Soil Nutrient Dynamics and Fungal Community Shifts Drive the Degradation of Pinus sylvestris var. mongholica Plantations in the Loess Plateau
Abstract
:1. Introduction
2. Results
2.1. Soil Properties
2.2. Composition of Soil Fungal Community
2.3. Functional Groups of Soil Fungal Community
2.4. Diversity of Soil Fungal Community
2.5. Relationship Between Soil Fungal Community Composition and Soil Physicochemical Properties
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Site Description
5.2. Sample Collection
5.3. Analysis of Soil Samples
5.4. Total DNA Extraction from Rhizosphere Soil Samples
5.5. Data Processing
5.6. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, F.; Yang, W.; Fu, J.; Li, Z. Effects of vegetation and climate on the changes of soil erosion in the Loess Plateau of China. Sci. Total Environ. 2021, 773, 145514. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, J.; Zhao, G.; Holden, J.; Liu, B.; Chan, F.K.S.; Hu, J.; Wu, P.; Mu, X. Determining the drivers and rates of soil erosion on the Loess Plateau since 1901. Sci. Total Environ. 2022, 823, 153674. [Google Scholar] [CrossRef]
- Bai, R.; Wang, X.; Li, J.; Yang, F.; Shangguan, Z.; Deng, L. The impact of vegetation reconstruction on soil erosion in the Loess plateau. J. Environ. Manag. 2024, 363, 121382. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, X.; Zeng, H.; Zhong, X.; Kuang, S. Analysis of Carbon Sink Benefits from Comprehensive Soil and Water Conservation in the Loess Hilly Gently Slope Aeolian Sand Region. Water 2024, 16, 3434. [Google Scholar] [CrossRef]
- Luan, Z.; Wei, G.; Suqing, L.; Xiaojun, W. Distribution pattern and species diversity of artificial vegetation communities in sandy-hilly region of Northwest Shanxi Province, China. For. Grassl. Resour. Res. 2017, 6, 60–66. [Google Scholar] [CrossRef]
- Dang, H.; Zhang, X.; Han, H.; Shi, C.; Ge, Y.; Ma, Q.; Chen, S.; Liu, C. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices. Chin. J. Plant Ecol. 2022, 46, 971–983. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Han, R.; Zhang, X.; Ge, J.; Hao, G. Increased temperatures contribute to early aging of plantation-grown Mongolian pine in introduced areas at lower latitudes. J. For. Res. 2024, 35, 122. [Google Scholar] [CrossRef]
- Liu, J. Degeneration of Pinus sylvestris var. mongolica Plantations at Different Densities in Zhanggutai Area. Prot. For. Sci. Technol. 2019, 5, 57–58. [Google Scholar] [CrossRef]
- Castaño, C.; Lindahl, B.D.; Alday, J.G.; Hagenbo, A.; de Aragón, J.M.; Parladé, J.; Pera, J.; Bonet, J.A. Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytol. 2018, 220, 1211–1221. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Tedersoo, L.; Mikryukov, V.; Zizka, A.; Bahram, M.; Hagh-Doust, N.; Anslan, S.; Prylutskyi, O.; Delgado-Baquerizo, M.; Maestre, F.T.; Pärn, J. Global patterns in endemicity and vulnerability of soil fungi. Glob. Change Biol. 2022, 28, 6696–6710. [Google Scholar] [CrossRef]
- Li, J.; Zhang, T.; Meng, B.; Rudgers, J.A.; Cui, N.; Zhao, T.; Chai, H.; Yang, X.; Sternberg, M.; Sun, W. Disruption of fungal hyphae suppressed litter-derived C retention in soil and N translocation to plants under drought-stressed temperate grassland. Geoderma 2023, 432, 116396. [Google Scholar] [CrossRef]
- Adnan, M.; Islam, W.; Gang, L.; Chen, H.Y. Advanced research tools for fungal diversity and its impact on forest ecosystem. Environ. Sci. Pollut. Res. 2022, 29, 45044–45062. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qu, Z.; Zhang, Y.; Ge, Y.; Sun, H. Soil fungal community and potential function in different forest ecosystems. Diversity 2022, 14, 520. [Google Scholar] [CrossRef]
- Marčiulynienė, D.; Marčiulynas, A.; Mishcherikova, V.; Lynikienė, J.; Gedminas, A.; Franic, I.; Menkis, A. Principal drivers of fungal communities associated with needles, shoots, roots and adjacent soil of Pinus sylvestris. J. Fungi 2022, 8, 1112. [Google Scholar] [CrossRef]
- Povilaitienė, A.; Gedminas, A.; Varnagirytė-Kabašinskienė, I.; Marčiulynienė, D.; Marčiulynas, A.; Lynikienė, J.; Mishcherikova, V.; Menkis, A. Changes in chemical properties and fungal communities of mineral soil after clear-cutting and reforestation of Scots pine (Pinus sylvestris L.) sites. Forests 2022, 13, 1780. [Google Scholar] [CrossRef]
- Bastida, F.; López-Mondéjar, R.; Baldrian, P.; Andrés-Abellán, M.; Jehmlich, N.; Torres, I.; García, C.; López-Serrano, F. When drought meets forest management: Effects on the soil microbial community of a Holm oak forest ecosystem. Sci. Total Environ. 2019, 662, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, J.; Zhang, H.; Tang, M. Changes in rhizosphere soil fungal communities of Pinus tabuliformis plantations at different development stages on the loess plateau. Int. J. Mol. Sci. 2022, 23, 6753. [Google Scholar] [CrossRef]
- Trentini, C.P.; Campanello, P.I.; Villagra, M.; Ferreras, J.; Hartmann, M. Thinning partially mitigates the impact of Atlantic forest replacement by pine monocultures on the soil microbiome. Front. Microbiol. 2020, 11, 1491. [Google Scholar] [CrossRef]
- Uri, V.; Kukumägi, M.; Aosaar, J.; Varik, M.; Becker, H.; Aun, K.; Lõhmus, K.; Soosaar, K.; Astover, A.; Uri, M. The dynamics of the carbon storage and fluxes in Scots pine (Pinus sylvestris) chronosequence. Sci. Total Environ. 2022, 817, 152973. [Google Scholar] [CrossRef]
- Feng, C.; Wang, Z.; Ma, Y.; Fu, S.; Chen, H.Y. Increased litterfall contributes to carbon and nitrogen accumulation following cessation of anthropogenic disturbances in degraded forests. For. Ecol. Manage. 2019, 432, 832–839. [Google Scholar] [CrossRef]
- Huang, Z.; Cui, Z.; Liu, Y.; Wu, G.L. Carbon accumulation by Pinus sylvestris forest plantations after different periods of afforestation in a semiarid sandy ecosystem. Land Degrad. Dev. 2021, 32, 2094–2104. [Google Scholar] [CrossRef]
- Niu, S.; Zhou, Y.; Liu, L.; Qin, S.; Yin, Y.; Song, X.; Xiao, W. Soil properties in Pinus sylvestris var mongolica plantation of different ages. J. Northeast For. Univ. 2015, 43, 47–50. [Google Scholar] [CrossRef]
- Dang, P.; Yu, X.; Le, H.; Liu, J.; Shen, Z.; Zhao, Z. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PLoS ONE 2017, 12, e0186501. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, J.; Zheng, J.; Liu, J.; Liu, S.; Lin, W.; Wu, C. Soil microbial community structure and catabolic activity are significantly degenerated in successive rotations of Chinese fir plantations. Sci. Rep. 2017, 7, 6691. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Zhang, L.; Chen, D.; Tian, Y.; Zhang, F.; Wen, M.; Yuan, C. Understory herb layer exerts strong controls on soil microbial communities in subtropical plantations. Sci. Rep. 2016, 6, 27066. [Google Scholar] [CrossRef]
- Chen, K.; Hu, L.; Wang, C.; Yang, W.; Zi, H.; Manuel, L. Herbaceous plants influence bacterial communities, while shrubs influence fungal communities in subalpine coniferous forests. For. Ecol. Manage. 2021, 500, 119656. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Zhang, C.; Wang, H.; Fu, X.; Chen, F.; Wan, S.; Sun, X.; Wen, X.; Wang, J. Understory vegetation plays the key role in sustaining soil microbial biomass and extracellular enzyme activities. Biogeosciences 2018, 15, 4481–4494. [Google Scholar] [CrossRef]
- Krishna, M.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
- Weißbecker, C.; Wubet, T.; Lentendu, G.; Kühn, P.; Scholten, T.; Bruelheide, H.; Buscot, F. Experimental evidence of functional group-dependent effects of tree diversity on soil fungi in subtropical forests. Front. Microbiol. 2018, 9, 2312. [Google Scholar] [CrossRef]
- Tedersoo, L.; Anslan, S.; Bahram, M.; Drenkhan, R.; Pritsch, K.; Buegger, F.; Padari, A.; Hagh-Doust, N.; Mikryukov, V.; Gohar, D. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front. Microbiol. 2020, 11, 1953. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, P.; Gao, G.; Ren, Y.; Ding, G.; Zhang, Y. Growing season stage determines the stability of root symbiotic and pathogenic fungi associated with Pinus sylvestris var. mongolica in a semi-arid desert. Appl. Soil Ecol. 2023, 190, 104993. [Google Scholar] [CrossRef]
- Ferrigo, D.; Mondin, M.; Ladurner, E.; Fiorentini, F.; Causin, R.; Raiola, A. Effect of seed biopriming with Trichoderma harzianum strain INAT11 on Fusarium ear rot and Gibberella ear rot diseases. Biol. Control 2020, 147, 104286. [Google Scholar] [CrossRef]
- Elvira-Recuenco, M.; Cacciola, S.O.; Sanz-Ros, A.V.; Garbelotto, M.; Aguayo, J.; Solla, A.; Mullett, M.; Drenkhan, T.; Oskay, F.; Aday Kaya, A.G. Potential interactions between invasive Fusarium circinatum and other pine pathogens in Europe. Forests 2020, 11, 7. [Google Scholar] [CrossRef]
- Adamo, I.; Castano, C.; Bonet, J.A.; Colinas, C.; de Aragon, J.M.; Alday, J.G. Soil physico-chemical properties have a greater effect on soil fungi than host species in Mediterranean pure and mixed pine forests. Soil Biol. Biochem. 2021, 160, 108320. [Google Scholar] [CrossRef]
- Rodríguez-Navarro, A. Potassium transport in fungi and plants. Biochim. Biophys. Acta 2000, 1469, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Si, P.; Shao, W.; Yu, H.; Yang, X.; Gao, D.; Qiao, X.; Wang, Z.; Wu, G. Rhizosphere microenvironments of eight common deciduous fruit trees were shaped by microbes in northern China. Front. Microbiol. 2018, 9, 3147. [Google Scholar] [CrossRef]
- Jiang, S.; Xing, Y.; Liu, G.; Hu, C.; Wang, X.; Yan, G.; Wang, Q. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests. Soil Biol. Biochem. 2021, 161, 108393. [Google Scholar] [CrossRef]
- Kyaschenko, J.; Clemmensen, K.E.; Hagenbo, A.; Karltun, E.; Lindahl, B.D. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J. 2017, 11, 863–874. [Google Scholar] [CrossRef]
- Wang, Q.; He, X.; Guo, L. Ectomycorrhizal fungus communities of Quercus liaotungensis Koidz of different ages in a northern China temperate forest. Mycorrhiza 2012, 22, 461–470. [Google Scholar] [CrossRef]
- Modesto, I.; Mendes, A.; Carrasquinho, I.; Miguel, C.M. Molecular defense response of pine trees (Pinus spp.) to the parasitic nematode Bursaphelenchus xylophilus. Cells 2022, 11, 3208. [Google Scholar] [CrossRef]
- Chu, H.; Wang, H.; Zhang, Y.; Li, Z.; Wang, C.; Dai, D.; Tang, M. Inoculation with ectomycorrhizal fungi and dark septate endophytes contributes to the resistance of Pinus spp. to pine wilt disease. Front. Microbiol. 2021, 12, 687304. [Google Scholar] [CrossRef]
- Blumenstein, K.; Bußkamp, J.; Langer, G.J.; Langer, E.J.; Terhonen, E. The diplodia tip blight pathogen Sphaeropsis sapinea is the most common fungus in Scots pines’ mycobiome, irrespective of health status—A case study from Germany. J. Fungi 2021, 7, 607. [Google Scholar] [CrossRef]
- Bußkamp, J.; Langer, G.J.; Langer, E.J. Sphaeropsis sapinea and fungal endophyte diversity in twigs of Scots pine (Pinus sylvestris) in Germany. Mycol. Prog. 2020, 19, 985–999. [Google Scholar] [CrossRef]
- Spear, E.R.; Broders, K.D. Host-generalist fungal pathogens of seedlings may maintain forest diversity via host-specific impacts and differential susceptibility among tree species. New Phytol. 2021, 231, 460–474. [Google Scholar] [CrossRef]
- Santos, E.F.; Mateus, N.S.; Rosario, M.O.; Garcez, T.B.; Mazzafera, P.; Lavres, J. Enhancing potassium content in leaves and stems improves drought tolerance of eucalyptus clones. Physiol. Plant. 2021, 172, 552–563. [Google Scholar] [CrossRef]
- Johnson, R.; Vishwakarma, K.; Hossen, M.S.; Kumar, V.; Shackira, A.; Puthur, J.T.; Abdi, G.; Sarraf, M.; Hasanuzzaman, M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Biochem. 2022, 172, 56–69. [Google Scholar] [CrossRef]
- Triboulot, M.B.; Pritchard, J.; Levy, G. Effects of potassium deficiency on cell water relations and elongation of tap and lateral roots of maritime pine seedlings. New Phytol. 1997, 135, 183–190. [Google Scholar] [CrossRef]
- Hytönen, J.; Wall, A. Foliar colour as indicator of nutrient status of Scots pine (Pinus sylvestris L.) on peatlands. For. Ecol. Manag. 2006, 237, 156–163. [Google Scholar] [CrossRef]
- Liu, J.; Cai, H.; Chen, S.; Pi, J.; Zhao, L. A review on soil nitrogen sensing technologies: Challenges, progress and perspectives. Agriculture 2023, 13, 743. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic forms. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Beltrame, K.K.; Souza, A.M.; Coelho, M.R.; Winkler, T.C.; Souza, W.E.; Valderrama, P. Soil organic carbon determination using NIRS: Evaluation of dichromate oxidation and dry combustion analysis as reference methods in multivariate calibration. J. Braz. Chem. Soc. 2016, 27, 1527–1532. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Stevenson, F.J. Nitrogen—Organicforms. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America: Madison, WI, USA, 1982; pp. 625–641. [Google Scholar]
- Bittelli, M. Measuring soil water content: A review. HortTechnology 2011, 21, 293–300. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; The Soil Science Society of America, Inc.: Madison, WI, USA; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; Volume 14, pp. 475–490. [Google Scholar]
- Gobert, A.; Evers, M.S.; Morge, C.; Sparrow, C.; Delafont, V. Comparison of DNA purification methods for high-throughput sequencing of fungal communities from wine fermentation. MicrobiologyOpen 2022, 11, e1321. [Google Scholar] [CrossRef]
- García-Alegría, A.M.; Anduro-Corona, I.; Pérez-Martínez, C.J.; Corella-Madueño, M.A.G.; Rascón-Durán, M.L.; Astiazaran-Garcia, H. Quantification of DNA through the NanoDrop spectrophotometer: Methodological validation using standard reference material and Sprague Dawley rat and human DNA. Int. J. Anal. Chem. 2020, 2020, 8896738. [Google Scholar] [CrossRef]
- Aamir, S.; Sutar, S.; Singh, S.; Baghela, A. A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol. Quar. 2015, 5, 74–81. [Google Scholar] [CrossRef]
Stand Age | TN (mg/kg) | NN (mg/kg) | AN (mg/kg) | TP (mg/kg) | AP (mg/kg) | TK (g/kg) | AK (mg/kg) | SOC (g/kg) | Moi (%) | pH |
---|---|---|---|---|---|---|---|---|---|---|
V13 | 217.66 ± 21.03 ab | 2.45 ± 0.23 ab | 12.85 ± 0.62 b | 202.89 ± 33.39 a | 14.46 ± 1.64 b | 15.09 ± 2.39 a | 71.77 ± 6.01 a | 8.85 ± 3.69 a | 0.0419 ± 0.0042 a | 7.68 ± 0.11 b |
V20 | 213.27 ± 31.39 ab | 1.45 ± 0.35 c | 7.30 ± 1.08 d | 156.70 ± 10.19 b | 15.57 ± 1.67 ab | 15.13 ± 0.95 a | 69.99 ± 12.71 a | 5.74 ± 0.76 ab | 0.0417 ± 0.0042 a | 8.49 ± 0.38 a |
V25 | 261.90 ± 52.71 a | 2.86 ± 0.29 a | 15.14 ± 0.56 a | 195.24 ± 19.36 ab | 18.36 ± 2.51 a | 15.37 ± 0.84 a | 67.67 ± 4.19 a | 7.72 ± 0.52 ab | 0.0312 ± 0.0013 a | 8.13 ± 0.04 ab |
V35 | 180.80 ± 26.93 b | 1.97 ± 0.13 b | 10.93 ± 1.29 c | 174.43 ± 14.19 ab | 10.98 ± 0.48 c | 13.84 ± 2.51 a | 39.99 ± 9.01 b | 4.71 ± 0.49 b | 0.0383 ± 0.0113 a | 7.96 ± 0.27 b |
p-value | ns | ns | ns | ns | ns | ns | Linear Regression (p < 0.05, R2 = 0.589) | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Su, X.; Luo, Y.; Zhang, Y.; Wang, Y.; Gao, J.; Wang, D. Soil Nutrient Dynamics and Fungal Community Shifts Drive the Degradation of Pinus sylvestris var. mongholica Plantations in the Loess Plateau. Plants 2025, 14, 1309. https://doi.org/10.3390/plants14091309
Wang J, Su X, Luo Y, Zhang Y, Wang Y, Gao J, Wang D. Soil Nutrient Dynamics and Fungal Community Shifts Drive the Degradation of Pinus sylvestris var. mongholica Plantations in the Loess Plateau. Plants. 2025; 14(9):1309. https://doi.org/10.3390/plants14091309
Chicago/Turabian StyleWang, Jiaxing, Xiaotian Su, Yimou Luo, Yue Zhang, Yihan Wang, Jing Gao, and Defu Wang. 2025. "Soil Nutrient Dynamics and Fungal Community Shifts Drive the Degradation of Pinus sylvestris var. mongholica Plantations in the Loess Plateau" Plants 14, no. 9: 1309. https://doi.org/10.3390/plants14091309
APA StyleWang, J., Su, X., Luo, Y., Zhang, Y., Wang, Y., Gao, J., & Wang, D. (2025). Soil Nutrient Dynamics and Fungal Community Shifts Drive the Degradation of Pinus sylvestris var. mongholica Plantations in the Loess Plateau. Plants, 14(9), 1309. https://doi.org/10.3390/plants14091309