38 ± 15.81*** | |
Z. mays | 0 | 2.02 ± 0.49 | 74.74 ± 1.55 | 37.00 ± 7.16 | |||
5 | 3.44 ± 0.07 | 1.39 ± 0.08*** | 78.31 ± 2.82 | 91.71 ± 1.28** | 22.76 ± 1.09 | 56.33 ± 3.45*** | |
18 | 1.38 ± 0.05 | 0.27 ± 0.02*** | 70.38 ± 3.46 | 103.28 ± 0.79*** | 51.00 ± 2.19 | 382.51 ± 23.44*** | |
S. lycopersicum | 75 | 63.75 ± 4.79 | 50.39 ± 2.42* | 68.84 ± 4.61 | 87.77 ± 2.44* | 1.07 ± 0.15 | 1.74 ± 0.10** |
M. truncatula | 0 | 3.31 ± 0.16 | 25.32 ± 0.60 | 7.55 ± 0.21 | |||
8 | 3.60 ± 0.12 | 0.15 ± 0.01*** | 25.40 ± 1.54 | 34.27 ± 3.44* | 7.05 ± 0.48 | 228.47 ± 25.21*** | |
21 | 4.75 ± 0.18 | 0.26 ± 0.01*** | 25.92 ± 1.94 | 34.90 ± 2.46* | 5.49 ± 0.50 | 134.23 ± 12.48*** |
Before Flowering and Fertilization | S-(N) Fertilization (kg S-(N) ha−1 | After Flowering and Fertilization | |||||
---|---|---|---|---|---|---|---|
Plots number | Soil type | Soil S content (mg kg−1) | ([Cl]+[P])/[S] ratio | Status of plots | ([Cl]+[P])/[S] ratio | Status of plots | |
36′ | Compact silt | 136 | 3.72 ± 0.43 b | S deficient | 10-(166) | 1.54 ± 0.21 b** | S deficient |
20′ | Superficial clay-limestone | 239 | 2.64 ± 0.13 c | Risk of S deficiency | 100-(146) | 0.59 ± 0.10 a*** | S sufficient |
11′ | Superficial clay-limestone | 350 | 1.99 ± 0.14 a | S sufficient | 0-(110) | 1.42 ± 0.05 b** | S deficient |
8′ | deep clay-limestone | 668 | 1.80 ± 0.06 a | S sufficient | 15-(151) | 1.41 ± 0.24 b | S deficient |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etienne, P.; Sorin, E.; Maillard, A.; Gallardo, K.; Arkoun, M.; Guerrand, J.; Cruz, F.; Yvin, J.-C.; Ourry, A. Assessment of Sulfur Deficiency under Field Conditions by Single Measurements of Sulfur, Chloride and Phosphorus in Mature Leaves. Plants 2018, 7, 37. https://doi.org/10.3390/plants7020037
Etienne P, Sorin E, Maillard A, Gallardo K, Arkoun M, Guerrand J, Cruz F, Yvin J-C, Ourry A. Assessment of Sulfur Deficiency under Field Conditions by Single Measurements of Sulfur, Chloride and Phosphorus in Mature Leaves. Plants. 2018; 7(2):37. https://doi.org/10.3390/plants7020037
Chicago/Turabian StyleEtienne, Philippe, Elise Sorin, Anne Maillard, Karine Gallardo, Mustapha Arkoun, Jérôme Guerrand, Florence Cruz, Jean-Claude Yvin, and Alain Ourry. 2018. "Assessment of Sulfur Deficiency under Field Conditions by Single Measurements of Sulfur, Chloride and Phosphorus in Mature Leaves" Plants 7, no. 2: 37. https://doi.org/10.3390/plants7020037
APA StyleEtienne, P., Sorin, E., Maillard, A., Gallardo, K., Arkoun, M., Guerrand, J., Cruz, F., Yvin, J.-C., & Ourry, A. (2018). Assessment of Sulfur Deficiency under Field Conditions by Single Measurements of Sulfur, Chloride and Phosphorus in Mature Leaves. Plants, 7(2), 37. https://doi.org/10.3390/plants7020037