Advancing Precision Agriculture and Forestry: Multi-Source Spectral Sensing, Feature Fusion, and Machine Learning
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sukhova, E.; Zolin, Y.; Popova, A.; Grebneva, K.; Yudina, L.; Sukhov, V. Broadband Normalized Difference Reflectance Indices and the Normalized Red–Green Index as a Measure of Drought in Wheat and Pea Plants. Plants 2025, 14, 71. [Google Scholar] [CrossRef] [PubMed]
- Zolin, Y.; Popova, A.; Yudina, L.; Grebneva, K.; Abasheva, K.; Sukhov, V.; Sukhova, E. RGB Indices Can Be Used to Estimate NDVI, PRI, and Fv/Fm in Wheat and Pea Plants Under Soil Drought and Salinization. Plants 2025, 14, 1284. [Google Scholar] [CrossRef] [PubMed]
- Sukhova, E.; Yudina, L.; Zolin, Y.; Popova, A.; Grebneva, K.; Abasheva, K.; Kozlova, E.; Sukhov, V. Light Scattering of Leaf Surface and Spongy Mesophyll and Concentration of Anthocyanin Influence Typical and Modified Photochemical Reflectance Indices. Plants 2025, 14, 3255. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, C.; Shen, W.; Yan, L.; Zheng, X.; Yao, Z.; Cui, S.; Cui, C.; Hu, Y.; Yang, M. Correlation Study Between Canopy Temperature (CT) and Wheat Yield and Quality Based on Infrared Imaging Camera. Plants 2025, 14, 411. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.; Sánchez, J.M.; Gonçalves, J.M.; Eugénio, R.; Damásio, H. Improving ETa Estimation for Cucurbita moschata Using Remote Sensing-Based FAO-56 Crop Coefficients in the Lis Valley, Portugal. Plants 2025, 14, 3343. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Li, Z.; Tang, Z.; Zhang, W.; Li, W.; Liu, Z.; Wu, J.; Liu, S.; Xiang, Y.; Zhang, F. Estimating Soil Moisture Content in Winter Wheat in Southern Xinjiang by Fusing UAV Texture Feature with Novel Three-Dimensional Texture Indexes. Plants 2025, 14, 2948. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Zhang, X.; Li, G.; Yang, C.; Yang, Q.; Shi, Y. Growth Trend Prediction and Intervention of Panax notoginseng Growth Status Based on a Data-Driven Approach. Plants 2025, 14, 1226. [Google Scholar] [CrossRef] [PubMed]
- Sawut, M.; Hu, X.; Abulaiti, Y.; Yimaer, R.; Maimaitiaili, B.; Liu, S.; Pang, R. Estimation of Leaf Phosphorus Content in Cotton Using Fractional Order Differentially Optimized Spectral Indices. Plants 2025, 14, 1457. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Li, Z.; Tang, Z.; Zhang, W.; Sun, T.; Wu, Y.; Yang, W.; Chen, G.; Xiang, Y.; Zhang, F. Estimation of Nitrogen Concentration in Winter Wheat Leaves Based on a Novel Spectral Index and Machine Learning Model. Plants 2025, 14, 2772. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Bao, H.; Rimi, T.I.; Zhang, S.; Han, B.; Wang, Y.; Yu, Z.; Chen, J.; Gao, H.; Zhao, Z.; et al. Rice Quality and Yield Prediction Based on Multi-Source Indicators at Different Periods. Plants 2025, 14, 424. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zeng, X.; Ma, Q.; Yuan, Y.; Zhang, N.; Lin, Z.; Yin, P.; Yang, H.; Liu, X.; Zhang, F. UAV-Based Yield Prediction Based on LAI Estimation in Winter Wheat (Triticum aestivum L.) Under Different Nitrogen Fertilizer Types and Rates. Plants 2025, 14, 1986. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Lu, J.; Abdelghany, A.E.; Su, P.; Jin, M.; Li, S.; Sun, T.; Xiang, Y.; Li, Z.; Zhang, F. Winter Oilseed Rape LAI Inversion via Multi-Source UAV Fusion: A Three-Dimensional Texture and Machine Learning Approach. Plants 2025, 14, 1245. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, C.; Zhang, Y.; Li, S.; Liu, Y.; Yang, K.; Lu, J. Estimating Maize Leaf Area Index Using Multi-Source Features Derived from UAV Multispectral Imagery and Machine Learning Models. Plants 2025, 14, 3534. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Qin, L.; Xing, P.; Meng, X.; Meng, X.; Qin, K.; Wang, C. Ultra-High-Resolution Optical Remote Sensing Satellite Identification of Pine-Wood-Nematode-Infected Trees. Plants 2025, 14, 3436. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Sun, W.; Yang, L.; Yang, Q. Development of a Green-Synthesized WA-CDs@MIL-101 Fluorescent Sensor for Rapid Detection of Panax notoginseng Leaf Pathogen Spores. Plants 2025, 14, 2316. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Lu, X.; Zhang, H.; Wan, H.; Zhang, Y.; Feng, X. The Effects of Stand Density on the Growth of Winter Rapeseed in an Agroforestry Intercropping System in the Red Soil Slopes of Southern China. Plants 2025, 14, 1374. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xiang, Y.; Liu, Z. Advancing Precision Agriculture and Forestry: Multi-Source Spectral Sensing, Feature Fusion, and Machine Learning. Plants 2026, 15, 3. https://doi.org/10.3390/plants15010003
Xiang Y, Liu Z. Advancing Precision Agriculture and Forestry: Multi-Source Spectral Sensing, Feature Fusion, and Machine Learning. Plants. 2026; 15(1):3. https://doi.org/10.3390/plants15010003
Chicago/Turabian StyleXiang, Youzhen, and Zhiying Liu. 2026. "Advancing Precision Agriculture and Forestry: Multi-Source Spectral Sensing, Feature Fusion, and Machine Learning" Plants 15, no. 1: 3. https://doi.org/10.3390/plants15010003
APA StyleXiang, Y., & Liu, Z. (2026). Advancing Precision Agriculture and Forestry: Multi-Source Spectral Sensing, Feature Fusion, and Machine Learning. Plants, 15(1), 3. https://doi.org/10.3390/plants15010003

