Comprehensive Investigation of GRF Transcription Factors and Associated Responses to Drought Stress in Oat (Avena sativa)
Abstract
1. Introduction
2. Results
2.1. Identification of GRF Gene Family in A. sativa
2.2. Chromosomal Distribution and Phylogenetic Analysis of AsGRF Genes
2.3. Gene Structure and Motif Distribution of AsGRF Genes
2.4. Cis-Acting Element Prediction of AsGRF Genes
2.5. Duplication and Synteny Analysis of AsGRF Genes
2.6. Expression Pattern Analysis of AsGRF Genes Under Drought Stress
2.7. Subcellular Localization and Transcriptional Self-Activation Activity Analysis of AsGRF3 Protein
3. Discussion
3.1. Identification and Physicochemical Characterization of AsGRF Genes
3.2. Evolutionary Phylogeny and Structural Characterization of AsGRF Genes
3.3. Evolutionary Dynamics of the GRF Gene Family in Oat
3.4. Nuclear Localization and Absence of Self-Activation in AsGRF3
4. Materials and Methods
4.1. Identification of GRF Gene Family Members in A. sativa
4.2. Conserved Domain, Gene Structure, Chromosome Localization, and Cis-Acting Analysis
4.3. Phylogenetic Tree
4.4. Duplication, Synteny, and Ka/Ks Analysis of AsGRF Genes
4.5. Plant Materials and Treatment
4.6. Transcriptome Data and qRT-PCR Analysis
4.7. Subcellular Localization Analysis
4.8. Transcriptional Self-Activation Activity Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Piya, S.; Liu, J.Y.; Burch-Smith, T.; Baum, T.J.; Hewezi, T. A role for Arabidopsis growth-regulating factors 1 and 3 in growth-stress antagonism. J. Exp. Bot. 2020, 71, 1402–1417. [Google Scholar] [CrossRef]
- Omidbakhshfard, M.A.; Proost, S.; Fujikura, U.; Mueller-Roeber, B. Growth-regulating factors (GRFs): A small transcription factor family with important functions in plant biology. Mol. Plant 2015, 8, 998–1010. [Google Scholar] [CrossRef]
- Kim, J.H.; Tsukaya, H. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. J. Exp. Bot. 2015, 66, 6093–6107. [Google Scholar] [CrossRef] [PubMed]
- Lazzara, F.E.; Rodriguez, R.E.; Palatnik, J.F. Molecular mechanisms regulating GROWTH-REGULATING FACTORS activity in plant growth, development, and environmental responses. J. Exp. Bot. 2024, 75, 4360–4372. [Google Scholar] [CrossRef]
- Tu, M.; Li, Z.; Zhu, Y.L.; Wang, P.; Jia, H.B.; Wang, G.L.; Zhou, Q.; Hua, Y.Q.; Yang, L.; Xiao, J.R.; et al. Potential roles of the GRF transcription factors in Sorghum internodes during post-reproductive stages. Plants 2024, 13, 2352. [Google Scholar] [CrossRef]
- Chen, X.H.; Zhang, J.; Wang, S.J.; Cai, H.Y.; Yang, M.S.; Dong, Y. Genome-wide molecular evolution analysis of the GRF and GIF gene families in Plantae (Archaeplastida). BMC Genom. 2024, 25, 74. [Google Scholar] [CrossRef]
- Rodriguez, R.E.; Ercoli, M.F.; Debernardi, J.M.; Palatnik, J.F. Growth-regulating factors, a transcription factor family regulating more than just plant growth. Plant Transcr. Factors 2016, 269–280. [Google Scholar] [CrossRef]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Laxmi, A. Transcriptional regulation of drought response: A tortuous network of transcriptional factors. Front. Plant Sci. 2015, 6, 895. [Google Scholar] [CrossRef]
- Kim, J.S.; Mizoi, J.; Kidokoro, S.; Maruyama, K.; Nakajima, J.; Nakashima, K.; Mitsuda, N.; Takiguchi, Y.; Ohme-Takagi, M.; Kondou, Y.; et al. Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell 2012, 24, 3393–3405. [Google Scholar] [CrossRef]
- Du, W.X.; Yang, J.F.; Li, Q.; Su, Q.; Yi, D.X.; Pang, Y.Z. Genome-wide identification and characterization of growth regulatory factor family genes in medicago. Int. J. Mol. Sci. 2022, 23, 6905. [Google Scholar] [CrossRef]
- Fu, M.K.; He, Y.N.; Yang, X.Y.; Tang, X.; Wang, M.; Dai, W.S. Genome-wide identification of the GRF family in sweet orange (Citrus sinensis) and functional analysis of the CsGRF04 in response to multiple abiotic stresses. BMC Genom. 2024, 25, 37. [Google Scholar] [CrossRef]
- Liebsch, D.; Palatnik, J.F. microRNA miR396, GRF transcription factors and GIF co-regulators: A conserved plant growth regulatory module with potential for breeding and biotechnology. Curr. Opin. Plant Biol. 2020, 53, 31–42. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Xiao, T.; Yi, F.; Yu, J.J. SimiR396d targets SiGRF1 to regulate drought tolerance and root growth in foxtail millet. Plant Sci. 2023, 326, 111492. [Google Scholar] [CrossRef]
- Alemayehu, G.F.; Forsido, S.F.; Tola, Y.B.; Amare, E. Nutritional and phytochemical composition and associated health benefits of oat (Avena sativa) grains and oat-based fermented food products. Sci. World J. 2023, 2023, 2730175. [Google Scholar] [CrossRef]
- Peng, Y.Y.; Yan, H.H.; Guo, L.C.; Deng, C.; Wang, C.L.; Wang, Y.B.; Kang, L.P.; Zhou, P.P.; Yu, K.Q.; Dong, X.L.; et al. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat. Genet. 2022, 54, 1248–1258. [Google Scholar] [CrossRef]
- Wankhede, N.L.; Kale, M.B.; Bawankule, A.K.; Aglawe, M.M.; Taksande, B.G.; Trivedi, R.V.; Umekar, M.J.; Jamadagni, A.; Walse, P.; Koppula, S.; et al. Overview on the polyphenol avenanthramide in oats (Avena sativa Linn.) as regulators of PI3K signaling in the management of neurodegenerative diseases. Nutrients 2023, 15, 3751. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.Y.; Hu, Y.C.; Deng, H.D.; Pei, X.; Liu, F.; Chen, C. Impact of oat (Avena sativa L.) on metabolic syndrome and potential physiological mechanisms of action: A current review. J. Agric. Food Chem. 2023, 71, 14838–14852. [Google Scholar] [CrossRef]
- Konieczna, W.; Warchoł, M.; Mierek-Adamska, A.; Skrzypek, E.; Waligórski, P.; Piernik, A.; Dąbrowska, G.B. Changes in physio-biochemical parameters and expression of metallothioneins in Avena sativa L. in response to drought. Sci. Rep. 2023, 13, 2486. [Google Scholar] [CrossRef]
- Chen, Y.; Li, A.X.; Yun, P.; Chen, Q.; Pan, D.Y.; Guo, R.; Zhang, H.; Ahmed, H.A.I.; Hu, H.Y.; Peng, Y.Y.; et al. Genome-wide analysis of MYB transcription factor family and AsMYB1R subfamily contribution to ROS homeostasis regulation in Avena sativa under PEG-induced drought stress. BMC Plant Biol. 2024, 24, 632. [Google Scholar] [CrossRef]
- Xu, S.R.; Wei, Z.H.; Ma, M.C.; Zhang, L.J.; Liu, Z.; Liu, L.L. Genome-wide identification and characterization of the Brassinazole-resistant gene family and associated responses to osmotic stress in Avena sativa. Front. Plant Sci. 2025, 16, 1616026. [Google Scholar] [CrossRef]
- Liu, B.Y.; Zhang, Z.C.; Peng, J.H.; Mou, H.P.; Wang, Z.T.; Dao, Y.X.; Liu, T.Q.; Kong, D.D.; Liu, S.Y.; Xiong, Y.L.; et al. Exploring evolutionary pathways and abiotic stress responses through genome-wide identification and analysis of the alternative oxidase (AOX) gene family in common oat (Avena sativa). Int. J. Mol. Sci. 2024, 25, 9383. [Google Scholar] [CrossRef]
- Zan, T.; Zhang, L.; Xie, T.T.; Li, L.Q. Genome-wide identification and analysis of the growth-regulating factor (GRF) gene family and GRF-interacting factor family in Triticum aestivum L. Biochem. Genet. 2020, 58, 705–724. [Google Scholar] [CrossRef]
- Huang, W.D.; He, Y.Q.; Yang, L.; Lu, C.; Zhu, Y.X.; Sun, C.; Ma, D.F.; Yin, J.L. Genome-wide analysis of growth-regulating factors (GRFs) in Triticum aestivum. PeerJ 2021, 9, E10701. [Google Scholar] [CrossRef]
- Qin, L.; Chen, H.F.; Wu, Q.F.; Wang, X.L. Identification and exploration of the GRF and GIF families in maize and foxtail millet. Physiol. Mol. Biol. Plants 2022, 28, 1717–1735. [Google Scholar] [CrossRef]
- Choi, D.; Kim, J.H.; Kende, H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol. 2004, 45, 897–904. [Google Scholar] [CrossRef]
- Shi, Y.N.; Wang, X.Y.; Wang, J.P.; Niu, J.T.; Du, R.H.; Ji, G.S.; Zhu, L.N.; Zhang, J.; Lv, P.; Cao, J.F. Systematical characterization of GRF gene family in sorghum, and their potential functions in aphid resistance. Gene 2022, 836, 146669. [Google Scholar] [CrossRef]
- Chen, H.L.; Ge, W.N. Identification, molecular characteristics, and evolution of GRF gene family in foxtail millet (Setaria italica L.). Front. Genet. 2022, 12, 727674. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Y.Z.; Luo, X.F.; Zhou, W.G.; Dai, Y.J.; Zheng, C.; Liu, W.G.; Yang, W.Y.; Shu, K. Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress. BMC Plant Biol. 2019, 19, 269. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Wu, J.J.; Zhang, K.N.; Tang, W.; Cong, L.L.; Xie, H.L.; Wang, Z.Y.; Chai, M.F. Genome-wide identification of growth-regulating factor transcription factor family related to leaf and stem development in alfalfa. Front. Plant Sci. 2022, 13, 964604. [Google Scholar] [CrossRef]
- Khisti, M.; Avuthu, T.; Yogendra, K.; Valluri, V.K.; Kudapa, H.; Reddy, P.S.; Tyagi, W. Genome-wide identification and expression profiling of growth-regulating factor (GRF) and GRF-interacting factor (GIF) gene families in chickpea and pigeonpea. Sci. Rep. 2024, 14, 17178. [Google Scholar] [CrossRef]
- Cui, D.N.; Song, Y.; Jiang, W.H.; Ye, H.; Wang, S.P.; Yuan, L.; Liu, B.L. Genome-wide characterization of the GRF transcription factors in potato (Solanum tuberosum L.) and expression analysis of StGRF genes during potato tuber dormancy and sprouting. Front. Plant Sci. 2024, 15, 1417204. [Google Scholar] [CrossRef]
- Wu, Z.L.; Chen, X.L.; Fu, D.W.; Zeng, Q.Y.; Gao, X.N.; Zhang, N.N.; Wu, J.Y. Genome-wide characterization and expression analysis of the growth-regulating factor family in Saccharum. BMC Plant Biol. 2022, 22, 510. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xiao, Y.; Yan, M.; Yan, Y.; Lei, X.J.; Di, P.; Wang, Y.P. Whole-genome identification and expression profiling of growth-regulating factor (GRF) and GRF-interacting factor (GIF) gene families in Panax ginseng. BMC Genom. 2023, 24, 334. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.R.; Cheng, M.X.; Fan, F.F.; Zheng, X.F.; Wang, R.H.; Si, F.F.; Luo, X.; Li, N.W.; Li, S.Q. OsGRF6-OsYUCCA1/OsWRKY82 signaling cascade upgrade grain yield and bacterial blight resistance in rice. Adv. Sci. 2024, 11, 2407733. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Dan, Z.W.; Li, S.Q. GROWTH REGULATING FACTOR 7-mediated arbutin metabolism enhances rice salt tolerance. Plant Cell 2024, 36, 2834–2850. [Google Scholar] [CrossRef]
- Yin, P.; Wang, H.Y.; Ye, Z.K.; Li, Y.L.; Liang, X.Y.; Jiang, C.F. The ZmMPK3-ZmGRF1 module promotes maize growth by enhancing cell proliferation under salt stress. Sci. Bull. 2025; in press. [Google Scholar] [CrossRef]
- Yue, J.; Wu, Q.J.; Tan, Y.Q.; Wang, Q.P.; Wei, R.J.; Wang, X.; Chen, T.; Luo, D.J.; Chen, P. Genome-wide characterization of GRF-GIF transcriptional modules in kenaf (Hibiscus cannabinus L.) reveals their roles in plant development and multi-stress adaptation. Funct. Integr. Genom. 2025, 25, 112. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, D.; Kende, H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J. 2003, 36, 94–104. [Google Scholar] [CrossRef]
- Liu, S.C.; Li, K.; Dai, X.R.; Qin, G.C.; Lu, D.D.; Gao, Z.X.; Li, X.P.; Song, B.L.; Bian, J.X.; Ren, D.; et al. A telomere-to-telomere genome assembly coupled with multi-omic data provides insights into the evolution of hexaploid bread wheat. Nat. Genet. 2025, 57, 1008–1020. [Google Scholar] [CrossRef]
- He, Q.; Li, W.; Miao, Y.Q.; Wang, Y.; Liu, N.K.; Liu, J.N.; Li, T.; Xiao, Y.; Zhang, H.Y.; Wang, Y.R.; et al. The near-complete genome assembly of hexaploid wild oat reveals its genome evolution and divergence with cultivated oats. Nat. Plants 2024, 10, 2062–2078. [Google Scholar] [CrossRef]
- Ullah, U.; Shalmani, A.; Ilyas, M.; Raza, A.; Ahmad, S.; Shah, A.Z.; Khan, F.U.; Din, A.; Bibi, A.; Rehman, S.U.; et al. BZR proteins: Identification, evolutionary and expression analysis under various exogenous growth regulators in plants. Mol. Biol. Rep. 2022, 49, 12039–12053. [Google Scholar] [CrossRef] [PubMed]
- Kapli, P.; Yang, Z.; Telford, M.J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 2020, 21, 428–444. [Google Scholar] [CrossRef]
- Yang, Z.; Rannala, B. Molecular phylogenetics: Principles and practice. Nat. Rev. Genet. 2012, 13, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, G.Z.; Ahmad, S.; Hao, Y.; Chen, J.L.; Zhou, Y.Z.; Lan, S.R.; Liu, Z.J.; Peng, D.H. Genome-wide identification and characterization of the GRF gene family in Melastoma dodecandrum. Int. J. Mol. Sci. 2023, 24, 1261. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, M.; Zou, L.; Zhang, S.; Lan, Y.; Yan, H.; Xiang, Y. Comprehensive investigation of BZR gene family in four dicots and the function of PtBZR9 and PtBZR12 under drought stress. Plant Physiol. Biochem. 2024, 207, 108360. [Google Scholar] [CrossRef]
- Zhou, B.N.; Long, C.; Yao, W.J.; Lin, S.Y.; Li, L. Identification, evolution and expression analysis of GRF family reveals their involvement in shoot growth and abiotic stress response in moso bamboo. Forests 2023, 14, 2044. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, M.X.; Wei, X.; Wang, R.H.; Fan, F.F.; Wang, Z.K.; Tian, Z.H.; Li, S.Q.; Yuan, H.R. Comprehensive evolutionary analysis of growth-regulating factor gene family revealing the potential molecular basis under multiple hormonal stress in Gramineae crops. Front. Plant Sci. 2023, 14, 1174955. [Google Scholar]
- Kamal, N.; Tsardakas, R.N.; Bentzer, J.; Gundlach, H.; Haberer, G.; Juhász, A.; Lux, T.; Bose, U.; Tye-Din, J.A.; Lang, D.; et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature 2022, 606, 113–119. [Google Scholar] [CrossRef]
- Chen, C.J.; Wu, Y.; Li, J.W.; Wang, X.; Zeng, Z.H.; Xu, J.; Liu, Y.L.; Feng, J.T.; Chen, H.; He, Y.H.; et al. TBtools-Ⅱ: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Tajti, J.; Pál, M.; Janda, T. Validation of reference genes for studying different abiotic stresses in oat (Avena sativa L.) by RT-qPCR. Plants 2021, 10, 1272. [Google Scholar] [CrossRef]
- Liu, K.Q.; Ju, Z.L.; Jia, Z.F.; Liang, G.L.; Ma, X.; Liu, W. Genome-wide identification and characterization of the oat (Avena sativa L.) WRKY transcription factor family. Genes 2022, 13, 1918. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Kovaka, S.; Zimin, A.V.; Pertea, G.M.; Razaghi, R.; Salzberg, S.L.; Pertea, M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019, 20, 278. [Google Scholar] [CrossRef] [PubMed]
- Surana, P.; Dutta, P.; Davuluri, R.V. TransTEx: Novel tissue-specificity scoring method for grouping human transcriptome into different expression groups. Bioinformatics 2024, 40, btae475. [Google Scholar] [CrossRef]
- Xu, S.R.; Ji, X.J.; Han, H.M.; Zhang, J.P.; Zhou, S.H.; Guo, B.J.; Yang, X.M.; Li, X.Q.; Guo, X.M.; Liu, T.G.; et al. AcRLK2P-1, an LRR receptor protein kinase gene from Agropyron cristatum, confers leaf rust resistance in wheat. Plant Commun. 2024, 5, 101132. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.D.; Zhang, X.Y.; Yao, G.F.; Rong, Y.L.; Ding, C.; Tang, J.; Yang, F.; Huang, Z.Q.; Xu, Z.M.; Chen, X.Y.; et al. A nuclear-localized cysteine desulfhydrase plays a role in fruit ripening in tomato. Hortic. Res. 2020, 7, 211. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Yan, J.L.; Tong, T.T.; Zhao, P.Y.; Wang, S.S.; Zhou, N.; Cui, X.; Dai, M.Y.; Jiang, Y.Q.; Yang, B. ANAC087 transcription factor positively regulates age-dependent leaf senescence through modulating the expression of multiple target genes in Arabidopsis. J. Integr. Plant Biol. 2023, 65, 967–984. [Google Scholar] [CrossRef]








| Gene Name | Sequence ID | Number of Amino Acid | Molecular Weight (kDa) | pI | Instability Index | Aliphatic Index | GRAVY | QLQ Domain | WRC Domain | Predicted Subcellular Location |
|---|---|---|---|---|---|---|---|---|---|---|
| AsGRF1 | AVESA.00010b.r2.2AG0234890.2 | 265 | 27.92 | 10.04 | 53.75 | 74.45 | −0.24 | 103–137 | 169–210 | Nucleus |
| AsGRF2 | AVESA.00010b.r2.2AG0237710.1 | 401 | 43.88 | 7.73 | 55.90 | 54.44 | −0.57 | 60–94 | 122–163 | Nucleus |
| AsGRF3 | AVESA.00010b.r2.2CG0285900.1 | 261 | 27.64 | 5.02 | 54.72 | 63.98 | −0.64 | 108–142 | 175–216 | Nucleus |
| AsGRF4 | AVESA.00010b.r2.2CG0314200.1 | 230 | 24.42 | 10.26 | 51.77 | 71.39 | −0.32 | 70–104 | 136–177 | Nucleus |
| AsGRF5 | AVESA.00010b.r2.2CG0316620.1 | 391 | 42.91 | 8.21 | 51.45 | 54.07 | −0.58 | 55–89 | 117–158 | Nucleus |
| AsGRF6 | AVESA.00010b.r2.2DG0365750.1 | 401 | 43.92 | 7.76 | 55.76 | 55.89 | −0.56 | 60–94 | 122–163 | Nucleus |
| AsGRF7 | AVESA.00010b.r2.2DG0368580.2 | 264 | 27.85 | 10.04 | 53.27 | 71.44 | −0.30 | 104–138 | 170–211 | Nucleus |
| AsGRF8 | AVESA.00010b.r2.4AG0600200.1 | 417 | 46.50 | 8.81 | 61.29 | 59.74 | −0.83 | 90–123 | 150–191 | Nucleus |
| AsGRF9 | AVESA.00010b.r2.4AG0604750.1 | 585 | 62.34 | 6.19 | 53.45 | 70.48 | −0.38 | 141–175 | 208–248 | Nucleus |
| AsGRF10 | AVESA.00010b.r2.4DG0743940.1 | 420 | 46.73 | 8.81 | 62.00 | 57.00 | −0.85 | 91–124 | 151–192 | Nucleus |
| AsGRF11 | AVESA.00010b.r2.4DG0748580.1 | 587 | 62.53 | 6.19 | 53.21 | 69.40 | −0.39 | 143–177 | 210–250 | Nucleus |
| AsGRF12 | AVESA.00010b.r2.5CG0865940.1 | 350 | 38.27 | 8.79 | 62.27 | 51.40 | −0.70 | 27–60 | 101–142 | Nucleus |
| AsGRF13 | AVESA.00010b.r2.5CG0871910.1 | 332 | 36.38 | 8.41 | 67.46 | 49.25 | −0.83 | 19–52 | 93–134 | Nucleus |
| AsGRF14 | AVESA.00010b.r2.6AG1029740.1 | 408 | 43.58 | 8.64 | 61.52 | 57.30 | −0.56 | 59–93 | 122–163 | Nucleus |
| AsGRF15 | AVESA.00010b.r2.6AG1031180.1 | 220 | 22.96 | 9.77 | 50.64 | 71.50 | −0.26 | 65–98 | 130–171 | Nucleus |
| AsGRF16 | AVESA.00010b.r2.6AG1042640.1 | 424 | 45.85 | 7.79 | 49.10 | 49.81 | −0.74 | 24–58 | 97–138 | Nucleus |
| AsGRF17 | AVESA.00010b.r2.6CG1083510.2 | 244 | 26.13 | 9.55 | 49.55 | 74.02 | −0.20 | 98–131 | 163–204 | Nucleus |
| AsGRF18 | AVESA.00010b.r2.6CG1085280.1 | 398 | 42.60 | 9.13 | 58.32 | 58.49 | −0.56 | 58–92 | 121–162 | Nucleus |
| AsGRF19 | AVESA.00010b.r2.6CG1133390.1 | 420 | 45.25 | 7.44 | 49.12 | 49.86 | −0.74 | 24–58 | 97–138 | Nucleus |
| AsGRF20 | AVESA.00010b.r2.6DG1157660.1 | 420 | 45.62 | 7.79 | 48.61 | 49.36 | −0.76 | 24–58 | 97–138 | Nucleus |
| AsGRF21 | AVESA.00010b.r2.6DG1168640.1 | 220 | 23.12 | 9.90 | 52.03 | 72.41 | −0.27 | 65–98 | 130–171 | Nucleus |
| AsGRF22 | AVESA.00010b.r2.6DG1170080.1 | 403 | 43.16 | 8.44 | 63.38 | 57.77 | −0.58 | 59–93 | 122–163 | Nucleus |
| AsGRF23 | AVESA.00010b.r2.7AG1199850.1 | 347 | 38.04 | 8.95 | 62.21 | 50.98 | −0.71 | 26–59 | 99–140 | Nucleus |
| AsGRF24 | AVESA.00010b.r2.7AG1208160.1 | 323 | 35.48 | 8.40 | 66.30 | 47.28 | −0.84 | 18–51 | 92–133 | Nucleus |
| AsGRF25 | AVESA.00010b.r2.7CG0695720.1 | 415 | 46.46 | 9.00 | 59.12 | 57.23 | −0.87 | 88–121 | 148–189 | Nucleus |
| AsGRF26 | AVESA.00010b.r2.7CG0700670.1 | 588 | 62.71 | 6.16 | 54.19 | 70.12 | −0.40 | 140–174 | 208–248 | Nucleus |
| AsGRF27 | AVESA.00010b.r2.7DG1335440.1 | 349 | 38.11 | 8.95 | 62.98 | 50.69 | −0.70 | 26–59 | 99–140 | Nucleus |
| AsGRF28 | AVESA.00010b.r2.7DG1399520.1 | 325 | 35.66 | 8.60 | 68.64 | 46.98 | −0.86 | 19–52 | 93–134 | Nucleus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, S.; Ji, X.; Sai, F.; Ma, M.; Liu, Z.; Zhang, L.; Liu, L. Comprehensive Investigation of GRF Transcription Factors and Associated Responses to Drought Stress in Oat (Avena sativa). Plants 2026, 15, 160. https://doi.org/10.3390/plants15010160
Xu S, Ji X, Sai F, Ma M, Liu Z, Zhang L, Liu L. Comprehensive Investigation of GRF Transcription Factors and Associated Responses to Drought Stress in Oat (Avena sativa). Plants. 2026; 15(1):160. https://doi.org/10.3390/plants15010160
Chicago/Turabian StyleXu, Shirui, Xiajie Ji, Fumeng Sai, Mingchuan Ma, Zhang Liu, Lijun Zhang, and Longlong Liu. 2026. "Comprehensive Investigation of GRF Transcription Factors and Associated Responses to Drought Stress in Oat (Avena sativa)" Plants 15, no. 1: 160. https://doi.org/10.3390/plants15010160
APA StyleXu, S., Ji, X., Sai, F., Ma, M., Liu, Z., Zhang, L., & Liu, L. (2026). Comprehensive Investigation of GRF Transcription Factors and Associated Responses to Drought Stress in Oat (Avena sativa). Plants, 15(1), 160. https://doi.org/10.3390/plants15010160
