The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response
Abstract
:1. Introduction
2. Classification of Plant RBPs
3. Functions of Salt-Responsive RBPs in the Nucleus and Cytoplasm
3.1. GR-RBPs
3.2. SR/RS Proteins
3.3. Zinc Finger Domain-Containing RBPs
3.4. DEAD-Box RNA Helicases (DBRHs)
3.5. KH Domain-Containing Proteins
3.6. PUM Proteins
3.7. RBPs Involved in Cytoplasmic RNA Granule Formation
3.8. Other Salt-Responsive RBPs Localized to the Nucleus and Cytoplasm
4. RBPs in Chloroplasts and Mitochondria
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Global Status of Salt-Affected Soils—Main Report; FAO: Rome, Italy, 2024. [Google Scholar]
- Yang, F.; Baskin, J.M.; Baskin, C.C.; Yang, X.; Cao, D.; Huang, Z. Effects of germination time on seed morph ratio in a seed-dimorphic species and possible ecological significance. Ann. Bot. 2015, 115, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Baskin, J.M.; Baskin, C.C.; Liu, G.; Ye, X.; Yang, X.; Huang, Z. Soil salinity regulates spatial-temporal heterogeneity of seed germination and seedbank persistence of an annual diaspore-trimorphic halophyte in northern China. BMC Plant Biol. 2024, 24, 604. [Google Scholar] [CrossRef]
- Liu, D.; Han, C.; Deng, X.; Liu, Y.; Liu, N.; Yan, Y. Integrated physiological and proteomic analysis of embryo and endosperm reveals central salt stress response proteins during seed germination of winter wheat cultivar Zhengmai. BMC Plant Biol. 2019, 19, 406. [Google Scholar] [CrossRef] [PubMed]
- El Sabagh, A.; Islam, M.S.; Skalicky, M.; Ali Raza, M.; Singh, K.; Anwar Hossain, M.; Hossain, A.; Mahboob, W.; Iqbal, M.A.; Ratnasekera, D. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies. Front. Agron. 2021, 3, 661932. [Google Scholar] [CrossRef]
- Singhal, R.K.; Saha, D.; Skalicky, M.; Mishra, U.N.; Chauhan, J.; Behera, L.P.; Lenka, D.; Chand, S.; Kumar, V.; Dey, P. Crucial cell signaling compounds crosstalk and integrative multi-omics techniques for salinity stress tolerance in plants. Front. Plant Sci. 2021, 12, 670369. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ response mechanisms to salinity stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef]
- Bomle, D.V.; Kiran, A.; Kumar, J.K.; Nagaraj, L.S.; Pradeep, C.K.; Ansari, M.A.; Alghamdi, S.; Kabrah, A.; Assaggaf, H.; Dablool, A.S. Plants saline environment in perception with rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Int. J. Mol. Sci. 2021, 22, 11461. [Google Scholar] [CrossRef]
- Sinthumule, R.R.; Ruzvidzo, O.; Dikobe, T.B. Elucidation of the morpho-physiological traits of maize (Zea mays L.) under salt stress. J. Exp. Biol. Agric. Sci. 2022, 10, 1441–1452. [Google Scholar] [CrossRef]
- Athar, H.-u.-R.; Zulfiqar, F.; Moosa, A.; Ashraf, M.; Zafar, Z.U.; Zhang, L.; Ahmed, N.; Kalaji, H.M.; Nafees, M.; Hossain, M.A. Salt stress proteins in plants: An overview. Front. Plant Sci. 2022, 13, 999058. [Google Scholar] [CrossRef]
- Rocco, M.; Lomaglio, T.; Loperte, A.; Satriani, A. Metapontum forest reserve: Salt stress responses in Pinus halepensis. Am. J. Plant Sci. 2013, 4, 674–684. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Zhao, Z.; Zhang, K.; Tian, C.; Mai, W. Progress of euhalophyte adaptation to arid areas to remediate salinized soil. Agriculture 2023, 13, 704. [Google Scholar] [CrossRef]
- Karlova, R.; Boer, D.; Hayes, S.; Testerink, C. Root plasticity under abiotic stress. Plant Physiol. 2021, 187, 1057–1070. [Google Scholar] [CrossRef]
- Liang, J.; Zheng, J.; Wu, Z.; Wang, H. Strawberry FaNAC2 enhances tolerance to abiotic stress by regulating proline metabolism. Plants 2020, 9, 1417. [Google Scholar] [CrossRef]
- An, Y.; Gao, Y.; Tong, S.; Liu, B. Morphological and physiological traits related to the response and adaption of Bolboschoenus planiculmis seedlings grown under salt-alkaline stress conditions. Front. Plant Sci. 2021, 12, 567782. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Tanna, B. Halophytes: Potential resources for salt stress tolerance genes and promoters. Front. Plant Sci. 2017, 8, 829. [Google Scholar] [CrossRef]
- Jing, J.; Guo, S.; Li, Y.; Li, W. The alleviating effect of exogenous polyamines on heat stress susceptibility of different heat resistant wheat (Triticum aestivum L.) varieties. Sci. Rep. 2020, 10, 7467. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Koźmińska, A.; Hanus-Fajerska, E.; Dziurka, K.; Dziurka, M. Insight into phytohormonal modulation of defense mechanisms to salt excess in a halophyte and a glycophyte from Asteraceae family. Plant Soil. 2021, 463, 55–76. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mostofa, M.G.; Keya, S.S.; Siddiqui, M.N.; Ansary, M.M.U.; Das, A.K.; Rahman, M.A.; Tran, L.S.-P. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. Int. J. Mol. Sci. 2021, 22, 10733. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, N.; Teixeira da Silva, J.A.; Liu, X.; Deng, R.; Yao, Y.; Duan, J.; He, C. Physiological and transcriptomic analysis uncovers salinity stress mechanisms in a facultative crassulacean acid metabolism plant Dendrobium officinale. Front. Plant Sci. 2022, 13, 1028245. [Google Scholar] [CrossRef]
- Amombo, E.; Li, H.; Fu, J. Research advances on tall fescue salt tolerance: From root signaling to molecular and metabolic adjustment. J. Am. Soc. Hortic. Sci. 2017, 142, 337–345. [Google Scholar] [CrossRef]
- Marriboina, S.; Sharma, K.; Sengupta, D.; Yadavalli, A.D.; Sharma, R.P.; Reddy, A.R. Systematic hormone-metabolite network provides insights of high salinity tolerance in Pongamia pinnata (L.) pierre. bioRxiv 2020. [Google Scholar] [CrossRef]
- Guo, J.; Sun, B.; He, H.; Zhang, Y.; Tian, H.; Wang, B. Current understanding of bHLH transcription factors in plant abiotic stress tolerance. Int. J. Mol. Sci. 2021, 22, 4921. [Google Scholar] [CrossRef]
- Fong, N.; Kim, H.; Zhou, Y.; Ji, X.; Qiu, J.; Saldi, T.; Diener, K.; Jones, K.; Fu, X.-D.; Bentley, D.L. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Gene Dev. 2014, 28, 2663–2676. [Google Scholar] [CrossRef]
- Ji, X.; Fang, P.; Zhao, X.; Xiong, C.; Yang, Q.; Wan, Y.; Do, R.Y.; Wang, Z.; Qi, L.; Huang, L. Sequencing-free Tissue-wide Spatial Profiling of Post-transcriptional Regulations. bioRxiv 2022. [Google Scholar] [CrossRef]
- Yuan, J.; Muljo, S.A. Exploring the RNA world in hematopoietic cells through the lens of RNA-binding proteins. Immunol. Rev. 2013, 253, 290–303. [Google Scholar] [CrossRef]
- Lorković, Z.J. Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci. 2009, 14, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Bandziulis, R.J.; Swanson, M.S.; Dreyfuss, G. RNA-binding proteins as developmental regulators. Genes. Dev. 1989, 3, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Burd, C.G.; Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 1994, 265, 615–621. [Google Scholar] [CrossRef]
- Dreyfuss, G.; Philipson, L.; Mattaj, I.W. Ribonucleoprotein particles in cellular processes. J. Cell Biol. 1988, 106, 1419–1425. [Google Scholar] [CrossRef]
- Muleya, V.; Marondedze, C. Functional roles of RNA-binding proteins in plant signaling. Life 2020, 10, 288. [Google Scholar] [CrossRef]
- Marondedze, C. The increasing diversity and complexity of the RNA-binding protein repertoire in plants. Proc. R. Soc. B 2020, 287, 20201397. [Google Scholar] [CrossRef] [PubMed]
- Reichel, M.; Liao, Y.; Rettel, M.; Ragan, C.; Evers, M.; Alleaume, A.-M.; Horos, R.; Hentze, M.W.; Preiss, T.; Millar, A.A. In planta determination of the mRNA-binding proteome of Arabidopsis etiolated seedlings. Plant Cell 2016, 28, 2435–2452. [Google Scholar] [CrossRef] [PubMed]
- Bach-Pages, M.; Homma, F.; Kourelis, J.; Kaschani, F.; Mohammed, S.; Kaiser, M.; van der Hoorn, R.A.; Castello, A.; Preston, G.M. Discovering the RNA-binding proteome of plant leaves with an improved RNA interactome capture method. Biomolecules 2020, 10, 661. [Google Scholar] [CrossRef]
- Lou, L.; Ding, L.; Wang, T.; Xiang, Y. Emerging roles of RNA-binding proteins in seed development and performance. Int. J. Mol. Sci. 2020, 21, 6822. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Dong, C.-H.; Lee, H.; Zhu, J.; Xiong, L.; Gong, D.; Stevenson, B.; Zhu, J.-K. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 2005, 17, 256–267. [Google Scholar] [CrossRef]
- Okuda, K.; Myouga, F.; Motohashi, R.; Shinozaki, K.; Shikanai, T. Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc. Natl. Acad. Sci. USA 2007, 104, 8178–8183. [Google Scholar] [CrossRef]
- Wang, N.; Guo, T.; Wang, P.; Sun, X.; Shao, Y.; Jia, X.; Liang, B.; Gong, X.; Ma, F. MhYTP1 and MhYTP2 from apple confer tolerance to multiple abiotic stresses in Arabidopsis thaliana. Front. Plant Sci. 2017, 8, 1367. [Google Scholar] [CrossRef]
- Reddy, A.S.; Shad Ali, G. Plant serine/arginine-rich proteins: Roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdiscip. Rev. RNA 2011, 2, 875–889. [Google Scholar] [CrossRef]
- Johnson, S.J.; Close, D.; Robinson, H.; Vallet-Gely, I.; Dove, S.L.; Hill, C.P. Crystal structure and RNA binding of the Tex protein from Pseudomonas aeruginosa. J. Mol. Biol. 2008, 377, 1460–1473. [Google Scholar] [CrossRef]
- Zamore, P.; Williamson, J.; Lehmann, R. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 1997, 3, 1421. [Google Scholar] [PubMed]
- Cao, S.; Jiang, L.; Song, S.; Jing, R.; Xu, G. AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis. Cell Mol. Biol. Lett. 2006, 11, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Hunger, K.; Beckering, C.L.; Wiegeshoff, F.; Graumann, P.L.; Marahiel, M.A. Cold-Induced Putative DEAD Box RNA Helicases CshA and CshB Are Essential for Cold Adaptation and Interact with Cold Shock Protein B in Bacillus subtilis. J. Bacteriol. 2006, 188, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, Y.; Qian, L.; Mu, R.; Yuan, X.; Fang, H.; Huang, X.; Xu, E.; Zhang, H.; Huang, J. A novel RNA-binding protein involves ABA signaling by post-transcriptionally repressing ABI2. Front. Plant Sci. 2017, 8, 24. [Google Scholar] [CrossRef]
- Zhang, Y.; Mo, Y.; Li, J.; Liu, L.; Gao, Y.; Zhang, Y.; Huang, Y.; Ren, L.; Zhu, H.; Jiang, X. Divergence in regulatory mechanisms of GR-RBP genes in different plants under abiotic stress. Sci. Rep. 2024, 14, 8743. [Google Scholar] [CrossRef]
- Streitner, C.; Köster, T.; Simpson, C.G.; Shaw, P.; Danisman, S.; Brown, J.W.; Staiger, D. An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana. Nucleic Acids Res. 2012, 40, 11240–11255. [Google Scholar] [CrossRef]
- Wang, B.; Wang, G.; Shen, F.; Zhu, S. A glycine-rich RNA-binding protein, CsGR-RBP3, is involved in defense responses against cold stress in harvested cucumber (Cucumis sativus L.) fruit. Front. Plant Sci. 2018, 9, 540. [Google Scholar] [CrossRef]
- Kwak, K.J.; Kim, Y.O.; Kang, H. Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 2005, 56, 3007–3016. [Google Scholar] [CrossRef]
- Tan, Y.; Qin, Y.; Li, Y.; Li, M.; Ma, F. Overexpression of MpGR-RBP1, a glycine-rich RNA-binding protein gene from Malus prunifolia (Willd.) Borkh., confers salt stress tolerance and protects against oxidative stress in Arabidopsis. Plant Cell Tissue Organ. Cult. 2014, 119, 635–646. [Google Scholar] [CrossRef]
- Khan, F.; Sultana, T.; Deeba, F.; Naqvi, S. Dynamics of mRNA of glycine-rich RNA-binding protein during wounding, cold and salt stresses in Nicotiana tabacum. Pak. J. Bot. 2013, 45, 297–300. [Google Scholar]
- Wang, C.; Zhang, D.-W.; Wang, Y.-C.; Zheng, L.; Yang, C.-P. A glycine-rich RNA-binding protein can mediate physiological responses in transgenic plants under salt stress. Mol. Biol. Rep. 2012, 39, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, T.; Xu, R.; Liu, B.; Han, Y.; Dong, W.; Xie, Q.; Tang, Z.; Lei, X.; Wang, C. BpGRP1 acts downstream of BpmiR396c/BpGRF3 to confer salt tolerance in Betula platyphylla. Plant Biotechnol. J. 2024, 22, 131–147. [Google Scholar] [CrossRef]
- Kwak, K.J.; Kim, H.-S.; Jang, H.Y.; Kang, H.; Ahn, S.-J. Diverse roles of glycine-rich RNA-binding protein 7 in the response of camelina (Camelina sativa) to abiotic stress. Acta Physiol. Plant 2016, 38, 129. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Liang, D.; Ma, F.; Shu, H. Molecular characterization and expression analysis of a glycine-rich RNA-binding protein gene from Malus hupehensis Rehd. Mol. Biol. Rep. 2012, 39, 4145–4153. [Google Scholar] [CrossRef]
- Sanan-Mishra, N.; Tuteja, N.; Sopory, S.K. Salinity-and ABA-induced up-regulation and light-mediated modulation of mRNA encoding glycine-rich RNA-binding protein from Sorghum bicolor. Biophys. Res. Commun. 2002, 296, 1063–1068. [Google Scholar]
- Teng, K.; Tan, P.; Xiao, G.; Han, L.; Chang, Z.; Chao, Y. Heterologous expression of a novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene, ZjGRP, caused salt sensitivity in Arabidopsis. Plant Cell Rep. 2017, 36, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, R.; Liu, J.; Yao, J.; Ma, S.; Yin, K.; Zhang, Y.; Liu, Z.; Yan, C.; Zhao, N. Populus euphratica GRP2 interacts with target mRNAs to negatively regulate salt tolerance by interfering with photosynthesis, Na+, and ROS homeostasis. Int. J. Mol. Sci. 2024, 25, 2046. [Google Scholar] [CrossRef]
- Ayarpadikannan, S.; Chung, E.S.; So, H.A.; Kim, K.M.; Schraufnagle, K.R.; Lee, J.H. Overexpression of SaRBP1 enhances tolerance of Arabidopsis to salt stress. Plant Cell Tissue Organ. Cult. 2014, 118, 327–338. [Google Scholar] [CrossRef]
- Kim, Y.-O.; Pan, S.; Jung, C.-H.; Kang, H. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol. 2007, 48, 1170–1181. [Google Scholar] [CrossRef]
- Park, Y.R.; Choi, M.J.; Park, S.J.; Kang, H. Three zinc-finger RNA-binding proteins in cabbage (Brassica rapa) play diverse roles in seed germination and plant growth under normal and abiotic stress conditions. Physiol. Plant 2017, 159, 93–106. [Google Scholar] [CrossRef]
- Xu, T.; Gu, L.; Choi, M.J.; Kim, R.J.; Suh, M.C.; Kang, H. Comparative functional analysis of wheat (Triticum aestivum) zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses. PLoS ONE 2014, 9, e96877. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Kim, M.H.; Imai, R. A rabidopsis COLD SHOCK DOMAIN PROTEIN 2 is a negative regulator of cold acclimation. New Phytol. 2013, 198, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, Q.; Liu, P.; Huang, J.; Zhang, S.; Yang, G.; Wu, C.; Zheng, C.; Yan, K. Dual roles of the serine/arginine-rich splicing factor SR45a in promoting and interacting with nuclear cap-binding complex to modulate the salt-stress response in Arabidopsis. New Phytol. 2021, 230, 641–655. [Google Scholar] [CrossRef]
- Gu, J.; Ma, S.; Zhang, Y.; Wang, D.; Cao, S.; Wang, Z.-Y. Genome-wide identification of cassava serine/arginine-rich proteins: Insights into alternative splicing of pre-mRNAs and response to abiotic stress. Plant Cell Physiol. 2020, 61, 178–191. [Google Scholar] [CrossRef]
- Jin, X. Regulatory network of serine/arginine-rich (SR) proteins: The molecular mechanism and physiological function in plants. Int. J. Mol. Sci. 2022, 23, 10147. [Google Scholar] [CrossRef]
- Ma, X.-W.; Ma, Q.-X.; Ma, M.-Q.; Chen, Y.-H.; Gu, J.-B.; Li, Y.; Hu, Q.; Luo, Q.-W.; Wen, M.-F.; Zhang, P.; et al. Cassava MeRS40 is required for the regulation of plant salt tolerance. J. Integr. Agric. 2023, 22, 1396–1411. [Google Scholar] [CrossRef]
- Butt, H.; Bazin, J.; Prasad, K.V.; Awad, N.; Crespi, M.; Reddy, A.S.; Mahfouz, M.M. The rice serine/arginine splicing factor RS33 regulates pre-mRNA splicing during abiotic stress responses. Cells 2022, 11, 1796. [Google Scholar] [CrossRef]
- Laloum, T.; Carvalho, S.D.; Martín, G.; Richardson, D.N.; Cruz, T.M.; Carvalho, R.F.; Stecca, K.L.; Kinney, A.J.; Zeidler, M.; Barbosa, I.C. The SCL30a SR protein regulates ABA-dependent seed traits and germination under stress. Plant Cell Env. 2023, 46, 2112–2127. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, Y.; Zhao, Y.; Gu, J.; Ma, M.; Li, H.; Li, C.; Wang, Z.-Y.; Wu, H. Overexpression of SCL30A from cassava (Manihot esculenta) negatively regulates salt tolerance in Arabidopsis. Funct. Plant Biol. 2021, 48, 1213–1224. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, L.; Wang, S.; Shen, Y.; Guo, L.; Ye, X.; Liu, S.; Feng, Y.; Wu, W. The SR splicing factors: Providing perspectives on their evolution, expression, alternative splicing, and function in Populus trichocarpa. Int. J. Mol. Sci. 2021, 22, 11369. [Google Scholar] [CrossRef]
- Wei, F.; Chen, P.; Jian, H.; Sun, L.; Lv, X.; Wei, H.; Wang, H.; Hu, T.; Ma, L.; Fu, X. A comprehensive identification and function analysis of Serine/Arginine-Rich (SR) proteins in cotton (Gossypium spp.). Int. J. Mol. Sci. 2022, 23, 4566. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.U.; Paek, K.-H. APUM5, encoding a Pumilio RNA binding protein, negatively regulates abiotic stress responsive gene expression. BMC Plant Biol. 2014, 14, 75. [Google Scholar] [CrossRef]
- Huang, K.-C.; Lin, W.-C.; Cheng, W.-H. Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis. BMC Plant Biol. 2018, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.U. Novel Functions of Arabidopsis Pumilio RNA-Binding Protein 6 in Salt Stress. Agronomy 2022, 12, 2410. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, H.; Xu, Y.; Li, H.; Wu, X.; Xie, Q.; Li, C. The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol. 2007, 48, 1148–1158. [Google Scholar] [CrossRef]
- He, S.-L.; Li, B.; Zahurancik, W.J.; Arthur, H.C.; Sidharthan, V.; Gopalan, V.; Wang, L.; Jang, J.-C. Stress Granule Protein TZF1 Enhances Salt Stress Tolerance by Targeting ACA11 mRNA for Degradation in Arabidopsis. Front. Plant Sci. 2024, 15, 1375478. [Google Scholar] [CrossRef]
- Jan, A.; Maruyama, K.; Todaka, D.; Kidokoro, S.; Abo, M.; Yoshimura, E.; Shinozaki, K.; Nakashima, K.; Yamaguchi-Shinozaki, K. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol. 2013, 161, 1202–1216. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, X.; Wang, L.; Xu, J.; Zhang, X. GhTZF1 regulates drought stress responses and delays leaf senescence by inhibiting reactive oxygen species accumulation in transgenic Arabidopsis. Plant Mol. Biol. 2014, 85, 163–177. [Google Scholar] [CrossRef]
- Lee, S.-j.; Jung, H.J.; Kang, H.; Kim, S.Y. Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. Plant Cell Physiol. 2012, 53, 673–686. [Google Scholar] [CrossRef]
- Xu, W.; Jian, S.; Li, J.; Wang, Y.; Zhang, M.; Xia, K. Genomic identification of CCCH-Type zinc finger protein genes reveals the role of HuTZF3 in Tolerance of Heat and Salt stress of Pitaya (Hylocereus polyrhizus). Int. J. Mol. Sci. 2023, 24, 6359. [Google Scholar] [CrossRef]
- Cai, Z.; Tang, Q.; Song, P.; Tian, E.; Yang, J.; Jia, G. The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in Arabidopsis. Plant Cell 2024, 36, 2908–2926. [Google Scholar] [CrossRef] [PubMed]
- Kant, P.; Kant, S.; Gordon, M.; Shaked, R.; Barak, S. Stress Response Suppressor1 and Stress Response Suppressor2, two Dead-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol. 2007, 145, 814–830. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, K.A.; Oh, T.R.; Park, C.M.; Kang, H. Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol. 2008, 49, 1563–1571. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Seok, H.-Y.; Woo, D.-H.; Lee, S.-Y.; Moon, Y.-H. Overexpression of the DEAD-box RNA helicase gene AtRH17 confers tolerance to salt stress in Arabidopsis. Int. J. Mol. Sci. 2018, 19, 3777. [Google Scholar] [CrossRef]
- Zhang, X.; Song, J.; Wang, L.; Yang, Z.M.; Sun, D. Identification of a DEAD-box RNA helicase BnRH6 reveals its involvement in salt stress response in rapeseed (Brassica napus). Int. J. Mol. Sci. 2022, 24, 2. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Shi, H.; Ma, J.; Jing, M.; Han, Y. The TSN1 binding protein RH31 is a component of stress granules and participates in regulation of salt-stress tolerance in Arabidopsis. Front. Plant Sci. 2021, 12, 804356. [Google Scholar] [CrossRef]
- Gu, L.; Xu, T.; Lee, K.; Lee, K.H.; Kang, H. A chloroplast-localized DEAD-box RNA helicaseAtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana. Plant Physiol. Biochem. 2014, 82, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Muramoto, Y.; Yokota, S.; Ueda, A.; Takabe, T. Structural and transcriptional characterization of a salt-responsive gene encoding putative ATP-dependent RNA helicase in barley. Plant Sci. 2004, 167, 63–70. [Google Scholar] [CrossRef]
- Pan, W.-J.; Tao, J.-J.; Cheng, T.; Shen, M.; Ma, J.-B.; Zhang, W.-K.; Lin, Q.; Ma, B.; Chen, S.-Y.; Zhang, J.-S. Soybean NIMA-related kinase1 promotes plant growth and improves salt and cold tolerance. Plant Cell Physiol. 2017, 58, 1268–1278. [Google Scholar] [CrossRef]
- Nawaz, G.; Lee, K.; Park, S.J.; Kim, Y.-O.; Kang, H. A chloroplast-targeted cabbage DEAD-box RNA helicase BrRH22 confers abiotic stress tolerance to transgenic Arabidopsis plants by affecting translation of chloroplast transcripts. Plant Physiol. Biochem. 2018, 127, 336–342. [Google Scholar] [CrossRef]
- Nawaz, G.; Kang, H. Rice OsRH58, a chloroplast DEAD-box RNA helicase, improves salt or drought stress tolerance in Arabidopsis by affecting chloroplast translation. BMC Plant Biol. 2019, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chen, G.; Dong, T.; Wang, L.; Zhang, J.; Zhao, Z.; Hu, Z. SlDEAD31, a putative DEAD-box RNA helicase gene, regulates salt and drought tolerance and stress-related genes in tomato. PLoS ONE 2015, 10, e0133849. [Google Scholar] [CrossRef] [PubMed]
- Macovei, A.; Tuteja, N. microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol. 2012, 12, 183. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, N.; Sahoo, R.K.; Garg, B.; Tuteja, R. OsSUV 3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR 64). Plant J. 2013, 76, 115–127. [Google Scholar] [CrossRef]
- Lee, K.; Lee, H.J.; Kim, D.H.; Jeon, Y.; Pai, H.-S.; Kang, H. A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response. BMC Plant Biol. 2014, 14, 98. [Google Scholar] [CrossRef]
- Lee, K.; Park, S.J.; Park, Y.-I.; Kang, H. CFM9, a mitochondrial CRM protein, is crucial for mitochondrial intron splicing, mitochondria function and Arabidopsis growth and stress responses. Plant Cell Physiol. 2019, 60, 2538–2548. [Google Scholar] [CrossRef]
- Jiang, S.-C.; Mei, C.; Liang, S.; Yu, Y.-T.; Lu, K.; Wu, Z.; Wang, X.-F.; Zhang, D.-P. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol. Biol. 2015, 88, 369–385. [Google Scholar] [CrossRef]
- Tan, J.; Tan, Z.; Wu, F.; Sheng, P.; Heng, Y.; Wang, X.; Ren, Y.; Wang, J.; Guo, X.; Zhang, X. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Mol. Plant 2014, 7, 1329–1349. [Google Scholar] [CrossRef]
- Zsigmond, L.; Rigó, G.; Szarka, A.; Székely, G.; Ötvös, K.; Darula, Z.; Medzihradszky, K.F.; Koncz, C.; Koncz, Z.; Szabados, L. Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport. Plant Physiol. 2008, 146, 1721–1737. [Google Scholar] [CrossRef]
- Zsigmond, L.; Szepesi, Á.; Tari, I.; Rigó, G.; Király, A.; Szabados, L. Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis. Plant Sci. 2012, 182, 87–93. [Google Scholar] [CrossRef]
- Liu, J.-M.; Zhao, J.-Y.; Lu, P.-P.; Chen, M.; Guo, C.-H.; Xu, Z.-S.; Ma, Y.-Z. The E-subgroup pentatricopeptide repeat protein family in Arabidopsis thaliana and confirmation of the responsiveness PPR96 to abiotic stresses. Front. Plant Sci. 2016, 7, 1825. [Google Scholar] [CrossRef]
- Laluk, K.; AbuQamar, S.; Mengiste, T. The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiol. 2011, 156, 2053–2068. [Google Scholar] [CrossRef] [PubMed]
- Saad, R.B.; Halima, N.B.; Ghorbel, M.; Zouari, N.; Romdhane, W.B.; Guiderdoni, E.; Al-Doss, A.; Hassairi, A. AlSRG1, a novel gene encoding an RRM-type RNA-binding protein (RBP) from Aeluropus littoralis, confers salt and drought tolerance in transgenic tobacco. Env. Exp. Bot. 2018, 150, 25–36. [Google Scholar] [CrossRef]
- McCue, A.D.; Nuthikattu, S.; Reeder, S.H.; Slotkin, R.K. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet. 2012, 8, e1002474. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Cui, P.; Chen, H.; Ali, S.; Zhang, S.; Xiong, L. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis. PLoS Genet. 2013, 9, e1003875. [Google Scholar] [CrossRef]
- Xiong, L.; Lee, H.; Ishitani, M.; Tanaka, Y.; Stevenson, B.; Koiwa, H.; Bressan, R.A.; Hasegawa, P.M.; Zhu, J.-K. Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proc. Natl. Acad. Sci. USA 2002, 99, 10899–10904. [Google Scholar] [CrossRef] [PubMed]
- Ambrosone, A.; Batelli, G.; Nurcato, R.; Aurilia, V.; Punzo, P.; Bangarusamy, D.K.; Ruberti, I.; Sassi, M.; Leone, A.; Costa, A. The Arabidopsis RNA-binding protein AtRGGA regulates tolerance to salt and drought stress. Plant Physiol. 2015, 168, 292–306. [Google Scholar] [CrossRef]
- Yan, C.; Yan, Z.; Wang, Y.; Yan, X.; Han, Y. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis. J. Exp. Bot. 2014, 65, 5933–5944. [Google Scholar] [CrossRef]
- Wan, J.; Meng, S.; Wang, Q.; Zhao, J.; Qiu, X.; Wang, L.; Li, J.; Lin, Y.; Mu, L.; Dang, K. Suppression of microRNA168 enhances salt tolerance in rice (Oryza sativa L.). BMC Plant Biol. 2022, 22, 563. [Google Scholar] [CrossRef]
- Han, J.H.; Lee, K.; Lee, K.H.; Jung, S.; Jeon, Y.; Pai, H.S.; Kang, H. A nuclear-encoded chloroplast-targeted S1 RNA-binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana. Plant J. 2015, 83, 277–289. [Google Scholar] [CrossRef]
- Dinh, S.N.; Park, S.J.; Han, J.H.; Kang, H. A chloroplast-targeted S1 RNA-binding domain protein plays a role in Arabidopsis response to diverse abiotic stresses. J. Plant Biol. 2019, 62, 74–81. [Google Scholar] [CrossRef]
- Mangeon, A.; Junqueira, R.M.; Sachetto-Martins, G. Functional diversity of the plant glycine-rich proteins superfamily. Plant Signal Behav. 2010, 5, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Daniëls, M.A.; Folkers, G.E.; Boelens, R.; Saqlan Naqvi, S.; Van Ingen, H. Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: Implications for its RNA chaperone function. Nucleic Acids Res. 2014, 42, 8705–8718. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Cheng, K.; Li, J.; Deng, Z.; Zhang, C.; Zhu, H. Roles of plant glycine-rich RNA-binding proteins in development and stress responses. Int. J. Mol. Sci. 2021, 22, 5849. [Google Scholar] [CrossRef]
- Kim, M.K.; Jung, H.J.; Kim, D.H.; Kang, H. Characterization of glycine-rich RNA-binding proteins in Brassica napus under stress conditions. Physiol. Plant 2012, 146, 297–307. [Google Scholar] [CrossRef]
- Köster, T.; Reichel, M.; Staiger, D. CLIP and RNA interactome studies to unravel genome-wide RNA-protein interactions in vivo in Arabidopsis thaliana. Methods 2020, 178, 63–71. [Google Scholar] [CrossRef]
- Staiger, D.; Zecca, L.; Kirk, D.A.W.; Apel, K.; Eckstein, L. The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J. 2003, 33, 361–371. [Google Scholar] [CrossRef]
- Ortega-Amaro, M.A.; Rodríguez-Hernández, A.A.; Rodríguez-Kessler, M.; Hernández-Lucero, E.; Rosales-Mendoza, S.; Ibáñez-Salazar, A.; Delgado-Sánchez, P.; Jiménez-Bremont, J.F. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance. Front. Plant Sci. 2015, 5, 782. [Google Scholar] [CrossRef]
- Xue, X.; Jiao, F.; Xu, H.; Jiao, Q.; Zhang, X.; Zhang, Y.; Du, S.; Xi, M.; Wang, A.; Chen, J. The role of RNA-binding protein, microRNA and alternative splicing in seed germination: A field need to be discovered. BMC Plant Biol. 2021, 21, 194. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Zeng, N.; Qu, G.; Fu, D.; Zhu, B.; Luo, Y.; Ostersetzer-Biran, O.; Zhu, H. Glycine-rich RNA-binding cofactor RZ1AL is associated with tomato ripening and development. Hortic. Res. 2022, 9, uhac134. [Google Scholar] [CrossRef]
- Lee, K.; Kang, H. Emerging roles of RNA-binding proteins in plant growth, development, and stress responses. Mol. Cells 2016, 39, 179–185. [Google Scholar] [CrossRef]
- Ayarpadikannan, S.; Chung, E.; Cho, C.-W.; So, H.-A.; Kim, S.-O.; Jeon, J.-M.; Kwak, M.-H.; Lee, S.-W.; Lee, J.-H. Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides. Plant Cell Rep. 2012, 31, 35–48. [Google Scholar] [CrossRef]
- Ding, F.; Cui, P.; Wang, Z.; Zhang, S.; Ali, S.; Xiong, L. Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genom. 2014, 15, 5096–5103. [Google Scholar] [CrossRef]
- Feng, J.; Li, J.; Gao, Z.; Lu, Y.; Yu, J.; Zheng, Q.; Yan, S.; Zhang, W.; He, H.; Ma, L. SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Mol. Plant 2015, 8, 1038–1052. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Niu, M.; Gao, T.; Shen, Y.; Zhou, X.; Zhang, Y.; Liu, L.; Chai, M.; Sun, G.; Wang, Y. Responsive alternative splicing events of Opisthopappus species against salt stress. Int. J. Mol. Sci. 2024, 25, 1227. [Google Scholar] [CrossRef] [PubMed]
- Jian, G.; Mo, Y.; Hu, Y.; Huang, Y.; Ren, L.; Zhang, Y.; Hu, H.; Zhou, S.; Liu, G.; Guo, J. Variety-specific transcriptional and alternative splicing regulations modulate salt tolerance in rice from early stage of stress. Rice 2022, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qin, J.; Tian, X.; Xu, S.; Wang, Y.; Li, H.; Wang, X.; Peng, H.; Yao, Y.; Hu, Z. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). Plant Biotechnol. J. 2018, 16, 714–726. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, N.; Fu, H.; Wang, F.; Wen, M.; Chang, H.; Wu, J.; Abdelaala, W.B.; Luo, Q.; Li, Y. Salt stress modulates the landscape of transcriptome and alternative splicing in date palm (Phoenix dactylifera L.). Front. Plant Sci. 2022, 12, 807739. [Google Scholar] [CrossRef]
- Yu, H.; Du, Q.; Campbell, M.; Yu, B.; Walia, H.; Zhang, C. Genome-wide discovery of natural variation in pre-mRNA splicing and prioritising causal alternative splicing to salt stress response in rice. New Phytol. 2021, 230, 1273–1287. [Google Scholar] [CrossRef]
- Zhu, G.; Li, W.; Zhang, F.; Guo, W. RNA-seq analysis reveals alternative splicing under salt stress in cotton, Gossypium davidsonii. BMC Genom. 2018, 19, 73. [Google Scholar] [CrossRef]
- Gan, J.; Qiu, Y.; Tao, Y.; Zhang, L.; Okita, T.W.; Yan, Y.; Tian, L. RNA-seq analysis reveals transcriptome reprogramming and alternative splicing during early response to salt stress in tomato root. Front. Plant Sci. 2024, 15, 1394223. [Google Scholar] [CrossRef] [PubMed]
- Matera, A.G.; Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 2014, 15, 108–121. [Google Scholar] [CrossRef]
- Fica, S.M.; Nagai, K. Cryo-electron microscopy snapshots of the spliceosome: Structural insights into a dynamic ribonucleoprotein machine. Nat. Struct. Mol. Biol. 2017, 24, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.K.; Krishnamurthy, P.; Kim, J.A.; Jeong, M.-J.; Lee, S.I. Genome-wide characterization of Brassica rapa genes encoding serine/arginine-rich proteins: Expression and alternative splicing events by abiotic stresses. J. Plant Biol. 2018, 61, 198–209. [Google Scholar] [CrossRef]
- Rausin, G.; Tillemans, V.; Stankovic, N.; Hanikenne, M.; Motte, P. Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: Role of the RNA-binding domains. Plant Physiol. 2010, 153, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, R.R.; Bachiri, S.; Vraggalas, S.; Keller, M.; Simm, S.; Schleiff, E.; Fragkostefanakis, S. Identification and regulation of tomato serine/arginine-rich proteins under high temperatures. Front. Plant Sci. 2021, 12, 645689. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; Liu, Y.; Li, H. Genome-wide analysis of serine/arginine-rich protein family in wheat and Brachypodium distachyon. Plants 2019, 8, 188. [Google Scholar] [CrossRef] [PubMed]
- Barta, A.; Kalyna, M.; Reddy, A.S. Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants. Plant Cell 2010, 22, 2926–2929. [Google Scholar] [CrossRef]
- Tanabe, N.; Kimura, A.; Yoshimura, K.; Shigeoka, S. Plant-specific SR-related protein atSR45a interacts with spliceosomal proteins in plant nucleus. Plant Mol. Biol. 2009, 70, 241–252. [Google Scholar] [CrossRef]
- Mateos, J.L.; Staiger, D. Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association. Plant Cell 2023, 35, 1708–1726. [Google Scholar] [CrossRef]
- Barkan, A.; Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 2014, 65, 415–442. [Google Scholar] [CrossRef] [PubMed]
- Katahira, J. Nuclear export of messenger RNA. Genes 2015, 6, 163–184. [Google Scholar] [CrossRef] [PubMed]
- Heath, C.G.; Viphakone, N.; Wilson, S.A. The role of TREX in gene expression and disease. Biochem. J. 2016, 473, 2911–2935. [Google Scholar] [CrossRef]
- Peng, S.; Guo, D.; Guo, Y.; Zhao, H.; Mei, J.; Han, Y.; Guan, R.; Wang, T.; Song, T.; Sun, K. Constitutive Expresser of Pathogenesis-Related Genes 5 is an RNA-binding protein controlling plant immunity via an RNA processing complex. Plant Cell 2022, 34, 1724–1744. [Google Scholar] [CrossRef] [PubMed]
- Berg, J.M.; Shi, Y. The galvanization of biology: A growing appreciation for the roles of zinc. Science 1996, 271, 1081–1085. [Google Scholar] [CrossRef]
- Wang, D.; Guo, Y.; Wu, C.; Yang, G.; Li, Y.; Zheng, C. Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genom. 2008, 9, 44. [Google Scholar] [CrossRef]
- Bogamuwa, S.P.; Jang, J.-C. Tandem CCCH zinc finger proteins in plant growth, development and stress response. Plant Cell Physiol. 2014, 55, 1367–1375. [Google Scholar] [CrossRef]
- Becerra, C.; Jahrmann, T.; Puigdomènech, P.; Vicient, C.M. Ankyrin repeat-containing proteins in Arabidopsis: Characterization of a novel and abundant group of genes coding ankyrin-transmembrane proteins. Gene 2004, 340, 111–121. [Google Scholar] [CrossRef]
- Huang, P.; Ju, H.-W.; Min, J.-H.; Zhang, X.; Chung, J.-S.; Cheong, H.-S.; Kim, C.S. Molecular and physiological characterization of the Arabidopsis thaliana oxidation-related zinc finger 2, a plasma membrane protein involved in ABA and salt stress response through the ABI2-mediated signaling pathway. Plant Cell Physiol. 2012, 53, 193–203. [Google Scholar] [CrossRef]
- de la Cruz, J.; Kressler, D.; Linder, P. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 1999, 24, 192–198. [Google Scholar] [CrossRef]
- Ranji, A.; Boris-Lawrie, K. RNA helicases: Emerging roles in viral replication and the host innate response. RNA Biol. 2010, 7, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Tanner, N.K.; Linder, P. DExD/H box RNA helicases: From generic motors to specific dissociation functions. Mol. Cell 2001, 8, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Chen, X.; Ling, Q.; Cheng, Q.; Ye, S. Role and therapeutic potential of DEAD-box RNA helicase family in colorectal cancer. Front. Oncol. 2023, 13, 1278282. [Google Scholar] [CrossRef]
- Linder, P.; Owttrim, G.W. Plant RNA helicases: Linking aberrant and silencing RNA. Trends Plant Sci. 2009, 14, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Lorković, Z.J.; Barta, A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res. 2002, 30, 623–635. [Google Scholar] [CrossRef]
- Dai, G.-Y.; Chen, D.-K.; Sun, Y.-P.; Liang, W.-Y.; Liu, Y.; Huang, L.-Q.; Li, Y.-K.; He, J.-F.; Yao, N. The Arabidopsis KH-domain protein FLOWERING LOCUS Y delays flowering by upregulating FLOWERING LOCUS C family members. Plant Cell Rep. 2020, 39, 1705–1717. [Google Scholar] [CrossRef]
- Rodríguez-Cazorla, E.; Ripoll, J.J.; Andújar, A.; Bailey, L.J.; Martínez-Laborda, A.; Yanofsky, M.F.; Vera, A. K-homology nuclear ribonucleoproteins regulate floral organ identity and determinacy in Arabidopsis. PLoS Genet. 2015, 11, e1004983. [Google Scholar] [CrossRef]
- Wang, M.; Ogé, L.; Perez-Garcia, M.-D.; Hamama, L.; Sakr, S. The PUF protein family: Overview on PUF RNA targets, biological functions, and post transcriptional regulation. Int. J. Mol. Sci. 2018, 19, 410. [Google Scholar] [CrossRef]
- Huh, S.U. The role of Pumilio RNA binding protein in plants. Biomolecules 2021, 11, 1851. [Google Scholar] [CrossRef]
- Abbasi, N.; Kim, H.B.; Park, N.I.; Kim, H.S.; Kim, Y.K.; Park, Y.I.; Choi, S.B. APUM23, a nucleolar Puf domain protein, is involved in pre-ribosomal RNA processing and normal growth patterning in Arabidopsis. Plant J. 2010, 64, 960–976. [Google Scholar] [CrossRef]
- Tam, P.P.; Barrette-Ng, I.H.; Simon, D.M.; Tam, M.W.; Ang, A.L.; Muench, D.G. The Puf family of RNA-binding proteins in plants: Phylogeny, structural modeling, activity and subcellular localization. BMC Plant Biol. 2010, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Joshna, C.R.; Saha, P.; Atugala, D.; Chua, G.; Muench, D.G. Plant PUF RNA-binding proteins: A wealth of diversity for post-transcriptional gene regulation. Plant Sci. 2020, 297, 110505. [Google Scholar] [CrossRef] [PubMed]
- Un Huh, S.; Paek, K.-H. Role of Arabidopsis Pumilio RNA binding protein 5 in virus infection. Plant Signal Behav. 2013, 8, e23975. [Google Scholar] [CrossRef]
- Arae, T.; Morita, K.; Imahori, R.; Suzuki, Y.; Yasuda, S.; Sato, T.; Yamaguchi, J.; Chiba, Y. Identification of Arabidopsis CCR4-NOT complexes with pumilio RNA-binding proteins, APUM5 and APUM2. Plant Cell Physiol. 2019, 60, 2015–2025. [Google Scholar] [CrossRef]
- Maruri-López, I.; Figueroa, N.E.; Hernández-Sánchez, I.E.; Chodasiewicz, M. Plant stress granules: Trends and beyond. Front. Plant Sci. 2021, 12, 722643. [Google Scholar] [CrossRef]
- Luo, Y.; Na, Z.; Slavoff, S.A. P-bodies: Composition, properties, and functions. Biochemistry 2018, 57, 2424–2431. [Google Scholar] [CrossRef]
- Jang, G.-J.; Jang, J.-C.; Wu, S.-H. Dynamics and functions of stress granules and processing bodies in plants. Plants 2020, 9, 1122. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Sweet, T.J.; Chamnongpol, S.; Baker, K.E.; Coller, J. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature 2009, 461, 225–229. [Google Scholar] [CrossRef]
- Dember, L.M.; Kim, N.D.; Liu, K.-Q.; Anderson, P. Individual RNA recognition motifs of TIA-1 and TIAR have different RNA binding specificities. J. Biol. Chem. 1996, 271, 2783–2788. [Google Scholar] [CrossRef]
- Kim, H.S.; Wilce, M.C.; Yoga, Y.M.; Pendini, N.R.; Gunzburg, M.J.; Cowieson, N.P.; Wilson, G.M.; Williams, B.R.; Gorospe, M.; Wilce, J.A. Different modes of interaction by TIAR and HuR with target RNA and DNA. Nucleic Acids Res. 2011, 39, 1117–1130. [Google Scholar] [CrossRef]
- Sorenson, R.; Bailey-Serres, J. Selective mRNA sequestration by OLIGOURIDYLATE-BINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis. Proc. Natl. Acad. Sci. USA 2014, 111, 2373–2378. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.C.; Nakaminami, K.; Matsui, A.; Kobayashi, S.; Kurihara, Y.; Toyooka, K.; Tanaka, M.; Seki, M. Oligouridylate binding protein 1b plays an integral role in plant heat stress tolerance. Front. Plant Sci. 2016, 7, 853. [Google Scholar] [CrossRef]
- Gao, X.; Fu, X.; Song, J.; Zhang, Y.; Cui, X.; Su, C.; Ge, L.; Shao, J.; Xin, L.; Saarikettu, J. Poly (A)+ mRNA-binding protein Tudor-SN regulates stress granules aggregation dynamics. FEBS J. 2015, 282, 874–890. [Google Scholar] [CrossRef]
- dit Frey, N.F.; Muller, P.; Jammes, F.; Kizis, D.; Leung, J.; Perrot-Rechenmann, C.; Bianchi, M.W. The RNA binding protein Tudor-SN is essential for stress tolerance and stabilizes levels of stress-responsive mRNAs encoding secreted proteins in Arabidopsis. Plant Cell 2010, 22, 1575–1591. [Google Scholar] [CrossRef] [PubMed]
- Pomeranz, M.C.; Hah, C.; Lin, P.-C.; Kang, S.G.; Finer, J.J.; Blackshear, P.J.; Jang, J.-C. The Arabidopsis tandem zinc finger protein AtTZF1 traffics between the nucleus and cytoplasmic foci and binds both DNA and RNA. Plant Physiol. 2010, 152, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.S.; Ramos, S.B.; Blackshear, P.J. Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling. J. Biol. Chem. 2002, 277, 11606–11613. [Google Scholar] [CrossRef]
- Wu, X.; Su, T.; Zhang, S.; Zhang, Y.; Wong, C.E.; Ma, J.; Shao, Y.; Hua, C.; Shen, L.; Yu, H. N 6-methyladenosine-mediated feedback regulation of abscisic acid perception via phase-separated ECT8 condensates in Arabidopsis. Nat. Plants 2024, 10, 469–482. [Google Scholar] [CrossRef]
- Kearly, A.; Nelson, A.D.; Skirycz, A.; Chodasiewicz, M. Composition and function of stress granules and P-bodies in plants. Semin. Cell Dev. Biol. 2024, 156, 167–175. [Google Scholar] [CrossRef]
- Liu, H.; Yu, R.; Zhang, H.; Gao, X.; Zhu, C.; Wu, C.; Geng, L.; Du, J.; Ma, H.; Song, Y. The RNA-binding protein RGGA is a sugar-responsive cofactor of the 5′-3′exonuclease XRN4 that post-transcriptionally meditates plant growth. ResearchSquare 2021, 10, 21203. [Google Scholar]
- Ma, Z.; Zhang, X. Actions of plant Argonautes: Predictable or unpredictable? Curr. Opin. Plant Biol. 2018, 45, 59–67. [Google Scholar] [CrossRef]
- Myouga, F.; Akiyama, K.; Motohashi, R.; Kuromori, T.; Ito, T.; Iizumi, H.; Ryusui, R.; Sakurai, T.; Shinozaki, K. The Chloroplast Function Database: A large-scale collection of Arabidopsis Ds/Spm-or T-DNA-tagged homozygous lines for nuclear-encoded chloroplast proteins, and their systematic phenotype analysis. Plant J. 2010, 61, 529–542. [Google Scholar] [CrossRef]
- Lee, K.; Kang, H. Engineering of pentatricopeptide repeat proteins in organellar gene regulation. Front. Plant Sci. 2023, 14, 1144298. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, G.; Kang, H. Chloroplast-or mitochondria-targeted DEAD-box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses. Front. Plant Sci. 2017, 8, 871. [Google Scholar] [CrossRef]
- Barkan, A.; Klipcan, L.; Ostersetzer, O.; Kawamura, T.; Asakura, Y.; Watkins, K.P. The CRM domain: An RNA binding module derived from an ancient ribosome-associated protein. RNA 2007, 13, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Ostheimer, G.J.; Barkan, A.; Matthews, B.W. Crystal structure of E. coli YhbY: A representative of a novel class of RNA binding proteins. Structure 2002, 10, 1593–1601. [Google Scholar] [CrossRef]
- Keren, I.; Klipcan, L.; Bezawork-Geleta, A.; Kolton, M.; Shaya, F.; Ostersetzer-Biran, O. Characterization of the molecular basis of group II intron RNA recognition by CRS1-CRM domains. J. Biol. Chem. 2008, 283, 23333–23342. [Google Scholar] [CrossRef]
- Asakura, Y.; Bayraktar, O.A.; Barkan, A. Two CRM protein subfamilies cooperate in the splicing of group IIB introns in chloroplasts. RNA 2008, 14, 2319–2332. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, Q.; Wang, Z.; Wen, H.; Hu, G.; Ren, D.; Hu, J.; Zhu, L.; Gao, Z.; Zhang, G. OsCAF2 contains two CRM domains and is necessary for chloroplast development in rice. BMC Plant Biol. 2020, 20, 381. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, L.; Wang, Z.; Hu, G.; Ren, D.; Hu, J.; Zhu, L.; Gao, Z.; Zhang, G.; Guo, L. OsCAF1, a CRM domain containing protein, influences chloroplast development. Int. J. Mol. Sci. 2019, 20, 4386. [Google Scholar] [CrossRef]
- Lin, W.-C.; Chen, Y.-H.; Gu, S.-Y.; Shen, H.-L.; Huang, K.-C.; Lin, W.-D.; Chang, M.-C.; Chang, I.-F.; Hong, C.-Y.; Cheng, W.-H. CFM6 is an essential CRM protein required for the splicing of nad5 transcript in Arabidopsis mitochondria. Plant Cell Physiol. 2022, 63, 217–233. [Google Scholar] [CrossRef]
- Burjoski, V.; Reddy, A.S. The landscape of RNA-protein interactions in plants: Approaches and current status. Int. J. Mol. Sci. 2021, 22, 2845. [Google Scholar] [CrossRef] [PubMed]
- Prall, W.; Sharma, B.; Gregory, B.D. Transcription is just the beginning of gene expression regulation: The functional significance of RNA-binding proteins to post-transcriptional processes in plants. Plant Cell Physiol. 2019, 60, 1939–1952. [Google Scholar] [CrossRef] [PubMed]
- Chi, W.; He, B.; Mao, J.; Li, Q.; Ma, J.; Ji, D.; Zou, M.; Zhang, L. The function of RH22, a DEAD RNA helicase, in the biogenesis of the 50S ribosomal subunits of Arabidopsis chloroplasts. Plant Physiol. 2012, 158, 693–707. [Google Scholar] [CrossRef]
- Giegé, P. Pentatricopeptide repeat proteins. RNA Biol. 2014, 10, 1417–1418. [Google Scholar] [CrossRef] [PubMed]
- Prikryl, J.; Rojas, M.; Schuster, G.; Barkan, A. Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc. Natl. Acad. Sci. USA 2011, 108, 415–420. [Google Scholar] [CrossRef]
- Okuda, K.; Chateigner-Boutin, A.-L.; Nakamura, T.; Delannoy, E.; Sugita, M.; Myouga, F.; Motohashi, R.; Shinozaki, K.; Small, I.; Shikanai, T. Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts. Plant Cell 2009, 21, 146–156. [Google Scholar] [CrossRef]
- Hu, J.; Wang, K.; Huang, W.; Liu, G.; Gao, Y.; Wang, J.; Huang, Q.; Ji, Y.; Qin, X.; Wan, L. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 2012, 24, 109–122. [Google Scholar] [CrossRef]
- Yang, M.-H.; Lu, Y.-S.; Ho, T.-C.; Shen, D.H.-Y.; Huang, Y.-F.; Chuang, K.-P.; Yuan, C.-H.; Tyan, Y.-C. Utilizing Proteomic Approach to analyze potential antioxidant proteins in plant against Irradiation. Antioxidants 2022, 11, 2498. [Google Scholar] [CrossRef]
- Sahoo, R.K.; Tuteja, N. OsSUV3 functions in cadmium and zinc stress tolerance in rice (Oryza sativa L. cv IR64). Plant Signal Behav. 2014, 9, 115–127. [Google Scholar] [CrossRef]
- Sahoo, R.K.; Ansari, M.W.; Tuteja, R.; Tuteja, N. OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice 2014, 7, 17. [Google Scholar] [CrossRef] [PubMed]
RBP Types | Motif | Name | Species | Localization | Function Under Salt Stress | Ref. |
---|---|---|---|---|---|---|
GR-RBP | RRM, GR | AtGRP7 | Arabidopsis | Nc, Cy | Regulates alternative splicing. | [46,47] |
AtGRDP2 | Arabidopsis | Nc | Binds to the 3′UTR or the CDS of genes encoding antioxidant enzyme. | [48] | ||
AtGRP4 | Arabidopsis | Nc | - | [49] | ||
MpGR-RBP1 | Malus prunifolia | Nc | - | [50] | ||
NtGRP1 | Nicotiana tabacum | Nc, Cy | - | [51] | ||
LbGRP1 | Limonium bicolor | Nc, Cy | Regulates the Na+/K+ ratio under salt stress. | [52] | ||
BpGRP1 | Betula platyphylla | Nc | - | [53] | ||
CsGRP2,7 | Camelina (Camelina sativa) | Nc, Cy | - | [54] | ||
MhGR-RBP1 | Malus hupehensis (Pamp.) Rehd | - | - | [55] | ||
SbGR-RNP | Sorghum bicolor | - | - | [56] | ||
ZjGRP | Zoysia japonica | Nc, Cy | Regulates the expression of salt-responsive genes. | [57] | ||
PeGRP2 | Populus euphratica | - | Targets mRNAs that encode antioxidant enzymes. | [58] | ||
SaRBP1 | Suaeda asparagoides | Cy | - | [59] | ||
RZ | RRM, ZF, GR | AtRZ-1a | Arabidopsis | Nc, Cy | Regulates the expression of germination-responsive genes and ROS-related genes. | [60] |
BrRZ2,3 | Cabbage (Brassicarapa) | Nc | Assist in the RNA folding process. | [61] | ||
TaRZ1,2,3 | Wheat (Triticum aestivum) | Nc | - | [62] | ||
CSDP | CSD, ZF, GR | AtCSDP2 | Arabidopsis | - | Enhances salt tolerance during seedling establishment. | [58] |
CSP2 | Arabidopsis | - | Stabilizes stress-responsive mRNAs by binding their 3′UTRs. | [63] | ||
SR/RS | RRM, SR/RS-rich | AtSR45a-1a,1b | Arabidopsis | Nc | Bind to CBP20 and regulate alternative splicing and mRNA stability. | [64] |
AtSR45 | Arabidopsis | Nc | - | [65] | ||
SR33 | Arabidopsis | Nc | Co-assembles with the TREX complex to regulate nucleocytoplasmic transport of mRNA. | [66] | ||
RSZ22 | ||||||
RSZ33 | ||||||
MeSR34 | Cassava (Manihot esculenta Crantz) | Nc | - | [65] | ||
MeRS40 | Cassava (Manihot esculenta Crantz) | Nc | Regulates alternative splicing through action on the stability of the spliceosome complex. | [67] | ||
OsRS33 | Rice | Nc | Regulate the alternative splicing events related to salt stress. | [68] | ||
AtSCL30a | Arabidopsis | Nc | - | [69] | ||
MeSCL30a | Cassava (Manihot esculenta Crantz) | Nc | - | [70] | ||
PtSCL30 | Populus trichocarpa | Nc | - | [71] | ||
GhSCL-8 | Cotton (Gossypium spp.) | Nc | - | [72] | ||
PUM | PUF | APUM5 | Arabidopsis | Nc, Cy | Binds to the 3′UTR of stress-responsive genes and regulate their expression. | [73] |
APUM23 | Arabidopsis | Nc | Regulates the expression of genes related to ribosome biogenesis. | [74] | ||
APUM6 | Arabidopsis | Cy, Er | Localizes in stress granules and respond to salt stress. | [75] | ||
TZF | TZF, RR | AtSZF1 (AtTZF10) | Arabidopsis | Nc | Negatively regulates genes involved in salt stress response under salt stress. | [76] |
AtSZF2 (AtTZF11) | Arabidopsis | |||||
AtTZF1 | Arabidopsis | Nc, Cy | Downregulates the expression of genes related to the vacuolar calcium pump under salt stress and participates in the formation of stress granules. | [77] | ||
OsTZF1 | Rice | Cy | Co-localizes with PABP8 in stress granules. | [78] | ||
GhTZF1 | Gossypium hirsutum L. | Nc | - | [79] | ||
AtTZF2 | Arabidopsis | Cy | - | [80] | ||
AtTZF3 | Arabidopsis | |||||
HuTZF3 | Pitaya (Hylocereus polyrhizus) | Cy | Localizes in P-bodies and stress granules. | [81] | ||
YTH | YTH | AtECT8 | Arabidopsis | Cy | Promotes the degradation of mRNAs in P-bodies and halts the translation of mRNAs in stress granules. | [82] |
MhYTP1,2 | Malus hupehensis (Pamp.) Rehd | - | - | [39] | ||
DBRH | DEAD-box | AtSTRS1,2 (AtRH25) | Arabidopsis | Nc | Attenuates the expression of stress-responsive transcriptional activators. | [83,84] |
AtRH17 | Arabidopsis | Nc | Regulates gene expression in response to salt stress. | [85] | ||
BnRH6 | Brassica napus | Nc, Cy | Regulates salt-tolerant genes. | [86] | ||
AtRH31 | Arabidopsis | Nc, Cy | Interacts with TSN1 during the formation of SGs and regulate the expression of salt-responsive genes. | [87] | ||
AtRH3 | Arabidopsis | Ch | Acts as an RNA chaperone to regulate the splicing of chloroplast ndhA and ndhB. | [88] | ||
HVD1 | Barley (Hordeum vulgare) | Ch | Regulates the expression of genes related to photosynthesis. | [89] | ||
GmRH3 | Soybean (Glycine max L.) | - | - | [90] | ||
BrRH22 | Cabbage (Brassica rapa) | Ch | Participates in ribosome processing and affects the translation of chloroplast transcripts. | [91] | ||
OsRH58 | Rice | Ch | Acts as an RNA chaperone and regulates the translation of chloroplast mRNAs. | [92] | ||
SlDEAD31 | Tomato (Solanum lycopersicum) | Ch | Regulates the expression of salt-responsive genes. | [93] | ||
OsABP | Rice | Ch | - | [94] | ||
OsSUV3 | Rice | Mt | Maintains antioxidant mechanisms. | [95] | ||
AtRH9 | Arabidopsis | Mt | Negatively regulates the response to salt stress. | [84] | ||
CRM | CRM | CFM4 | Arabidopsis | Ch | Acts as an RNA chaperone and participates in the processing and maturation of 16S and 4.5S rRNA. | [96] |
CFM9 | Arabidopsis | Mt | Participates in the splicing of chloroplast introns and affects the formation of mature transcripts. | [97] | ||
PPR | PPR | AtSOAR1 | Arabidopsis | Nc, Cy | Binds to the targeted ABI5 under salt stress to regulate gene expression. | [98] |
OsWSL | Rice | Ch | Participates in the splicing of rpl2 under salt stress, leading to defects in chloroplast development. | [99] | ||
AtPPR40 | Arabidopsis | Mt | Reduces the accumulation of ROS in mitochondria and associates with Complex III in the electron transport system. | [100,101] | ||
AtPPR96 | Arabidopsis | Mt | May be involved in mitochondrial RNA editing. | [102] | ||
AtPGN | Arabidopsis | Mt | Regulates the expression of mitochondrial transcripts. | [103] | ||
Others | RRM | AlSRG1 | Tobacco (Nicotiana tabacum L.) | - | Regulates the expression of ROS-scavenging genes and stress response transcription factors. | [104] |
AtUBP1 | Arabidopsis | Nc, Cy | Participates in stress granule formation | [105] | ||
KH | AtHOS5 | Arabidopsis | Nc | Interacts with FRY2/CPL1 and participates in the splicing of precursor mRNA, thereby influencing the expression of genes related to salt stress. | [106] | |
ZF | AtSRP1 | Arabidopsis | Nc | Binds to the targeted ABI2. | [45] | |
DSRM | FRY2 | Arabidopsis | Nc | Regulates the expression of salt-responsive genes. | [107] | |
HABP4-PAI-RBP1 | AtRGGA | Arabidopsis | Cy | Regulates the stability or translation efficiency of mRNA. | [108] | |
Tudor, SN | AtTSN | Arabidopsis | Cy | Participates in the assembly of stress granules and regulates the stability of mRNA. | [87,109] | |
PAZ | OsAGO1 | Rice | Ch | Regulates gene expression through targeting by miRNA168. | [110] | |
SDP | AtSDP | Arabidopsis | Ch | Participates in the processing of chloroplast 16S, 23S, 4.5S, and 5S rRNA. | [111,112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Meng, K.; Zhu, Z.; Pan, L.; Okita, T.W.; Zhang, L.; Tian, L. The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response. Plants 2025, 14, 1402. https://doi.org/10.3390/plants14091402
Wang T, Meng K, Zhu Z, Pan L, Okita TW, Zhang L, Tian L. The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response. Plants. 2025; 14(9):1402. https://doi.org/10.3390/plants14091402
Chicago/Turabian StyleWang, Tangying, Kaiyuan Meng, Zilin Zhu, Linxuan Pan, Thomas W. Okita, Laining Zhang, and Li Tian. 2025. "The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response" Plants 14, no. 9: 1402. https://doi.org/10.3390/plants14091402
APA StyleWang, T., Meng, K., Zhu, Z., Pan, L., Okita, T. W., Zhang, L., & Tian, L. (2025). The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response. Plants, 14(9), 1402. https://doi.org/10.3390/plants14091402