Plant Functional Traits or Microbiomes Associated with Diseases, Pests, Human Activities and Climate Change
1. Introduction
2. Multiple-Pathogen Identification of Plant Diseases
3. Screening and Application of Stress-Resistant Genes, Germplasm Resources, or Trace Elements
4. Plant Functional Traits Response to the Environment
5. Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.W.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Roussin-Léveillée, C.; Rossi, C.A.M.; Castroverde, C.D.M.; Moffett, P. The plant disease triangle facing climate change: A molecular perspective. Trends Plant Sci. 2024, 29, 895–914. [Google Scholar] [CrossRef]
- Ye, J.; Ji, Y.; Wang, J.; Ma, X.; Gao, J. Climate factors dominate the elevational variation in grassland plant resource utilization strategies. Front. Plant Sci. 2024, 15, 1430027. [Google Scholar] [CrossRef] [PubMed]
- Dee, L.E.; Miller, S.J.; Helmstedt, K.J.; Boersma, K.S.; Polasky, S.; Reich, P.B. Quantifying disturbance effects on ecosystem services in a changing climate. Nat. Ecol. Evol. 2025, 9, 436–447. [Google Scholar] [CrossRef]
- Gross, N.; Maestre, F.T.; Liancourt, P.; Berdugo, M.; Martin, R.; Gozalo, B.; Ochoa, V.; Delgado-Baquerizo, M.; Maire, V.; Saiz, H.; et al. Unforeseen plant phenotypic diversity in a dry and grazed world. Nature 2024, 632, 808–814. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Jin, Z.; Müller, C.; Pugh, T.A.M.; Chen, A.; Wang, T.; Huang, L.; Zhang, Y.; Li, L.X.Z.; et al. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat. Food 2022, 3, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Prentice, I.C.; et al. The global spectrum of plant form and function: Enhanced species-level trait dataset. Sci. Data 2022, 9, 755. [Google Scholar] [CrossRef]
- Guo, J.-W.; Mohamad, O.A.A.; Wang, X.; Egamberdieva, D.; Tian, B. Editorial: Microbiome associated with plant pathogens, pathogenesis, and their applications in developing sustainable agriculture. Front. Microbiol. 2024, 15, 1423961. [Google Scholar] [CrossRef]
- Zhao, B.; Yan, Y.; Cao, D.; Yu, X. Germinating rice seeds shape rhizospheric bacteria via releasing benzaldehyde. Plant Physiol. Biochem. 2024, 210, 108632. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Fan, X.; Wang, Y.; Kusstatscher, P.; Duan, J.; Wu, S.; Chen, S.; Qiao, K.; Wang, Y.; Ma, B.; et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 2021, 7, 60–72. [Google Scholar] [CrossRef]
- Snelders, N.C.; Rovenich, H.; Petti, G.C.; Rocafort, M.; van den Berg, G.C.M.; Vorholt, J.A.; Mesters, J.R.; Seidl, M.F.; Nijland, R.; Thomma, B.P.H.J. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 2020, 6, 1365–1374. [Google Scholar] [CrossRef]
- Kraege, A.; Punt, W.; Doddi, A.; Zhu, J.; Schmita, N.; Snelders, N.C.; Thomma, B.P.H.J. Undermining the cry for help: The phytopathogenic fungus Verticillium dahliae secretes an antimicrobial effector protein to undermine host recruitment of antagonistic Pseudomonas bacteria. New Phytol. 2026, 249, 406–417. [Google Scholar] [CrossRef]
- Ramirez-Villacis, D.X.; Leon-Reyes, A.; Pieterse, C.M.J.; Raaijmakers, J.M. Born to rewild: Reconnecting beneficial plant-microbiome alliances for resilient future crops. Cell Host Microbe 2025, 33, 1241–1255. [Google Scholar] [CrossRef]
- Wang, G.; van der Putten, W.H.; Klironomos, J.; Zhang, F.; Zhang, J. Steering plant-soil feedback for sustainable agriculture. Science 2025, 389, eads2506. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, N.G.; Pandey, C.; Schornack, S. Mycorrhizal networks transfer jasmonic acid to recruit pathogen-suppressors. Trends Microbiol. 2025, 34, 7–9. [Google Scholar] [CrossRef]
- Wu, J.; Liu, S.; Zhang, H.; Chen, S.; Si, J.; Liu, L.; Wang, Y.; Tan, S.; Du, Y.; Jin, Z.; et al. Flavones enrich rhizosphere Pseudomonas to enhance nitrogen utilization and secondary root growth in Populus. Nat. Commun. 2025, 16, 1461. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Luo, W.; Xie, H.; Mo, C.; Qin, B.; Zhao, Y.; Chen, X.; Zhang, S.; Zhao, Y.; Wang, C.; et al. Reovirus infection results in rice rhizosphere microbial community reassembly through metabolite-mediated recruitment and exclusion. Microbiome 2025, 13, 214. [Google Scholar] [CrossRef]
- Sun, Z.X.; Ma, R.X.; Hu, J.; Chen, Y.P.; Peng, C.; Li, D.G.; Zhang, J.T.; Shen, M.L.; Gui, F.R. Repellent and insecticidal effects of Rosmarinus officinalis and its volatiles on Tuta absoluta. Entomol. Gen. 2024, 44, 297–306. [Google Scholar]
- Guo, J.-W.; Yang, C.-L.; Dong, D.-Z.; Tian, R.-C.; Yang, M.; Li, L.; Gao, P.; Zhou, S.-Y.; Muhammad, M.; Bu, Y.; et al. Characterization and biological characteristics of Alternaria, Botryosphaeria, Pestalotiopsis, and Trichothecium species associated with postharvest loquat fruit rot in Yunnan, China. Plants 2025, 14, 3201. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, A.; Patanita, M.; Ribeiro, J.A.; Campos, M.D.; Santos, F.; Monteiro, T.; Basaloco, M.; Félix, M.D.R. Metabarcoding analysis reveals microbial diversity and potential soilborne pathogens associated with almond dieback and decline. Plants 2025, 14, 2309. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, H.; Luo, H.; Xun, J.; Ma, C.; Yang, H.; Bai, D.; Yousuf, S.; Lyu, H.; Zhang, T.; et al. iMeta Conference 2024: Building an innovative scientific research ecosystem for microbiome and One Health. iMeta 2024, 3, e251. [Google Scholar] [CrossRef]
- Guo, J.-W.; Tian, R.-C.; Yang, C.-L.; Jia, L.; Zhou, S.-Y.; Yang, M.; Li, L.; Gao, P.; Yu, L.; Muhammad, M.; et al. The occurrence of Colletotrichum karstii and C. fructicola causes anthracnose on endangered ethnic vegetable Yunnanopilia longistaminea in Yunnan, China. J. Fungi 2025, 11, 748. [Google Scholar] [CrossRef]
- Liu, P.; Zhou, W.; Dong, L.; Liu, S.; Nawaz, G.; Huang, L.; Yang, Q. Development and application of Pik locus-specific molecular markers for blast resistance genes in Yunnan japonica rice cultivars. Plants 2025, 14, 592. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Liu, L.; Li, H.; Wang, X.; Si, A.; Yu, Y. Screening and comprehensive evaluation of drought resistance in cotton germplasm resources at the germination stage. Plants 2025, 14, 2191. [Google Scholar] [CrossRef]
- Khaipho-Burch, M.; Cooper, M.; Crossa, J.; de Leon, N.; Holland, J.; Lewis, R.; McCouch, S.; Murray, S.C.; Rabbi, I.; Ronald, P.; et al. Genetic modification can improve crop yields-but stop overselling it. Nature 2023, 621, 470–473. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.; Yin, K.; Ni, M.; Ding, Y.; Li, C.; Zheng, S.-J. The dual effect of selenium application in reducing Fusarium wilt disease incidence in banana and producing Se-enriched fruits. Plants 2024, 13, 3435. [Google Scholar] [CrossRef]
- Ji, Y.; Yan, X.; Xu, J.; Jumak, M.; Zhang, R.; Wang, L.; Gao, J. Plant functional traits better explain the global latitudinal patterns of leaf insect herbivory than climatic factors. Plants 2025, 14, 1303. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.L.; Hahn, P.G.; Inouye, B.D.; Underwood, N.; Whitehead, S.R.; Abbott, K.C.; Bruna, E.M.; Cacho, N.I.; Dyer, L.A.; Abdala-Roberts, L.; et al. Plant size, latitude, and phylogeny explain within-population variability in herbivory. Science 2023, 382, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Chen, C.; Nie, L.T.; Maharachchikumbura, S.S.N.; Crous, P.W.; Hyde, K.D.; Xiang, M.M.; Al-Otibi, F.; Manawasinghe, I.S. Identification and characterization of Albonectria, Fusarium, and Neocosmospora species associated with ornamental plants in Southern China. Mycosphere 2024, 15, 6641–6717. [Google Scholar] [CrossRef]
- Han, S.L.; Wang, M.M.; Ma, Z.Y.; Raza, M.; Zhao, P.; Liang, J.; Wang, J.W.; Hu, D.M.; Cai, L. Fusarium diversity associated with diseased cereals in China, with an updated phylogenomic assessment of the genus. Stud. Mycol. 2023, 104, 87–148. [Google Scholar] [CrossRef] [PubMed]
- Chinnadurai, C.; Wyatt, N.A.; Weiland, J.J.; Neher, O.T.; Hastings, J.; Bloomquist, M.W.; Chu, C.; Chanda, A.K.; Khan, M.; Bolton, M.D.; et al. Meta-transcriptomic analysis reveals the geographical expansion of known sugarbeet-infecting viruses and the occurrence of a novel virus in sugarbeet in the United States. Front. Plant Sci. 2024, 15, 1429402. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, M.; Wang, L.; Feng, H.; He, X.; Chang, S.; Wang, D.; Wang, L.; Wang, J.; An, G.; et al. Whole plant microbiome profiling reveals a novel geminivirus associated with soybean stay-green disease. Plant Biotechnol. J. 2022, 20, 2159–2173. [Google Scholar] [CrossRef]
- Cheng, R.; Mei, R.; Yan, R.; Chen, H.; Miao, D.; Cai, L.; Fan, J.; Li, G.; Xu, R.; Lu, W.; et al. A new distinct geminivirus causes soybean stay-green disease. Mol. Plant 2022, 15, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Yan, R.; Mei, R.; Wang, Y.; Niu, W.; Ai, H.; Qiao, S.; Xu, M.; Xu, W.; Ye, W.; et al. Epidemiological evaluation and identification of the insect vector of soybean stay-green associated virus. Phytopathol. Res. 2023, 5, 20. [Google Scholar] [CrossRef]
- He, P.; Lian, J.; Ye, Q.; Liu, H.; Zheng, Y.; Yu, K.; Zhu, S.; Li, R.; Yin, D.; Ye, W.; et al. How do functional traits influence tree demographicproperties in a subtropical monsoon forest? Funct. Ecol. 2022, 36, 3200–3210. [Google Scholar] [CrossRef]
- Kemppinen, J.; Niittynen, P.; le Roux, P.C.; Momberg, M.; Happonen, K.; Aalto, J.; Rautakoski, H.; Enquist, B.J.; Vandvik, V.; Halbritter, A.H.; et al. Consistenttrait–environment relationships within and across tundra plant communities. Nat. Ecol. Evol. 2021, 5, 458–467. [Google Scholar] [CrossRef]
- Famiglietti, C.A.; Worden, M.; Anderegg, L.D.L.; Konings, A.G. Impacts of climate timescale on the stability of trait-environment relationships. New Phytol. 2023, 241, 2323–2434. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, X.; Allen, W.K.; Hu, Y.; Wang, J.; Li, M.; Wu, L.; Guo, W. Soil fungi influence the relationship between plant diversity and ecosystem multifunctionlity. Nat. Commun. 2025, 16, 5521. [Google Scholar] [CrossRef]
- Biswas, S.R.; Li, J.; Zhuo, Z.; Wang, K.; Yan, E.R. Trait variation and plant performance: Interactive effects of diversity and spatial patterning of plants across environmental conditions. Funct. Ecol. 2025, 40, 83–96. [Google Scholar] [CrossRef]
- Han, M.; Chen, Y.; Gan, D.; Yu, M.; Li, R.; Han, Y.; Gu, J.; Li, S.; Su, J.; McCormack, M.L.; et al. The latitudinal pattern of fine root intraspecific trait variation among species in plant communities. Nat. Commun. 2025, 16, 9340. [Google Scholar] [CrossRef]
- Dang, Y.; Zhang, P.; Jiang, P.; Ke, J.; Xiao, Y.; Zhu, Y.; Liu, M.; Li, M.; Wu, J.; Liu, J.; et al. Temperature-dependent variations in under-canopy herbaceous foliar diseases following shrub encroachment in grasslands. Nat. Commun. 2025, 16, 1131. [Google Scholar] [CrossRef] [PubMed]
- Ricks, K.D.; Raglin, S.S.; Kent, A.D. Signatures of local nitrogen adaptation in the Brachypodium distachyon root microbiome. New Phytol. 2026, 249, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Gao, Y.; Zeng, F.; Sardans, J.; Ahmed, Z.; Graciano, C.; Hughes, A.; Penuelas, J. Guardians of arid lands: Deep-rooted defense against desertification and climate change. Trends Plant Sci. 2025. [Google Scholar] [CrossRef]
- Gao, Y.; Tariq, A.; Zeng, F.; Sardans, J.; Ai-Bakre, D.A.; Penuelas, J. Fractions of soil phosphorus mediated by rhizospheric phoD-harboring bacteria of deep-rooted desert species are determined by fine-root traits. Funct. Ecol. 2024, 38, 2300–2315. [Google Scholar] [CrossRef]
- Dini-Andreote, F.; Wells, D.M.; Atkinson, J.A.; Atkinson, B.S.; Finkel, O.M.; Castrillo, G. Microbial drivers of root plasticity. New Phytol. 2025, 248, 52–67. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Guo, J.-W.; Yang, H.; Wang, X. Plant Functional Traits or Microbiomes Associated with Diseases, Pests, Human Activities and Climate Change. Plants 2026, 15, 238. https://doi.org/10.3390/plants15020238
Guo J-W, Yang H, Wang X. Plant Functional Traits or Microbiomes Associated with Diseases, Pests, Human Activities and Climate Change. Plants. 2026; 15(2):238. https://doi.org/10.3390/plants15020238
Chicago/Turabian StyleGuo, Jian-Wei, Honglan Yang, and Xiaolin Wang. 2026. "Plant Functional Traits or Microbiomes Associated with Diseases, Pests, Human Activities and Climate Change" Plants 15, no. 2: 238. https://doi.org/10.3390/plants15020238
APA StyleGuo, J.-W., Yang, H., & Wang, X. (2026). Plant Functional Traits or Microbiomes Associated with Diseases, Pests, Human Activities and Climate Change. Plants, 15(2), 238. https://doi.org/10.3390/plants15020238

