Harnessing Artificial Intelligence, Machine Learning and Deep Learning for Sustainable Forestry Management and Conservation: Transformative Potential and Future Perspectives
Abstract
1. Introduction
2. Challenges in Sustainable Forestry Management
2.1. Environmental Challenges
2.2. Social Challenges
2.3. Economic Challenges
3. AI, ML, and DL in Sustainable Forest Management
4. Applications of AI in Sustainable Forestry Management
4.1. Forest Monitoring and Mapping
4.2. Predictive Analytics for Forest Health
4.3. Wildfire Detection and Management
4.4. Biodiversity Conservation
Application | AI System (Model/Algorithm) | References |
---|---|---|
Tracking forest wildfires | AI models: LiDAR—UAV-LS and TLS; ground station sensor, camera, and UAVs | [57,82] |
Forest-fire monitoring | AI-models: UAVs armed with infrared and visual cameras | [130] |
Citrus disease detection and management | DL-based CNN with ML-based algorithms (SoftMax and RBF SVM) | [104] |
Postharvest monitoring | ML-based artificial neural networks (regression trees) | [131] |
Disease forecasting: rice blast prediction | ML-based conventional multiple regression (REG), back-propagation neural networks (BPNNs) | [132] |
Disease assessment: leaf blast | DL-Sentinel 2: NDVI, EVI, NDMI, SAVI | [133] |
Prediction of tree species distribution | ML-based models: rainforest and artificial neural networks | [134] |
Above ground biomass prediction | DL models: DNNs (regression equations) | [135] |
Species distribution of invasive tree species | ML-based: support vector machine (SVM) | [136] |
4.5. Carbon Sequestration and Climate Mitigation
Application | AI System (Model/Algorithm) | Reference |
---|---|---|
Prediction of CO2 emission | ML based-GRNN, MLPNN, RF, radial basis function neural network (RBFNN), and adaptive neuro-fuzzy inference systems (ANFISs) | [145] |
Forecasting the spatiotemporal variability of soil CO2 | ML-based artificial neural network (ANN) | [146] |
Estimation of carbon sequestration | DL-based: MLP neural networks and regression analysis | [147] |
Monitoring soil carbon pool | Artificial neural networks and regression models | [148] |
Predicting soil carbon stocks | ML-based RF techniques and DL-based regression models | [149] |
Timber harvesting; planning and predicting production and management | ML algorithms combine with GIS data | [150] |
Forest harvesting scheduling | AI-based, two-phase heuristic algorithm | [151] |
Conservation and distribution prediction | AL-based models with bioclimatic data | [152] |
Estimation of Carbon sequestration | ML-based regression algorithms (XGBoost) | [153] |
Forest fire susceptibility predictions | ML-based models—RF, multivariate adaptive regression splines (MARS), and DL models (DLNN) | [154] |
Wild forest fire detection system | DL-based, attention-based convolution neural network with bidirectional long short-term memory (ACNN-BLSTM) | [155] |
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SFM | Sustainable forest management |
AI | Artificial intelligence |
ML | Machine learning |
DL | Deep learning |
CNN | Convolutional neural networks |
LiDAR | Light detection and ranging |
UAV | Unmanned aerial vehicles |
SAR | Synthetic aperture radar |
NDVI | Normalized Difference Vegetation Index |
DNN | Deep neural networks |
ASV | Autonomous surface vehicles |
AGB | Above-ground biomass |
References
- Fichtner, A.; Härdtle, W. Forest Ecosystems: A Functional and Biodiversity Perspective. In Perspectives for Biodiversity and Ecosystems; Springer: Cham, Switzerland, 2021; pp. 383–405. [Google Scholar]
- Lesniewska, F. Forests, people and poverty: Failing to reform the global development paradigm. In Research Handbook on Law, Environment and the Global South; Edward Elgar Publishing: Cheltenham, UK, 2019; pp. 231–248. [Google Scholar]
- Girona, M.M.; Moussaoui, L.; Morin, H.; Thiffault, N.; Leduc, A.; Raymond, P.; Bosé, A.; Bergeron, Y.; Lussier, J.-M. Innovative silviculture to achieve sustainable forest management in boreal forests: Lessons from two large-scale experiments. In Boreal Forests in the Face of Climate Change: Sustainable Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 417–440. [Google Scholar]
- Panayotou, T. Population and Environment; CID Working Paper Series; Center for International Development at Harvard University: Cambridge, MA, USA, 2000. [Google Scholar]
- Ochoa-Gaona, S.; González-Espinosa, M. Land use and deforestation in the highlands of Chiapas, Mexico. Appl. Geogr. 2000, 20, 17–42. [Google Scholar]
- Keenan, R.J. Climate change impacts and adaptation in forest management: A review. Ann. For. Sci. 2015, 72, 145–167. [Google Scholar]
- Schoene, D.H.; Bernier, P.Y. Adapting forestry and forests to climate change: A challenge to change the paradigm. For. Policy Econ. 2012, 24, 12–19. [Google Scholar] [CrossRef]
- MacDicken, K.G.; Sola, P.; Hall, J.E.; Sabogal, C.; Tadoum, M.; de Wasseige, C. Global progress toward sustainable forest management. For. Ecol. Manag. 2015, 352, 47–56. [Google Scholar]
- Rawat, Y.; Tekleyohannes, A. Sustainable forest management and forest products industry development in Ethiopia. Int. For. Rev. 2021, 23, 197–218. [Google Scholar] [CrossRef]
- Titus, B.D.; Brown, K.; Helmisaari, H.-S.; Vanguelova, E.; Stupak, I.; Evans, A.; Clarke, N.; Guidi, C.; Bruckman, V.J.; Varnagiryte-Kabasinskiene, I. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 2021, 11, 10. [Google Scholar]
- Oettel, J.; Lapin, K. Linking forest management and biodiversity indicators to strengthen sustainable forest management in Europe. Ecol. Indic. 2021, 122, 107275. [Google Scholar] [CrossRef]
- Fallah Madvari, R. Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) on Health, Safety and Environment (HSE). Arch. Occup. Health 2022, 6, 1321–1322. [Google Scholar] [CrossRef]
- Sarker, I.H. AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Comput. Sci. 2022, 3, 158. [Google Scholar]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Savari, M.; Eskandari Damaneh, H.; Eskandari Damaneh, H. Factors influencing local people’s participation in sustainable forest management. Arab. J. Geosci. 2020, 13, 513. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Saikia, P. Deforestation and Forests Degradation Impacts on the Environment. In Environmental Degradation: Challenges and Strategies for Mitigation; Singh, V.P., Yadav, S., Yadav, K.K., Yadava, R.N., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 19–46. [Google Scholar] [CrossRef]
- Chakravarty, S.; Ghosh, S.; Suresh, C.; Dey, A.; Shukla, G. Deforestation: Causes, effects and control strategies. Glob. Perspect. Sustain. For. Manag. 2012, 1, 1–26. [Google Scholar]
- Murdiyarso, D.; Skutsch, M.; Guariguata, M.; Kanninen, M.; Luttrell, C.; Verweij, P.; Stella, O.; Angelsen, A. How do we measure and monitor forest degradation? In Moving Ahead with REDD; Center for International Forestry Research: Bogor, Indonesia, 2008. [Google Scholar]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; Van Noordwijk, M.; Creed, I.F.; Pokorny, J. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Change 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Smith, C.; Baker, J.C.A.; Spracklen, D.V. Tropical deforestation causes large reductions in observed precipitation. Nature 2023, 615, 270–275. [Google Scholar] [CrossRef]
- DeFries, R.; Hansen, A.; Turner, B.; Reid, R.; Liu, J. Land use change around protected areas: Management to balance human needs and ecological function. Ecol. Appl. 2007, 17, 1031–1038. [Google Scholar] [CrossRef]
- Lorenz, K. Carbon Sequestration in Forest Ecosystems; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Hunt, C.A. Carbon Sinks and Climate Change: Forests in the Fight Against Global Warming; Edward Elgar Publishing: Cheltenham, UK, 2009. [Google Scholar]
- Canadell, J.G.; Monteiro, P.M.; Costa, M.H.; Cotrim da Cunha, L.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C. Intergovernmental Panel on Climate Change (IPCC). Global carbon and other biogeochemical cycles and feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 673–816. [Google Scholar]
- Strumia, S.; Buonanno, M.; Aronne, G.; Santo, A.; Santangelo, A. Monitoring of plant species and communities on coastal cliffs: Is the use of unmanned aerial vehicles suitable? Diversity 2020, 12, 149. [Google Scholar] [CrossRef]
- Sanderson, L.; McLaughlin, J.; Antunes, P. The last great forest: A review of the status of invasive species in the North American boreal forest. Forestry 2012, 85, 329–340. [Google Scholar] [CrossRef]
- Liebhold, A.M.; MacDonald, W.L.; Bergdahl, D.; Mastro, V.C. Invasion by exotic forest pests: A threat to forest ecosystems. For. Sci. 1995, 41, a0001. [Google Scholar] [CrossRef]
- Franklin, J.F.; Johnson, K.N.; Johnson, D.L. Ecological Forest Management; Waveland Press: Long Grove, IL, USA, 2018. [Google Scholar]
- Panwar, R. Corporate Social Responsibility in the Forest Products Industry: An Issues Management Approach; Oregon State University: Corvallis, OR, USA, 2008. [Google Scholar]
- Cashore, B.; Gale, F.; Meidinger, E.; Newsom, D. Forest certification in developing and transitioning countries: Part of a sustainable future? Environ. Sci. Policy Sustain. Dev. 2006, 48, 6–25. [Google Scholar] [CrossRef]
- Burger, J.A. Management effects on growth, production and sustainability of managed forest ecosystems: Past trends and future directions. For. Ecol. Manag. 2009, 258, 2335–2346. [Google Scholar]
- Mantey, P.P.K.; Teye, J.K. Forest dependence among rural households in southern Ghana: Implications for conservation and poverty reduction. Ghana. J. Geogr. 2021, 13, 1–24. [Google Scholar]
- Nelson, J.; Muhammed, N.; Abdul Rashid, R. Community’s forest dependency and its effects towards the forest resources and wildlife abundances in Sarawak, Malaysia. Int. J. Sustain. Dev. World Ecol. 2015, 22, 401–412. [Google Scholar]
- Nguyen, P.T.M.; Nguyen, S.V.; Do, D.T.; Nguyen, Q.T.T.; Dinh, T.T.; Nguyen, H.P.T. A study on the poverty of mountain people depending on forests. J. Asian Financ. Econ. Bus. 2020, 7, 519–529. [Google Scholar]
- El-Lakany, H. Sustainable forest management (SFM) from an international perspective. In Sustainable Forest Management; Routledge: New York, NY, USA, 2016; pp. 292–310. [Google Scholar]
- Arce, J.J.C. Forests, inclusive and sustainable economic growth and employment. In Proceedings of the Background Study Prepared for the Fourteenth Session of the United Nations Forum on Forest (UNFF), Forests and SDG8, United Nations, New York, NY, USA, February 2019. [Google Scholar]
- Scullion, J.J.; Vogt, K.A.; Drahota, B.; Winkler-Schor, S.; Lyons, M. Conserving the last great forests: A meta-analysis review of the drivers of intact forest loss and the strategies and policies to save them. Front. For. Glob. Change 2019, 2, 62. [Google Scholar]
- Hickey, G.M. Evaluating Sustainable Forest Management; Elsevier: Amsterdam, The Netherlands, 2008; Volume 8, pp. 109–114. [Google Scholar]
- Samuelson, P.A. Economics of Forestry in an Evolving Society. In Classic Papers in Natural Resource Economics Revisited; Routledge: New York, NY, USA, 2018; pp. 355–378. [Google Scholar]
- Sajjad, A.; Eweje, G.; Tappin, D. Sustainable supply chain management: Motivators and barriers. Bus. Strategy Environ. 2015, 24, 643–655. [Google Scholar]
- Afif, K.; Rebolledo, C.; Roy, J. Drivers, barriers and performance outcomes of sustainable packaging: A systematic literature review. Br. Food J. 2022, 124, 915–935. [Google Scholar]
- Jensen, P.B.; Laursen, L.N.; Haase, L.M. Barriers to product longevity: A review of business, product development and user perspectives. J. Clean. Prod. 2021, 313, 127951. [Google Scholar]
- Ascher, W.; Healy, R.G. Natural Resource Policymaking in Developing Countries: Environment, Economic Growth, and Income Distribution; Duke University Press: Durham, NC, USA, 1990. [Google Scholar]
- Cubbage, F.; Harou, P.; Sills, E. Policy instruments to enhance multi-functional forest management. For. Policy Econ. 2007, 9, 833–851. [Google Scholar]
- Chazdon, R.L.; Brancalion, P.H.; Laestadius, L.; Bennett-Curry, A.; Buckingham, K.; Kumar, C.; Moll-Rocek, J.; Vieira, I.C.G.; Wilson, S.J. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 2016, 45, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Shivaprakash, K.N.; Swami, N.; Mysorekar, S.; Arora, R.; Gangadharan, A.; Vohra, K.; Jadeyegowda, M.; Kiesecker, J.M. Potential for artificial intelligence (AI) and machine learning (ML) applications in biodiversity conservation, managing forests, and related services in India. Sustainability 2022, 14, 7154. [Google Scholar] [CrossRef]
- Buchelt, A.; Adrowitzer, A.; Kieseberg, P.; Gollob, C.; Nothdurft, A.; Eresheim, S.; Tschiatschek, S.; Stampfer, K.; Holzinger, A. Exploring artificial intelligence for applications of drones in forest ecology and management. For. Ecol. Manag. 2024, 551, 121530. [Google Scholar] [CrossRef]
- Raihan, A. Artificial intelligence and machine learning applications in forest management and biodiversity conservation. Nat. Resour. Conserv. Res. 2023, 6, 3825. [Google Scholar] [CrossRef]
- Diez, Y.; Kentsch, S.; Fukuda, M.; Caceres, M.L.L.; Moritake, K.; Cabezas, M. Deep learning in forestry using uav-acquired rgb data: A practical review. Remote Sens. 2021, 13, 2837. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Börner, J.; Schulz, D.; Wunder, S.; Pfaff, A. The effectiveness of forest conservation policies and programs. Annu. Rev. Resour. Econ. 2020, 12, 45–64. [Google Scholar] [CrossRef]
- Buongiorno, J.; Gilless, J.K. Decision Methods for Forest Resource Management; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Morgenstern, R.D.; Pizer, W.A.; Shih, J.-S. The cost of environmental protection. Rev. Econ. Stat. 2001, 83, 732–738. [Google Scholar] [CrossRef]
- Filchev, L. Remote Sensing. In Advances in Geospatial Technologies for Natural Resource Management; CRC Press: Boca Raton, FL, USA, 2025; pp. 1–24. [Google Scholar]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in remote sensing to forest ecology and management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Rodrigues, J.; Dias, M.A.; Negri, R.; Hussain, S.M.; Casaca, W. A Robust Dual-Mode Machine Learning Framework for Classifying Deforestation Patterns in Amazon Native Lands. Land 2024, 13, 1427. [Google Scholar] [CrossRef]
- Talbot, B.; Astrup, R. A review of sensors, sensor-platforms and methods used in 3D modelling of soil displacement after timber harvesting. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2021, 42, 149–164. [Google Scholar] [CrossRef]
- Crunchant, A.-S.; Nakka, C.D.; Isaacs, J.T.; Piel, A.K. Acoustic sensors. In Conservation Technology; Oxford University Press: Oxford, UK, 2021; p. 53. [Google Scholar]
- Parris-Piper, N.; Dressler, W.H.; Satizábal, P.; Fletcher, R. Automating violence? The anti-politics of ‘smart technology’ in biodiversity conservation. Biol. Conserv. 2023, 278, 109859. [Google Scholar] [CrossRef]
- Kantanavar, P.; Rajendran, S. Industrial Internet of Things: Architecture and Its Applications. In Internet of Things; Chapman and Hall: London, UK; CRC: Boca Raton, FL, USA, 2023; pp. 237–256. [Google Scholar]
- Hait, M.; Sahu, P.; Biswas, S.; Izah, S.C. Sustainable Application of Artificial Intelligence in Biomonitoring for Environmental Sustainability: Challenges and Prospects. In Biomonitoring of Pollutants in the Global South; Springer: Singapore, 2024; pp. 747–778. [Google Scholar]
- Casas, G.G.; Ismail, Z.H.; Limeira, M.M.C.; da Silva, A.A.L.; Leite, H.G. Automatic detection and counting of stacked eucalypt timber using the YOLOv8 model. Forests 2023, 14, 2369. [Google Scholar] [CrossRef]
- Alotaibi, A.; Chatwin, C.; Birch, P. Ubiquitous Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Shanlax Int. J. Arts, Sci. Humanit. 2023, 11, 62–90. [Google Scholar]
- Post, J. The next generation air transportation system of the United States: Vision, accomplishments, and future directions. Engineering 2021, 7, 427–430. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 2023, 16, 109–137. [Google Scholar]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Baker, J.C.; Williamson, R.A. Satellite imagery activism: Sharpening the focus on tropical deforestation. Singap. J. Trop. Geogr. 2006, 27, 4–14. [Google Scholar]
- Finer, M.; Novoa, S.; Weisse, M.J.; Petersen, R.; Mascaro, J.; Souto, T.; Stearns, F.; Martinez, R.G. Combating deforestation: From satellite to intervention. Science 2018, 360, 1303–1305. [Google Scholar]
- DeFries, R.; Achard, F.; Brown, S.; Herold, M.; Murdiyarso, D.; Schlamadinger, B.; de Souza, C., Jr. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environ. Sci. Policy 2007, 10, 385–394. [Google Scholar]
- Matosak, B.M.; Fonseca, L.M.G.; Taquary, E.C.; Maretto, R.V.; Bendini, H.d.N.; Adami, M. Mapping deforestation in cerrado based on hybrid deep learning architecture and medium spatial resolution satellite time series. Remote Sens. 2022, 14, 209. [Google Scholar] [CrossRef]
- Schultz, M.; Clevers, J.G.; Carter, S.; Verbesselt, J.; Avitabile, V.; Quang, H.V.; Herold, M. Performance of vegetation indices from Landsat time series in deforestation monitoring. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 318–327. [Google Scholar]
- Kurnar, D. Monitoring forest cover changes using remote sensing and GIS: A global prospective. Res. J. Environ. Sci. 2011, 5, 105. [Google Scholar]
- Oluwajuwon, T.V.; Alo, A.A.; Ogana, F.N.; Adekugbe, O.A. Forest cover dynamics of a lowland rainforest in southwestern Nigeria using GIS and remote sensing techniques. J. Geogr. Inf. Syst. 2021, 13, 83. [Google Scholar]
- Nichols, K.; Hosein, P. Estimating Deforestation using Machine Learning Algorithms. In Proceedings of the 2021 Second International Conference on Intelligent Data Science Technologies and Applications (IDSTA), Tartu, Estonia, 15–17 November 2021; pp. 82–87. [Google Scholar]
- Chitra, N.T.; Anusha, R.; Kumar, S.H.; Chandana, D.S.; Harika, C.; Kumar, V.U. Satellite imagery for deforestation prediction using deep learning. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 522–525. [Google Scholar]
- Carrillo-Niquete, G.A.; Andrade, J.L.; Valdez-Lazalde, J.R.; Reyes-García, C.; Hernández-Stefanoni, J.L. Characterizing spatial and temporal deforestation and its effects on surface urban heat islands in a tropical city using Landsat time series. Landsc. Urban Plan. 2022, 217, 104280. [Google Scholar] [CrossRef]
- Masolele, R.N.; De Sy, V.; Herold, M.; Marcos, D.; Verbesselt, J.; Gieseke, F.; Mullissa, A.G.; Martius, C. Spatial and temporal deep learning methods for deriving land-use following deforestation: A pan-tropical case study using Landsat time series. Remote Sens. Environ. 2021, 264, 112600. [Google Scholar] [CrossRef]
- Xiang, B.; Wielgosz, M.; Kontogianni, T.; Peters, T.; Puliti, S.; Astrup, R.; Schindler, K. Automated forest inventory: Analysis of high-density airborne LiDAR point clouds with 3D deep learning. Remote Sens. Environ. 2024, 305, 114078. [Google Scholar] [CrossRef]
- Georgopoulos, N.; Stefanidou, A.; Gitas, I.Z. Supporting Operational Tree Marking Activities through Airborne LiDAR Data in the Frame of Sustainable Forest Management. Forests 2023, 14, 2311. [Google Scholar] [CrossRef]
- Panagiotidis, D.; Abdollahnejad, A.; Slavík, M. 3D point cloud fusion from UAV and TLS to assess temperate managed forest structures. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102917. [Google Scholar] [CrossRef]
- De Bem, P.P.; de Carvalho Junior, O.A.; Fontes Guimarães, R.; Trancoso Gomes, R.A. Change detection of deforestation in the Brazilian Amazon using landsat data and convolutional neural networks. Remote Sens. 2020, 12, 901. [Google Scholar] [CrossRef]
- Torres, D.L.; Turnes, J.N.; Soto Vega, P.J.; Feitosa, R.Q.; Silva, D.E.; Marcato Junior, J.; Almeida, C. Deforestation Detection with Fully Convolutional Networks in the Amazon Forest from Landsat-8 and Sentinel-2 Images. Remote Sens. 2021, 13, 5084. [Google Scholar] [CrossRef]
- Bolyn, C.; Lejeune, P.; Michez, A.; Latte, N. Mapping tree species proportions from satellite imagery using spectral–spatial deep learning. Remote Sens. Environ. 2022, 280, 113205. [Google Scholar] [CrossRef]
- Tanaka, T.S.; Heuvelink, G.B.; Mieno, T.; Bullock, D.S. Can machine learning models provide accurate fertilizer recommendations? Precision Agriculture. 2024, 25, 1839–1856. [Google Scholar] [CrossRef]
- Lassalle, G.; Ferreira, M.P.; La Rosa, L.E.C.; de Souza Filho, C.R. Deep learning-based individual tree crown delineation in mangrove forests using very-high-resolution satellite imagery. ISPRS J. Photogramm. Remote Sens. 2022, 189, 220–235. [Google Scholar] [CrossRef]
- Reiersen, G.; Dao, D.; Lütjens, B.; Klemmer, K.; Amara, K.; Steinegger, A.; Zhang, C.; Zhu, X. ReforesTree: A dataset for estimating tropical forest carbon stock with deep learning and aerial imagery. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2022; pp. 12119–12125. [Google Scholar]
- Kaltenbach, T.L.G. Smart Wildlife Monitoring: Evaluating a Camera Trap Enabled with Artificial Intelligence; Montana State University-Bozeman, College of Agriculture: Bozeman, MT, USA, 2024. [Google Scholar]
- Bjerge, K.; Alison, J.; Dyrmann, M.; Frigaard, C.E.; Mann, H.M.; Høye, T.T. Accurate detection and identification of insects from camera trap images with deep learning. PLOS Sustain. Transform. 2023, 2, e0000051. [Google Scholar] [CrossRef]
- Harmsen, B.J.; Williams, S.; Abarca, M.; Álvarez Calderón, F.S.; Araya-Gamboa, D.; Avila, H.D.; Barrantes-Núñez, M.; Bravata-de la Cruz, Y.; Broadfield, J.; Cabral-Araújo, V. Estimating species distribution from camera trap by-catch data, using jaguarundi (Herpailurus yagouaroundi) as an example. Divers. Distrib. 2024, e13831. [Google Scholar] [CrossRef]
- Choiński, M.; Rogowski, M.; Tynecki, P.; Kuijper, D.P.; Churski, M.; Bubnicki, J.W. A first step towards automated species recognition from camera trap images of mammals using AI in a European temperate forest. In Proceedings of the Computer Information Systems and Industrial Management: 20th International Conference, CISIM 2021, Ełk, Poland, 24–26 September 2021; Proceedings 20. pp. 299–310. [Google Scholar]
- Zampetti, A.; Mirante, D.; Palencia, P.; Santini, L. Towards an automated protocol for wildlife density estimation using camera-traps. Methods Ecol. Evol. 2024, 15, 2276–2288. [Google Scholar] [CrossRef]
- Ghazi, M.M.; Yanikoglu, B.; Aptoula, E. Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 2017, 235, 228–235. [Google Scholar] [CrossRef]
- Ercanlı, İ. Innovative deep learning artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height. For. Ecosyst. 2020, 7, 228–235. [Google Scholar] [CrossRef]
- Beloiu, M.; Heinzmann, L.; Rehush, N.; Gessler, A.; Griess, V.C. Individual Tree-Crown Detection and Species Identification in Heterogeneous Forests Using Aerial RGB Imagery and Deep Learning. Remote Sens. 2023, 15, 1463. [Google Scholar] [CrossRef]
- Gan, Y.; Wang, Q.; Iio, A. Tree Crown Detection and Delineation in a Temperate Deciduous Forest from UAV RGB Imagery Using Deep Learning Approaches: Effects of Spatial Resolution and Species Characteristics. Remote Sens. 2023, 15, 778. [Google Scholar] [CrossRef]
- He, T.; Lu, Y.; Jiao, L.; Zhang, Y.; Jiang, X.; Yin, Y. Developing deep learning models to automate rosewood tree species identification for CITES designation and implementation. Holzforschung 2020, 74, 1123–1133. [Google Scholar] [CrossRef]
- Ferreira, M.P.; de Almeida, D.R.A.; de Almeida Papa, D.; Minervino, J.B.S.; Veras, H.F.P.; Formighieri, A.; Santos, C.A.N.; Ferreira, M.A.D.; Figueiredo, E.O.; Ferreira, E.J.L. Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. For. Ecol. Manag. 2020, 475, 118397. [Google Scholar] [CrossRef]
- Pereira, C.S.; Morais, R.; Reis, M.J.C.S. Deep Learning Techniques for Grape Plant Species Identification in Natural Images. Sensors 2019, 19, 4850. [Google Scholar] [CrossRef]
- Tarsha Kurdi, F.; Gharineiat, Z.; Lewandowicz, E.; Shan, J. Modeling the Geometry of Tree Trunks Using LiDAR Data. Forests 2024, 15, 368. [Google Scholar] [CrossRef]
- Rappaport, D.I.; Swain, A.; Fagan, W.F.; Dubayah, R.; Morton, D.C. Animal soundscapes reveal key markers of Amazon forest degradation from fire and logging. Proc. Natl. Acad. Sci. USA 2022, 119, e2102878119. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Liao, Y.; Chen, Y. Hyperspectral classification of citrus diseased leaves based on convolutional neural network. Inf. Technol. Informatiz 2020, 3, 84–87. [Google Scholar]
- Yadav, P.K.; Burks, T.; Qin, J.; Kim, M.; Frederick, Q.; Dewdney, M.M.; Ritenour, M.A. Citrus disease classification with convolution neural network generated features and machine learning classifiers on hyperspectral image data. In Proceedings of the Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VIII, Orlando, FL, USA, 1–2 May 2023; SPIE: Bellingham, WA, USA. [Google Scholar]
- Pérez-Romero, J.; Navarro-Cerrillo, R.M.; Palacios-Rodriguez, G.; Acosta, C.; Mesas-Carrascosa, F.J. Improvement of remote sensing-based assessment of defoliation of Pinus spp. caused by Thaumetopoea Pityocampa Denis and Schiffermüller and related environmental drivers in Southeastern Spain. Remote Sens. 2019, 11, 1736. [Google Scholar] [CrossRef]
- Evans, J.S.; Murphy, M.A.; Holden, Z.A.; Cushman, S.A. Modeling species distribution and change using random forest. In Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 139–159. [Google Scholar]
- Bhatnagar, S.; Puliti, S.; Talbot, B.; Heppelmann, J.B.; Breidenbach, J.; Astrup, R. Mapping wheel-ruts from timber harvesting operations using deep learning techniques in drone imagery. For. Int. J. For. Res. 2022, 95, 698–710. [Google Scholar] [CrossRef]
- Akinci, S.; Göktoğan, A.H. An Eco-Friendly Fight Against Thaumetopoea Pityocampa Infestations in Pine Forests Using Deep Learning on UAV Imagery. In Proceedings of the 2022 Innovations in Intelligent Systems and Applications Conference (ASYU), Antalya, Turkey, 7–9 September 2022; pp. 1–6. [Google Scholar]
- Kim, Y.; Roh, J.-H.; Kim, H.Y. Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks. Sustainability 2018, 10, 34. [Google Scholar] [CrossRef]
- Freeborn, P.H.; Jolly, W.M.; Cochrane, M.A.; Roberts, G. Large wildfire driven increases in nighttime fire activity observed across CONUS from 2003–2020. Remote Sens. Environ. 2022, 268, 112777. [Google Scholar] [CrossRef]
- Kinaneva, D.; Hristov, G.; Raychev, J.; Zahariev, P. Early forest fire detection using drones and artificial intelligence. In Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; IEEE: New York, NY, USA. [Google Scholar]
- Jolly, C.J.; Dickman, C.R.; Doherty, T.S.; van Eeden, L.M.; Geary, W.L.; Legge, S.M.; Woinarski, J.C.; Nimmo, D.G. Animal mortality during fire. Glob. Change Biol. 2022, 28, 2053–2065. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, J.V.R.; Pedro Vieira, G. Aerial Forest Fire Detection and Monitoring Using a Small UAV. KnE Eng. 2020, 5, 242–256. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhang, Y.; Xin, J.; Mu, L.; Yi, Y.; Liu, H.; Liu, D. A deep learning based forest fire detection approach using UAV and YOLOv3. In Proceedings of the 2019 1st International conference on industrial artificial intelligence (IAI), Shenyang, China, 23–27 July 2019; IEEE: New York, NY, USA. [Google Scholar]
- Assilzadeh, H.; de Groot, W.J.; Levy, J.K. Spatial modelling of wildland fire danger for risk analysis and conflict resolution in Malaysia: Linking Fire Danger Rating Systems (FDRS) with Wildfire Threat Rating Systems (WTRS). Geocarto Int. 2012, 27, 291–313. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Anderegg, W.R.; Asner, G.P. Remote sensing of forest die-off in the Anthropocene: From plant ecophysiology to canopy structure. Remote Sens. Environ. 2019, 231, 111233. [Google Scholar] [CrossRef]
- Muhs, J.W. Characterizing Natural Disaster Threats to Power Distribution System Infrastructure; The University of Utah: Salt Lake City, UT, USA, 2020. [Google Scholar]
- Dunn, C.J.; D O’Connor, C.; Abrams, J.; Thompson, M.P.; Calkin, D.E.; Johnston, J.D.; Stratton, R.; Gilbertson-Day, J. Wildfire risk science facilitates adaptation of fire-prone social-ecological systems to the new fire reality. Environ. Res. Lett. 2020, 15, 025001. [Google Scholar] [CrossRef]
- Rodell, C.; Howard, R.; Jain, P.; Moisseeva, N.; Chui, T.; Stull, R. Forecasting Hourly Wildfire Risk: Enhancing Fire Danger Assessment using Numerical Weather Prediction. Weather Forecast. 2024, 39, 925–941. [Google Scholar] [CrossRef]
- Silvestro, D.; Goria, S.; Sterner, T.; Antonelli, A. Improving biodiversity protection through artificial intelligence. Nat. Sustain. 2022, 5, 415–424. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, C.; Work, T.; Candau, J.-N.; DesRochers, A.; Kneeshaw, D. Application of machine-learning methods in forest ecology: Recent progress and future challenges. Environ. Rev. 2018, 26, 339–350. [Google Scholar] [CrossRef]
- Saxena, R.; Srivastava, V.; Bharti, D.; Singh, R.; Kumar, A.; Sharma, A. Artificial Intelligence for Water Resource Planning and Management. In Innovations in Machine Learning and IoT for Water Management; IGI Global: New York, NY, USA, 2024; pp. 51–70. [Google Scholar]
- Anand, A.; Srivastava, P.K.; Pandey, P.C.; Khan, M.L.; Behera, M.D. Assessing the niche of Rhododendron arboreum using entropy and machine learning algorithms: Role of atmospheric, ecological, and hydrological variables. J. Appl. Remote Sens. 2022, 16, 042402. [Google Scholar] [CrossRef]
- Molina-Molina, J.C.; Salhaoui, M.; Guerrero-González, A.; Arioua, M. Autonomous Marine Robot Based on AI Recognition for Permanent Surveillance in Marine Protected Areas. Sensors 2021, 21, 2664. [Google Scholar] [CrossRef] [PubMed]
- Niță, M.D. Testing Forestry Digital Twinning Workflow Based on Mobile LiDAR Scanner and AI Platform. Forests 2021, 12, 1576. [Google Scholar] [CrossRef]
- Albuquerque, R.W.; Vieira, D.L.M.; Ferreira, M.E.; Soares, L.P.; Olsen, S.I.; Araujo, L.S.; Vicente, L.E.; Tymus, J.R.C.; Balieiro, C.P.; Matsumoto, M.H.; et al. Mapping Key Indicators of Forest Restoration in the Amazon Using a Low-Cost Drone and Artificial Intelligence. Remote Sens. 2022, 14, 830. [Google Scholar] [CrossRef]
- Mosebo Fernandes, A.C.; Quintero Gonzalez, R.; Lenihan-Clarke, M.A.; Leslie Trotter, E.F.; Jokar Arsanjani, J. Machine Learning for Conservation Planning in a Changing Climate. Sustainability 2020, 12, 7657. [Google Scholar] [CrossRef]
- Mathur, P.; Mathur, M. Machine learning ensemble species distribution modeling of an endangered arid land tree Tecomella undulata: A global appraisal. Arab. J. Geosci. 2023, 16, 131. [Google Scholar] [CrossRef]
- Lee, W.-H.; Song, J.-W.; Yoon, S.-H.; Jung, J.-M. Spatial Evaluation of Machine Learning-Based Species Distribution Models for Prediction of Invasive Ant Species Distribution. Appl. Sci. 2022, 12, 10260. [Google Scholar] [CrossRef]
- Merino, L.; Caballero, F.; de Dios, J.R.M.; Maza, I.; Ollero, A. Automatic forest fire monitoring and measurement using unmanned aerial vehicles. In Proceedings of the 6th International Congress on Forest Fire Research, Pablo de Olavide University, Seville, Spain, November 2010. [Google Scholar]
- Gómez-Sanchis, J.; Blasco, J.; Soria-Olivas, E.; Lorente, D.; Escandell-Montero, P.; Martínez-Martínez, J.M.; Martínez-Sober, M.; Aleixos, N. Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers. Postharvest Biol. Technol. 2013, 82, 76–86. [Google Scholar] [CrossRef]
- Kaundal, R.; Kapoor, A.S.; Raghava, G.P.S. Machine learning techniques in disease forecasting: A case study on rice blast prediction. BMC Bioinform. 2006, 7, 485. [Google Scholar] [CrossRef]
- Das, S.; Biswas, A.; Sinha, P. Deep Learning Analysis of Rice Blast Disease Using Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 2500905. [Google Scholar] [CrossRef]
- Carvalho, M.C.; Gomide, L.R.; Santos, R.M.d.; Scolforo, J.R.S.; Carvalho, L.M.T.d.; Mello, J.M.d. Modeling ecological niche of tree species in Brazilian tropical area. Cerne 2017, 23, 229–240. [Google Scholar]
- Huy, B.; Truong, N.Q.; Khiem, N.Q.; Poudel, K.P.; Temesgen, H. Deep learning models for improved reliability of tree aboveground biomass prediction in the tropical evergreen broadleaf forests. For. Ecol. Manag. 2022, 508, 120031. [Google Scholar]
- Pouteau, R.; Meyer, J.-Y.; Stoll, B. A SVM-based model for predicting distribution of the invasive tree Miconia calvescens in tropical rainforests. Ecol. Model. 2011, 222, 2631–2641. [Google Scholar]
- Labrière, N.; Davies, S.J.; Disney, M.I.; Duncanson, L.I.; Herold, M.; Lewis, S.L.; Phillips, O.L.; Quegan, S.; Saatchi, S.S.; Schepaschenko, D.G. Toward a forest biomass reference measurement system for remote sensing applications. Glob. Chang. Biol. 2023, 29, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar]
- Liu, H.; Shen, X.; Cao, L.; Yun, T.; Zhang, Z.; Fu, X.; Chen, X.; Liu, F. Deep learning in forest structural parameter estimation using airborne lidar data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1603–1618. [Google Scholar]
- Naughtin, S.R.; Castilla, A.R.; Smith, A.B.; Strand, A.E.; Dawson, A.; Hoban, S.; Abhainn, E.A.; Romero-Severson, J.; Robinson, J.D. Integrating genomic data and simulations to evaluate alternative species distribution models and improve predictions of glacial refugia and future responses to climate change. Ecography 2025, 2025, e07196. [Google Scholar]
- Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data. Remote Sens. 2019, 11, 1459. [Google Scholar] [CrossRef]
- Zhang, F.; Tian, X.; Zhang, H.; Jiang, M. Estimation of Aboveground Carbon Density of Forests Using Deep Learning and Multisource Remote Sensing. Remote Sens. 2022, 14, 3022. [Google Scholar] [CrossRef]
- Ahmad, N.; Ullah, S.; Zhao, N.; Mumtaz, F.; Ali, A.; Ali, A.; Tariq, A.; Kareem, M.; Imran, A.B.; Khan, I.A.; et al. Comparative Analysis of Remote Sensing and Geo-Statistical Techniques to Quantify Forest Biomass. Forests 2023, 14, 379. [Google Scholar] [CrossRef]
- Linaza, M.T.; Posada, J.; Bund, J.; Eisert, P.; Quartulli, M.; Döllner, J.; Pagani, A.; Olaizola, I.G.; Barriguinha, A.; Moysiadis, T. Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy 2021, 11, 1227. [Google Scholar] [CrossRef]
- Canteral, K.F.F.; Vicentini, M.E.; de Lucena, W.B.; de Moraes, M.L.T.; Montanari, R.; Ferraudo, A.S.; Peruzzi, N.J.; La Scala, N.; Panosso, A.R. Machine learning for prediction of soil CO2 emission in tropical forests in the Brazilian Cerrado. Environ. Sci. Pollut. Res. 2023, 30, 61052–61071. [Google Scholar] [CrossRef] [PubMed]
- Freitas, L.P.S.; Lopes, M.L.M.; Carvalho, L.B.; Panosso, A.R.; La Scala Júnior, N.; Freitas, R.L.B.; Minussi, C.R.; Lotufo, A.D.P. Forecasting the spatiotemporal variability of soil CO2 emissions in sugarcane areas in southeastern Brazil using artificial neural networks. Environ. Monit. Assess. 2018, 190, 741. [Google Scholar] [CrossRef] [PubMed]
- Cheshmberah, F.; Fathizad, H.; Parad, G.A.; Shojaeifar, S. Comparison of RBF and MLP neural network performance and regression analysis to estimate carbon sequestration. Int. J. Environ. Sci. Technol. 2020, 17, 3891–3900. [Google Scholar] [CrossRef]
- Vahedi, A.A. Monitoring soil carbon pool in the Hyrcanian coastal plain forest of Iran: Artificial neural network application in comparison with developing traditional models. Catena 2017, 152, 182–189. [Google Scholar]
- Sarkodie, V.Y.O.; Vašát, R.; Pouladi, N.; Šrámek, V.; Sáňka, M.; Fadrhonsová, V.; Hellebrandová, K.N.; Borůvka, L. Predicting soil organic carbon stocks in different layers of forest soils in the Czech Republic. Geoderma Reg. 2023, 34, e00658. [Google Scholar] [CrossRef]
- Ji, H.-V.; Han, S.-K.; Park, J.-W. Timber Harvest Planning Using Reinforcement Learning: A Feasibility Study. Forests 2024, 15, 1725. [Google Scholar] [CrossRef]
- Rey, C.; Sandoval, S.; Cabrera-Vives, G.; Seco, D.; Cerulo, P.; Li, Z. A Novel Two-Phase Approach to Forest Harvesting Optimization Using Cable Logging. Forests 2023, 14, 2133. [Google Scholar] [CrossRef]
- Ranjitkar, S.; Kindt, R.; Sujakhu, N.M.; Hart, R.; Guo, W.; Yang, X.; Shrestha, K.K.; Xu, J.; Luedeling, E. Separation of the bioclimatic spaces of Himalayan tree rhododendron species predicted by ensemble suitability models. Glob. Ecol. Conserv. 2014, 1, 2–12. [Google Scholar] [CrossRef]
- Uniyal, S.; Purohit, S.; Chaurasia, K.; Rao, S.S.; Amminedu, E. Quantification of carbon sequestration by urban forest using Landsat 8 OLI and machine learning algorithms in Jodhpur, India. Urban For. Urban Green. 2022, 67, 127445. [Google Scholar] [CrossRef]
- Saha, S.; Bera, B.; Shit, P.K.; Bhattacharjee, S.; Sengupta, N. Prediction of forest fire susceptibility applying machine and deep learning algorithms for conservation priorities of forest resources. Remote Sens. Appl. Soc. Environ. 2023, 29, 100917. [Google Scholar] [CrossRef]
- Almasoud, A.S. Intelligent Deep Learning Enabled Wild Forest Fire Detection System. Comput. Syst. Sci. Eng. 2023, 44, 1485–1498. [Google Scholar] [CrossRef]
Application | AI-System (Model/Algorithm) | References |
---|---|---|
Automated forest inventory (plant tree physical features) | LiDAR: ForAINet, FOR-Instance | [80] |
Tree population control | LiDAR: ALS-derived tree registry and tree maps | [81] |
Tree crown metrics (crown surface and volume) | LiDAR: UAV-LS and TLS | [57,82] |
Analysis for deforestation detection | ML: random forest (RF) and multilayer perceptron (MLP), Landsat Data; DL: CNN | [83] |
Mapping tree species proportions | CNN (U-Net, ResU-Net, SegNet, FC-DenseNet, DeepLAbv3+) | [84,85] |
Forest management (fertilizer application time and quantity) | ML methods: Randon Forest, XG Boost, Support Vector Regression, and ANN algorithm. | [86] |
Tree individual crown delineation | VHR satellites, MT-EDv3 (CNN) | [87] |
Estimating tropical forest carbon stock | RGB-drone imagery, CNN | [88] |
Wildlife monitoring: behavior, distribution | DL: YOLOv5, Exiftool version 12.42 Grizzly-AI equipped cameras, CT-distance sampling, random encounter | [89] |
Understanding insect–prey interactions, monitoring human wildlife crimes | YOLOv5 | [90] |
Identify habitat and predict populations | Occupancy modeling | [91,92] |
Wildlife density estimation | ML algorithms (MegaDeyector, Wildlife Insights) | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zuo, Y.; Manda, T.; Hwarari, D.; Yang, L. Harnessing Artificial Intelligence, Machine Learning and Deep Learning for Sustainable Forestry Management and Conservation: Transformative Potential and Future Perspectives. Plants 2025, 14, 998. https://doi.org/10.3390/plants14070998
Wang T, Zuo Y, Manda T, Hwarari D, Yang L. Harnessing Artificial Intelligence, Machine Learning and Deep Learning for Sustainable Forestry Management and Conservation: Transformative Potential and Future Perspectives. Plants. 2025; 14(7):998. https://doi.org/10.3390/plants14070998
Chicago/Turabian StyleWang, Taojing, Yinyue Zuo, Teja Manda, Delight Hwarari, and Liming Yang. 2025. "Harnessing Artificial Intelligence, Machine Learning and Deep Learning for Sustainable Forestry Management and Conservation: Transformative Potential and Future Perspectives" Plants 14, no. 7: 998. https://doi.org/10.3390/plants14070998
APA StyleWang, T., Zuo, Y., Manda, T., Hwarari, D., & Yang, L. (2025). Harnessing Artificial Intelligence, Machine Learning and Deep Learning for Sustainable Forestry Management and Conservation: Transformative Potential and Future Perspectives. Plants, 14(7), 998. https://doi.org/10.3390/plants14070998