Characterizing the Genetic Basis of Winter Wheat Rust Resistance in Southern Kazakhstan
Abstract
:1. Introduction
2. Results
2.1. Adult Plant Resistance Test
2.2. Seedling Rust-Resistance Test
2.3. Identification of Rust-Resistance Genes Using Molecular Markers
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Assessment of Field Response to Leaf, Yellow, and Stem Rust
4.3. Seedling Rust-Resistance Tests
4.4. Identification of Lr, Sr, and Yr Genes Using Molecular Markers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morgounov, A.; Abugalieva, A.; Martynov, S. Effect of Climate Change and Variety on Long-term Variation of Grain Yield and Quality in Winter Wheat in Kazakhstan. Cereal Res. Commun. 2014, 42, 163–172. [Google Scholar] [CrossRef]
- Xiong, W.; Reynolds, M.P.; Crossa, J.; Schulthess, U.; Sonder, K.; Montes, C.; Addimando, N.; Singh, R.P.; Ammar, K.; Gerard, B.; et al. Increased ranking change in wheat breeding under climate change. Nature Plants 2021, 7, 1207–1212. [Google Scholar] [CrossRef]
- Cao, Y.; Qiu, X.; Kang, M.; Zhang, L.; Lu, W.; Liu, B.; Tang, L.; Xiao, L.; Zhu, Y.; Cao, W.; et al. Evaluating the impacts of climatic factors and global climate change on the yield and resource use efficiency of winter wheat in China. Eur. J. Agron. 2024, 159, 127295. [Google Scholar] [CrossRef]
- Gafurov, A.; Pollinger, F. Impacts of climate change in Central Asia. Ref. Mod. Earth Sys. Env. Sci. 2024. [Google Scholar] [CrossRef]
- Morgounov, A.; Akin, B.; Demir, L.; Keser, M.; Kokhmetova, A.; Martynov, S.; Yessimbekova, M. Yield gain due to fungicide application in varieties of winter wheat (Triticum aestivum) resistant and susceptible to leaf rust. Crop Pasture Sci. 2015, 66, 649–659. [Google Scholar] [CrossRef]
- Galymbek, K.; Kokhmetova, A.M.; Akan, K.; Madenova, A.K.; Atishova, M.N. Identification of germplasm of Wheat on leaf rust (Puccinia recondita Rob. Ex Desm. F.sp. Tritici). Ecol. Environ. Conserv. 2017, 23, 1211–1218. [Google Scholar]
- Kokhmetova, A.; Rsaliyev, S.; Atishova, M.; Kumarbayeva, M.; Malysheva, A.; Keishilov, Z.; Zhanuzak, D.; Bolatbekova, A. Evaluation of Wheat Germplasm for Resistance to Leaf Rust (Puccinia triticina) and Identification of the Sources of Lr Resistance Genes Using Molecular Markers. Plants 2021, 10, 1484. [Google Scholar] [CrossRef]
- Malysheva, A.; Kokhmetova, A.; Urazaliev, R.; Kumarbayeva, M.; Keishilov, Z.; Nurzhuma, M.; Bolatbekova, A.; Kokhmetova, A. Phenotyping and Identification of Molecular Markers Associated with Leaf Rust Resistance in the Wheat Germplasm from Kazakhstan, CIMMYT and ICARDA. Plants 2023, 12, 2786. [Google Scholar] [CrossRef]
- Koishibaev, M. Wheat Diseases; FAO: Ankara, Turkey, 2018; 365p. (In Russian) [Google Scholar]
- Rsaliyev, S.S.; Kohmetova, A.M.; Sedlovsky, A.I.; Rsaliyev, A.S.; Tileubaeva, J.S.; Tyupina, L.N.; Esenbekova, G.T.; Atishova, M.N.; Agabaeva, A.C. Catalog of Wheat Varieties and Samples with Genes of Resistance to Leaf Rust (Methodological Recommendations); IPBB: Almaty, Kazakhstan, 2011; 100p. (In Russian) [Google Scholar]
- Kokhmetova, A.; Sharma, R.; Rsaliyev, S.; Galymbek, K.; Baymagambetova, K.; Ziyaev, Z.; Morgounov, A. Evaluation of Central Asian wheat germplasm for stripe rust resistance. Plant Genet. Resour. 2018, 16, 178–184. [Google Scholar] [CrossRef]
- Sharma, R.C.; Nazari, K.; Amanov, A.; Ziyaev, Z.; Jalilov, A.U. Reduction of Winter Wheat Yield Losses Caused by Stripe Rust through Fungicide Management. J. Phytopathol. 2016, 164, 671–677. [Google Scholar] [CrossRef]
- Khushboo, S.S.; Gupta, V.; Pandit, D.; Abrol, S.; Choskit, D.; Farooq, S.; Hussain, R. Epidemiology of Stripe Rust of Wheat: A Review. Int. J. Cur. Microbiol. Appl. Sci. 2021, 10, 1158–1172. [Google Scholar] [CrossRef]
- Kokhmetova, A.; Rsaliyev, A.; Malysheva, A.; Atishova, M.; Kumarbayeva, M.; Keishilov, Z. Identification of Stripe Rust Resistance Genes in Common Wheat Cultivars and Breeding Lines from Kazakhstan. Plants 2021, 10, 2303. [Google Scholar] [CrossRef] [PubMed]
- Malysheva, A.; Kokhmetova, A.; Kumarbayeva, M.; Zhanuzak, D.; Bolatbekova, A.; Keishilov, Z.; Gultyaeva, E.; Kokhmetova, A.; Tsygankov, V.; Dutbayev, Y.; et al. Identification of Carriers of Puccinia striiformis Resistance Genes in the Population of Recombinant Inbred Wheat Lines. Int. J. Biol. Chem. 2022, 15, 4–10. [Google Scholar] [CrossRef]
- Ziyaev, Z.M.; Sharma, R.C.; Nazari, K.; Morgounov, A.I.; Amanov, A.A.; Ziyadullaev, Z.F.; Khalikulov, Z.I.; Alikulov, S.M. Improving wheat stripe rust resistance in Central Asia and the Caucasus. Euphytica 2011, 179, 197–207. [Google Scholar] [CrossRef]
- Hovmøller, M.S.; Yahyaoui, A.H.; Milus, E.A.; Justesen, A.F. Rapid global spread of two aggressive strains of a wheat rust fungus. Mol. Ecol. 2008, 17, 3818–3826. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Rodriguez-Algaba, J.; Thach, T.; Sørensen, C.K.; Hansen, J.G.; Lassen, P.; Nazari, K.; Hodson, D.P.; Justesen, A.F.; Hovmøller, M.S. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages. Front. Plant Sci. 2017, 8, 1057. [Google Scholar] [CrossRef]
- Pretorius, Z.A.; Singh, R.P.; Wagoire, W.W.; Payne, T.S. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f.sp. tritici in Uganda. Plant Dis. 2000, 84, 202–203. [Google Scholar] [CrossRef]
- Singh, R.P.; Hodson, D.P.; Jin, Y.; Lagudah, E.S.; Ayliffe, M.A.; Bhavani, S.; Rouse, M.N.; Pretorius, Z.A.; Szabo, L.J.; Huerta-Espino, J.; et al. Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology 2015, 10, 872–884. [Google Scholar] [CrossRef]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef]
- Patpour, M.; Hovmøller, M.S.; Rodriguez-Algaba, J.; Randazzo, B.; Villegas, D.; Shamanin, V.P.; Berlin, A.; Flath, K.; Czembor, P.; Hanzalova, A.; et al. Wheat Stem Rust Back in Europe: Diversity, Prevalence and Impact on Host Resistance. Front. Plant Sci. 2022, 13, 882440. [Google Scholar] [CrossRef]
- Kokhmetova, A.; Morgunov, A.; Rsaliyev, S.; Rsaliyev, A.; Yessenvekova, G.; Typina, L. Wheat germplasm screening for stem rust resistance using conventional and molecular techniques. Czech J. Genet. Plant Breed. 2011, 47, 146–154. [Google Scholar] [CrossRef]
- Rsaliyev, A.S.; Rsaliyev, S.S. Principal approaches and achievements in studying race composition of wheat stem rust. Vavilov J. Genet. Breed. 2018, 22, 967–977. [Google Scholar] [CrossRef]
- Rsaliyev, A.; Yskakova, G.; Maulenbay, A.; Zakarya, K.; Rsaliyev, S. Virulence and race structure of Puccinia graminis f. sp. tritici in Kazakhstan. Plant Prot. Sci. 2020, 56, 275–284. [Google Scholar] [CrossRef]
- Kokhmetova, A.M.; Atishova, M.N.; Galymbek, K. Identification of wheat germplasm resistant to leaf, stripe and stem rust using molecular markers. Bull. Nat. Acad. Sci. Rep. Kaz. 2020, 10, 45–52. [Google Scholar] [CrossRef]
- Olivera, F.P.; Szabo, L.; Kokhmetova, A.; Morgunov, A.; Luster, D.G.; Jin, Y. Puccinia graminis f. sp. tritici population causing recent wheat stem rust epidemics in Kazakhstan is highly diverse and includes novel virulences. Phytopathology 2022, 112, 2403–2415. [Google Scholar] [CrossRef] [PubMed]
- Babkenov, A.; Babkenova, S.; Dashkevich, S.; Kanafin, B.; Shabdan, A.; Kairzhanov, Y. Resistance to Brown and Stem Rust in Spring Soft Wheat Varieties in the Arid Climate of Northern Kazakhstan. On. J. Biol. Sci. 2023, 23, 411–417. [Google Scholar] [CrossRef]
- Kokhmetova, A.M.; Sapakhova, Z.B.; Madenova, A.K.; Yessenbekova, G.T. Identification of carriers of yellow Yr5, Yr10, Yr15 and leaf Lr26, Lr34 resistance genes under molecular screening of wheat entries. Eurasian J. Appl. Biotechnol. 2014, 1, 71–78. [Google Scholar] [CrossRef]
- Nazari, K.; Wellings, C.R.; Park, R.F. Characterization of Seedling Resistance to Rust Diseases in Wheat Cultivars from Central Asia and the Caucasus. Int. J. Plant Breed. 2008, 2, 52–63. Available online: http://www.globalsciencebooks.info/Online/GSBOnline/images/0812/IJPB_2(1&2)/IJPB_2(2)52-63o.pdf (accessed on 20 March 2025).
- Singrun, C.; Rauch, P.; Morgounov, A.; Hsam, S.; Zeller, F. Identification of powdery mildew and leaf rust resistance genes in common wheat (Triticum aestivum). Wheat varieties from the Caucasus, Central and Inner Asia. Genet. Res. Crop Evol. 2004, 51, 355–370. [Google Scholar] [CrossRef]
- Kokhmetova, A.; Madenova, A.; Kampitova, G.; Urazaliev, R.; Yessimbekova, M.; Morgounov, A.; Purnhauser, L. Identification of Leaf Rust Resistance Genes in Wheat Cultivars Produced in Kazakhstan. Cer. Res. Com. 2016, 44, 240–250. [Google Scholar] [CrossRef]
- Gultyaeva, E.I.; Kokhmetova, A.M.; Shreyder, E.R.; Shaydayuk, E.L.; Atishova, M.N.; Madenova, A.; Malysheva, A.; Galymbek, K. Genetic variability of perspective breeding material of spring bread wheat for resistance to leaf rust in Russia and Kazakhstan. Bull. NAS RK 2020, 3, 60–68. [Google Scholar] [CrossRef]
- Randhawa, M.S.; Lan, C.; Basnet, B.R.; Bhavani, S.; Huerta Espino, J.; Forrest, K.; Hayden, M.; Singh, R.P. Interactions among genes Sr2/Yr30, Lr34/Yr18/Sr57 and Lr68 confer enhanced adult plant resistance to rust diseases in common wheat (Triticum aestivum L.) line ‘Arula’. Aus. J. Crop Sci. 2018, 12, 1023–1033. [Google Scholar] [CrossRef]
- Pokotylo, I.; Hodges, M.; Kravets, V.; Ruelland, E. A ménage à trois: Salicylic acid, growth inhibition, and immunity. Trends Plant Sci. 2022, 27, 460–471. [Google Scholar] [CrossRef]
- Singh, R.P.; Huerta-Espino, J.; William, H.M. Genetics and Breeding for Durable Resistance to Leaf and Stripe Rusts in Wheat. Turk. J. Agr. For. 2005, 29, 121–127. Available online: https://journals.tubitak.gov.tr/agriculture/vol29/iss2/4 (accessed on 20 March 2025).
- Singh, R.P.; Herrera-Foessel, S.; Huerta-Espino, J.; Singh, S.; Bhavani, S.; Lan, C.; Basnet, B.R. Progress towards genetics and breeding for minor genes based resistance to Ug99 and other rusts in CIMMYT high-yielding spring wheat. J. Integr. Agric. 2014, 13, 255–261. [Google Scholar] [CrossRef]
- Tong, J.; Zhao, C.; Liu, D.; Jambuthenne, D.T.; Sun, M.; Dinglasan, E.; Periyannan, S.K.; Hickey, L.T.; Hayes, B.J. Genome-wide atlas of rust resistance loci in wheat. Theor. Appl. Genet. 2024, 137, 179. [Google Scholar] [CrossRef]
- Ma, H. Contribution of Adult Plant Resistance Gene Yr18 in Protecting Wheat from Yellow Rust. Plant Dis. 1996, 80, 66–69. [Google Scholar] [CrossRef]
- Omar, G.E.; Mazrou, Y.S.A.; EL-Kazzaz, M.K.; Ghoniem, K.E.; Ashmawy, M.A.; Emeran, A.A.; Mabrouk, O.I.; Nehela, Y. Durability of Adult Plant Resistance Gene Yr18 in Partial Resistance Behavior of Wheat (Triticum aestivum) Genotypes with Different Degrees of Tolerance to Stripe Rust Disease, Caused by Puccinia striiformis f. sp. tritici: A Five-Year Study. Plants 2021, 10, 2262. [Google Scholar] [CrossRef]
- Singh, R.P. Association between Gene Lr34 for Leaf Rust Resistance and Leaf Tip Necrosis in Wheat. Crop Sci. 1992, 32, 874–878. [Google Scholar] [CrossRef]
- Kolmer, J.A.; Singh, R.P.; Garvin, D.F.; Viccars, L.; William, H.M.; Huerta-Espino, J.; Ogbonnaya, F.C.; Raman, H.; Orford, S.; Bariana, H.S.; et al. Analysis of the Lr34/Yr18 Rust Resistance Region in Wheat Germplasm. Crop Sci. 2008, 48, 1841–1852. [Google Scholar] [CrossRef]
- Mago, R.; Miah, H.; Lawrence, G.J.; Wellings, C.R.; Spielmeyer, W.; Bariana, H.S.; McIntosh, R.A.; Pryor, A.J.; Ellis, J.G. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor. Appl. Genet. 2005, 112, 41–50. [Google Scholar] [CrossRef]
- Plotnikova, L.; Pozherukova, V.; Knaub, V.; Kashuba, Y. What Was the Reason for the Durable Effect of SR31 Against Wheat Stem Rust? Agriculture 2022, 12, 2116. [Google Scholar] [CrossRef]
- Bhavani, S.; Hodson, D.P.; Huerta-Espino, J.; Randhawa, M.S.; Singh, R.P. Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. Front. Agr. Sci. Eng. 2019, 6, 210–224. [Google Scholar] [CrossRef]
- Karelov, A.; Kozub, N.; Sozinova, O.; Pirko, Y.; Sozinov, I.; Yemets, A.; Blume, Y. Wheat Genes Associated with Different Types of Resistance against Stem Rust (Puccinia graminis Pers.). Pathogens 2022, 11, 1157. [Google Scholar] [CrossRef]
- Danilov, R.; Kremneva, O.; Sereda, I.; Gasiyan, K.; Zimin, M.; Istomin, D.; Pachkin, A. Study of the Spectral Characteristics of Crops of Winter Wheat Varieties Infected with Pathogens of Leaf Diseases. Plants 2024, 13, 1892. [Google Scholar] [CrossRef]
- Gultyaeva, E.; Shaydayuk, E.; Shreyder, E.; Kushnirenko, I.; Shamanin, V. Genetic Diversity of Promising Spring Wheat Accessions from Russia and Kazakhstan for Rust Resistance. Plants 2024, 13, 2469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, G.; Zang, Y.; Bhavani, S.; Bai, B.; Liu, W.; Zhao, M.; Cheng, Y.; Li, S.; Chen, W.; et al. Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via sinapyl alcohol transport for cell wall lignification in wheat. Plant Com. 2024, 5, 101077. [Google Scholar] [CrossRef] [PubMed]
- Maulenbay, A.; Rsaliyev, A. Fungal Disease Tolerance with a Focus on Wheat: A Review. J. Fungi 2024, 10, 482. [Google Scholar] [CrossRef]
- Yessenbekova, G.; Kokhmetova, A.; Madenova, A.; Amanov, O.; Dutbayev, Y.; Kampitova, G. Identification of Lr34/Yr18 Gene in Wheat Germplasm in Kazakhstan. In Proceedings of the 2014 APS-CPS Joint Meeting, Minneapolis, MN, USA, 9–13 August 2014; p. 252. [Google Scholar]
- Sharma, R.C.; Rajaram, S.; Alikulov, S.; Ziyaev, Z.; Hazratkulova, S.; Khodarahami, M.; Nazeri, S.M.; Belen, S.; Khalikulov, Z.; Mosaad, M.; et al. Improved winter wheat genotypes for Central and West Asia. Euphytica 2013, 190, 19–31. [Google Scholar] [CrossRef]
- Kokhmetova, A.; Rathan, N.D.; Sehgal, D.; Malysheva, A.; Kumarbayeva, M.; Nurzhuma, M.; Bolatbekova, A.; Krishnappa, G.; Gultyaeva, E.; Kokhmetova, A.; et al. QTL mapping for seedling and adult plant resistance to stripe and leaf rust in two winter wheat populations. Front. Genet. 2023, 14, 1265859. [Google Scholar] [CrossRef]
- Rust Scoring Guide (Handbook); D.F.: Cimmyt, Mexico, 1986; Available online: http://hdl.handle.net/10883/1109 (accessed on 20 March 2025).
- Peterson, R.F.; Campbell, A.B.; Hannah, A.E. A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can. J. Res. 1948, 26, 496–500. [Google Scholar] [CrossRef]
- Roelfs, A.P.; Singh, R.P.; Saari, E.E. Rust Diseases of Wheat: Concepts and Methods of Disease Management; D.F.: Cimmyt, Mexico, 1992; p. 81. Available online: http://hdl.handle.net/10883/1153 (accessed on 20 March 2025).
- Gultyaeva, E.I.; Shaydayuk, E.L.; Kosman, E.G. Regional and temporal differentiation of virulence phenotypes of Puccinia triticina from common wheat in Russia during the period 2001–2018. Plant Pathol. 2020, 69, 860–871. [Google Scholar] [CrossRef]
- Long, D.L.; Kolmer, J.A. A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathology 1989, 79, 525–529. [Google Scholar] [CrossRef]
- Johnson, R.; Stubbs, R.W.; Fuchs, E.; Chamberlain, N.H. Nomenclature for physiologic races of Puccinia striiformis infecting wheat. Transac. Brit. Mycol. Soci. 1972, 58, 475–480. [Google Scholar] [CrossRef]
- Gassner, G.; Straib, W. Über Mutationen in einer biologischen Rasse von Puccinia glumarum tritici (Schmidt) Erikss. und Henn. Z. Für Indukt. Abstamm. -Und Vererbungslehre 1933, 63, 154–180. [Google Scholar] [CrossRef]
- Jin, Y.; Szabo, L.J.; Pretorius, Z.A.; Singh, R.P.; Ward, R.; Fetch, T. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 2008, 92, 923–926. [Google Scholar] [CrossRef] [PubMed]
- Mains, E.B.; Jackson, H.S. Physiologic specialization in the leaf rust of wheat Puccinia triticina Erikss. Phytopathology 1926, 16, 89–120. [Google Scholar]
- Stakman, E.C.; Levin, M.N. The determination of biologic forms of Puccinia graminis on Triticum spp. Un. Minn. Agr. Exp. St. Tech. Bull. 1922, 8, 38–41. [Google Scholar]
- Mago, R.; Spielmeyer, W.; Lawrence, G.J.; Lagudah, E.S.; Ellis, J.G.; Pryor, A. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1R of rye using wheat-rye translocation lines. Theor. Appl. Genet. 2002, 104, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.W.; Schürch, A.C.; Yahiaoui, N.; Dong, L.L.; Fan, H.J.; Zhang, Z.J.; Keller, B.; Ling, H.Q. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor. Appl. Genet. 2007, 115, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Foessel, S.; Singh, R.P.; Huerta-Espino, J.; William, M.; Rosewarne, G.; Djurle, A.; Yuen, J. Identification and mapping of Lr3 and a linked leaf rust resistance gene in durum wheat. Crop Sci. 2007, 47, 1459–1466. [Google Scholar] [CrossRef]
- Gupta, S.K.; Charpe, A.; Koul, S.; Prabhu, K.V.; Haq, Q.M.R. Affiliations expand development and validation of molecular markers linked to an Aegilops umbellulat—derived leaf rust resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome 2005, 48, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Chelkowski, J.; Golka, L.; Stepien, L. Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. J. Appl. Genet. 2003, 44, 323–338. [Google Scholar] [PubMed]
- Procunier, J.D.; Townley-Smith, T.F.; Fox, S.; Prashar, S.; Gray, M.; Kim, W.K.; Czarnecki, E.; Dyck, P.L. PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). J. Genet. Breed. 1995, 49, 87–92. [Google Scholar]
- Cherukuri, D.P.; Gupta, S.K.; Charpe, A.; Koul, S.; Prabhu, K.V.; Singh, R.B.; Haq, Q.M.R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica 2005, 143, 19–26. [Google Scholar] [CrossRef]
- Brown-Guedira, G.; Singh, S. Leaf Rust Resistance Gene Lr39. Available online: https://maswheat.ucdavis.edu/protocols/Lr39/ (accessed on 22 July 2022).
- Helguera, M.; Khan, I.A.; Dubcovsky, J. Development of PCR markers for wheat leaf rust resistance gene Lr47. Theor. Appl. Genet. 2000, 101, 625–631. [Google Scholar] [CrossRef]
- Helguera, M.; Vanzetti, L.; Soria, M.; Khan, I.A.; Kolmer, J.; Dubcovsky, J. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2005, 45, 728–734. [Google Scholar] [CrossRef]
- Marais, G.F.; Bekker, T.A.; Eksteen, A.; McCallum, B.; Fetch, T.; Marais, A.S. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica 2010, 171, 71–85. [Google Scholar] [CrossRef]
- Gupta, S.K.; Charpe, A.; Prabhu, K.W.; Haque, O.M.R. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor. Appl. Genet. 2006, 113, 1027–1036. [Google Scholar] [CrossRef]
- Neu, C.; Stein, N.; Keller, B. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 2002, 45, 737–744. [Google Scholar] [CrossRef]
- Mago, R.; Bariana, H.S.; Dundas, I.S. Development or PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor. Appl. Genet. 2005, 111, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Azhaguvel, P.; Devkota, R.N.; Rudd, J.C. PCR based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat-rye translocations in wheat background. Plant Breed. 2007, 126, 482–486. [Google Scholar] [CrossRef]
- Lagudah, E.S.; McFadden, H.; Singh, R.P.; Huerta-Espino, J.; Bariana, H.S.; Spielmeyer, W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet. 2006, 114, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Helguera, M.; Khan, I.A.; Kolmer, J.; Lijavetzky, D.; Zhongqi, L.; Dubcovsky, J. PCR assays for the Lr37–Yr17–Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2003, 43, 1839–1847. [Google Scholar] [CrossRef]
- Ivanova, Y.N.; Rosenfread, K.K.; Stasyuk, A.I.; Skolotneva, E.S.; Silkova, O.G. Raise and characterization of a bread wheat hybrid line (Tulaykovskaya 10 × Saratovskaya 29) with chromosome 6Agi2 introgressed from Thinopyrum intermedium. Vavilov J. Genet. Breed. 2021, 25, 701–712. [Google Scholar] [CrossRef]
- Mago, R.; Simkova, H.; Brown-Guedira, G.; Dreisigacker, S.; Breen, J.; Jin, Y.; Singh, R.; Appels, R.; Lagudah, E.S.; Ellis, J. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor. Appl. Genet. 2011, 122, 735–744. [Google Scholar] [CrossRef]
- Rouse, M.N.; Nava, I.C.; Chao, S.; Anderson, J.A.; Jin, Y. Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2012, 125, 877–885. [Google Scholar] [CrossRef]
- Tsilo, T.J.; Jin, Y.; Anderson, J.A. Diagnostic microsatellite markers for detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat. Crop Sci. 2008, 48, 253–261. [Google Scholar] [CrossRef]
- Dorokhov, D.B.; Cloquet, E.A. Rapid and economic technique for RAPD analysis of plant genomes Fast and economical technology of RAPD analysis of plant genomes. Russ. J. Genet. 1997, 33, 358–365. [Google Scholar]
No. | Entry | Rust Infection Type (IT), Disease Severity (DS), and Coefficient of Infection (CI) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P. triticina | P. striiformis f. sp. tritici | P. graminis f. sp. tritici | ||||||||
IT * | DS, % ** | CI *** | IT * | DS, % ** | CI *** | IT * | DS, % ** | CI *** | ||
1. | Adilet | MR | 20 | 8.0 | MR | 20 | 8.0 | R | 5–10 | 2.0 |
2. | Almaly | MR | 10–20 | 8.0 | MR | 20 | 8.0 | MR | 10–20 | 8.0 |
3. | Amanat | MS | 20–30 | 24.0 | S | 40–60 | 60.0 | MS | 20–30 | 24.0 |
4. | Arap | MS | 20–30 | 24.0 | MR-MS | 20–30 | 24.0 | S | 40 | 40.0 |
5. | Bakytzhan | MS | 20–30 | 24.0 | MR-MS | 20–30 | 24.0 | S | 40–60 | 60.0 |
6. | Dimash | MS | 20–30 | 24.0 | MR | 10–20 | 8.0 | MS | 20–30 | 24.0 |
7. | Dulaty | MR | 10–20 | 8.0 | R-MR | 5–10 | 4.0 | MR | 10–20 | 8.0 |
8. | Egemen 20 | MS-S | 30–40 | 40.0 | MS-S | 30–40 | 40.0 | MS | 20–30 | 24.0 |
9. | Farabi | MS-S | 30–40 | 40.0 | MS | 20–30 | 24.0 | MS | 20–30 | 24.0 |
10. | Kazakhstan 10 | MS-S | 30–40 | 40.0 | MR-MS | 20–30 | 24.0 | MR-MS | 20–30 | 24.0 |
11. | KIZ 90 | I | 0 | 0.0 | I-R | 0–5 | 1.0 | I | 0 | 0.0 |
12. | Mereke 70 | R-MR | 5–20 | 8.0 | R | 5–10 | 2.0 | MR-MS | 20–30 | 24.0 |
13. | Momyshuly | MS | 20–30 | 24.0 | MR-MS | 20–30 | 24.0 | MR-MS | 20–30 | 24.0 |
14. | Nesipkhan | MS | 20–30 | 24.0 | MR | 10–20 | 8.0 | MR-MS | 20–30 | 24.0 |
15. | Pamyat 47 | MS | 20–30 | 24.0 | S | 60–80 | 80.0 | MR-MS | 20–30 | 24.0 |
16. | Sapaly | MR-MS | 20–30 | 24.0 | MR-MS | 10–30 | 24.0 | R-MR | 5–10 | 4.0 |
17. | Steklovidnaya 24 | MS-S | 30–40 | 40.0 | MS-S | 30–40 | 40.0 | MS | 20–30 | 24.0 |
18. | Talimi 80 | MR-MS | 20–30 | 24.0 | MR | 10–20 | 8.0 | MR | 10–20 | 8.0 |
19. | Vavilov | MS-S | 30–40 | 40.0 | MR-MS | 20–30 | 24.0 | MR-MS | 20–30 | 24.0 |
20. | Zhetysu | MS-S | 30–40 | 40.0 | MS-S | 30–40 | 40.0 | MS | 20–30 | 24.0 |
21. | 18410-1 | R-MR | 5–20 | 8.0 | R-MR | 5–20 | 8.0 | MR | 10–20 | 8.0 |
22. | 18411-1 | MS | 20–30 | 24.0 | MS-S | 30–40 | 40.0 | R | 5–10 | 2.0 |
23. | 20197-17 | R-MR | 5–20 | 8.0 | R-MR | 5–20 | 8.0 | R-MR | 5–20 | 8.0 |
24. | 20403-2 | I | 0 | 0.0 | MR-MS | 20–30 | 24.0 | R | 1–5 | 1.0 |
25. | 20521-1 | MS | 30 | 24.0 | S | 40 | 40.0 | S | 40 | 40.0 |
26. | 20933-1 | MS | 20–30 | 24.0 | MR-MS | 20–30 | 24.0 | R-MR | 5–20 | 8.0 |
27. | 20982-2 | MS | 20–30 | 24.0 | R-MR | 5–10 | 4.0 | MR | 10–20 | 8.0 |
28. | 21144-4-1 | R | 5–10 | 2.0 | MR-MS | 20–30 | 24.0 | R-MR | 5–10 | 4.0 |
29. | 21203-11-3 | MS | 20–30 | 24.0 | S | 40 | 40.0 | S | 40 | 40.0 |
30. | 21266-3 | MR | 10–20 | 8.0 | MR | 10–20 | 8.0 | R-MR | 5–10 | 4.0 |
31. | 21730-1 | R | 5–10 | 2.0 | I | 0 | 0.0 | I | 0 | 0.0 |
32. | 22180-1 | MR | 10–20 | 8.0 | MR | 10–20 | 8.0 | MR | 10–20 | 8.0 |
33. | 22315-1 | R | 5–10 | 2.0 | MR-MS | 20–30 | 24.0 | I-R | 0–5 | 1.0 |
34. | 22353K | R-MR | 1–20 | 8.0 | MR | 10–20 | 24.0 | R | 1–10 | 2.0 |
35. | 22372K | R | 1–5 | 1.0 | I | 0 | 0.0 | I | 0 | 0.0 |
36. | Alekseyich | R | 1–10 | 2.0 | I-R | 0–5 | 0.5 | R | 1–5 | 1.0 |
37. | Akhmat | I-R | 0–1 | 0.2 | R | 1–5 | 1.0 | R | 1–5 | 1.0 |
38. | Bezostaya 100 | I-R | 0–1 | 0.2 | R | 1–10 | 2.0 | I | 0 | 0.0 |
39. | Grom | R | 1–10 | 2.0 | MR | 10–20 | 8.0 | MS | 20–30 | 24.0 |
40. | Gurt | MS | 20–30 | 24.0 | S | 60–80 | 80.0 | MR | 10–20 | 8.0 |
41. | Bardosh | MS | 20–30 | 24.0 | MR | 5–20 | 8.0 | MR-MS | 10–30 | 24.0 |
42. | Ezoz | R | 1–10 | 2.0 | S | 60–80 | 80.0 | MR-MS | 20–30 | 24.0 |
43. | Ilgor | R | 1–10 | 2.0 | R | 5–10 | 2.0 | MR-MS | 10–30 | 24.0 |
44. | Kayraktosh | R | 1–10 | 2.0 | MS-S | 30–60 | 60.0 | MR-MS | 10–30 | 24.0 |
45. | Ok marvarid | MS-S | 30–40 | 40.0 | MS-S | 30–40 | 40.0 | MR-MS | 20–30 | 24.0 |
46. | Pahlavon | R-MR | 5–20 | 8.0 | MS-S | 30–40 | 40.0 | MR-MS | 20–30 | 24.0 |
47. | Tespishar | MS | 20–30 | 24.0 | S | 60–80 | 80.0 | MR | 10–20 | 8.0 |
48. | Ajara | MR | 20 | 8.0 | S | 60–80 | 80.0 | MR-MS | 10–30 | 24.0 |
49. | Asyl | MR | 20 | 8.0 | MR-MS | 10–30 | 24.0 | MR-MS | 20–30 | 24.0 |
50. | Intensivnaya | MS-S | 30–60 | 60.0 | MS-S | 30–40 | 40.0 | MR-MS | 10–30 | 24.0 |
51. | D68CIMMYT | R | 5–10 | 2.0 | S | 40 | 40.0 | R-MR | 5–10 | 4.0 |
52. | D580CIMMYT | MS-S | 30–60 | 60.0 | S | 40 | 40.0 | MR | 10–20 | 8.0 |
53. | D952CIMMYT | MS | 20–30 | 24.0 | S | 40 | 40.0 | MS | 20–30 | 24.0 |
54. | SWW 1/904 | MS | 20–30 | 24.0 | S | 40 | 40.0 | MS | 20–30 | 24.0 |
55. | Euclide | MR | 10–20 | 8.0 | MS | 20–30 | 24.0 | MS | 20–30 | 24.0 |
(St1) 1 | Bogarnaya 56 | S | 60–80 | 80.0 | - | - | - | - | - | - |
(St2) 2 | Morocco | - | - | - | S | 40–80 | 80.0 | - | - | - |
(St3) 3 | Bakytzhan | - | - | - | - | - | - | S | 40–60 | 60.0 |
Entry | Reaction Type to Rust Isolates at the Seedling Stage * | Identified Resistance Genes | Field Resistance ** | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaf Rust | Yellow Rust | Stem Rust | Leaf Rust | Yellow Rust | Stem Rust | ||||||||||||||
PtK1 | PtK2 | PtK3 | PtK4 | PtK5 | PtK6 | Pst_1 | Pst_2 | Pst_3 | Pst_4 | PgK1 | PgK2 | PgK3 | PgK4 | PgK5 | |||||
Adilet | 1+ | 0; 1 | 3–4 | 3–4 | 3–4 | 3–4 | 2 | 3 | 3 | 3 | 2 | 2 | 3+ | 3 | 4 | Lr3 Lr34 Yr18 Sr57 | MR 20 | MR 20 | R 5–10 |
Almaly | 4 | 3 | 3–4 | 3–4 | 3–4 | 3–4 | 4 | 4 | 3 | 3 | 3 | 3 | 4 | 3 | 3- | Lr34 Yr18 Sr57 | MR 10–20 | MR 20 | MR 10–20 |
Akhmat | 1+ | 1 | 0–2 | 0–1 | 3–4 | 3–4 | 2 | 2 | 0–1; | 2 | 3 | 2 | 4 | 4 | 3 | Lr1 1Al.1RS | I-R 0–1 | R 1–5 | R 1–5 |
Amanat | 3 | 2+ | 3–4 | 3–4 | 3–4 | 3–4 | 3 | 3 | 3 | 3 | 4 | 3 | 4 | 3 | 3 | - | MS 20–30 | S 40-60 | MS 20–30 |
Bezostaya 100 | 0 | 0 | 0–1 | 0–1 | 0–1 | 0–1 | 0 | 0 | 3 | 3 | 2+ | 2+ | 2 | 1–2 | 1–2 | Lr26 Lr34 Yr9 Yr18 Sr31 Sr57 | I-R 0–1 | R 1–10 | I 0 |
D952CIMMYT | 2 | 2 | 3–4 | 3–4 | 3–4 | 3–4 | 0 | 0 | 3 | 3 | 4 | 3+ | 4 | 4 | 4 | - | MS 20–30 | S 40 | MS 20–30 |
Dulaty | 3 | 3 | 3–4 | 3–4 | 3–4 | 3–4 | 3 | 3 | 3 | 2–3 | 3 | 4 | 3- | 4 | 4 | Lr34 Yr18 Sr57 | MR 10–20 | R-MR 5–10 | MR 10–20 |
Egemen 20 | 2 | 3 | 3–4 | 3–4 | 3–4 | 3–4 | 2+ | 2 | 3 | 3 | 3 | 3 | 4+ | 3 | 4 | - | MS-S 30–40 | MS-S 30–40 | MS 20–30 |
Euclide | 2 | 1+ | 3–4 | 3–4 | 3–4 | 3–4 | 2 | 0 | 2–3 | 3 | 3 | 2 | 3- | 3 | 3- | Lr1 | MR 10–20 | MS 20–30 | MS 20–30 |
KIZ 90 | 0; 1 | 2 | 0–1 | 0; | 0; | 0; | 2 | 0 | 3 | 3 | 0; 1 | 2- | 2 | 1-2 | 2 | Lr1 Lr3 Lr26 Yr9 Sr31 | I 0 | I-R 0–5 | I 0 |
Steklovidnaya24 | 3 | 4 | 3–4 | 3–4 | 3–4 | 3–4 | 4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | 4 | - | MS-S 30–40 | MS-S 30–40 | MS 20–30 |
SWW 1/904 | 0; 1 | 0 | 3–4 | 3–4 | 3–4 | 3–4 | 3 | 2 | 0–1; | 3 | 3 | 2+ | 4 | 4 | 4 | - | MS 20–30 | S 40 | MS 20–30 |
18410-1 | 0; 1 | 1+ | 0; | 0–1; | 0–1; | 0–1;+ | 1 | 1 | 0; | 0 | 0; 1 | 1 | 3 | 3- | 3 | Lr34 Yr18 Sr57 | R-MR 5–20 | R-MR 5–20 | MR 10–20 |
20197-17 | 2 | 2 | 3–4 | 3–4 | 3–4 | 3–4 | 1 | 2 | 2–3 | 3 | 3 | 3+ | 4 | 3 | 4 | Lr34 Yr18 Sr57 | R-MR 5–20 | R-MR 5–20 | R-MR 5–20 |
20521-1 | 0 | 2 | 3–4 | 3–4 | 3–4 | 3–4 | 2 | 4 | 3 | 3 | 2 | 2 | 4+ | 3+ | 4 | - | MS 30 | S 40 | S 40 |
21203-11-3 | 3 | 2 | 3–4 | 3–4 | 3–4 | 3–4 | 0 | 2 | 3 | 3 | 2 | 2 | 4 | 4 | 3 | Lr3 | MS 20–30 | S 40 | S 40 |
21730-1 | 1 | 0 | 0–1 | 0–1 | 3–4 | 3–4 | 0 | 3 | 3 | 3 | 0 | 0; 1 | 2 | 2+ | 1-2 | Lr3 Lr26 Yr9 Sr31 | R 5–10 | I 0 | I 0 |
22180-1 | 2 | 2 | 3–4 | 3–4 | 3–4 | 3–4 | 0 | 0 | 3 | 3 | 2+ | 3 | 3 | 4 | 4 | Lr34 Yr18 Sr57 | MR 10–20 | MR 10–20 | MR 10–20 |
22353K | 2 | 1+ | 3–4 | 3–4 | 3–4 | 3–4 | 2 | 0 | 3 | 3 | 2 | 2 | 4 | 3+ | 4 | Lr1 Lr3 Lr34 Yr18 Sr57 | R-MR 1–20 | MR 10–20 | R 1–10 |
22372K | 1+ | 1+, 2 | 0–1 | 0–1 | 3–4 | 3–4 | 0 | 0 | 3 | 3 | 1 | 2 | 2- | 1–2 | 2- | Lr3 Lr26 Yr9 Sr31 | R 1–5 | I 0 | I 0 |
Year | Indicator | Months From Sowing to Harvesting of Winter Wheat | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
October | November | December | January | February | March | April | May | June | July | ||
2021–2022 | Precipitation, mm. | 77.7 | 41.3 | 14.0 | 16.3 | 33.9 | 168.6 | 46.8 | 145.4 | 35.9 | 15.1 |
Air temperature, °C | 7.9 | 1.1 | 1.3 | 0.0 | 0.8 | 5.8 | 16.7 | 19.0 | 24.3 | 26.5 | |
2022–2023 | Precipitation, mm. | 42.2 | 128.2 | 14.0 | 36.9 | 34.0 | 61.2 | 68.2 | 43.4 | 4.3 | 36.6 |
Air temperature, °C | 11.0 | 2.9 | −4.6 | −6.9 | 0.3 | 8.4 | 11.9 | 17.2 | 24.6 | 27.1 | |
2023–2024 | Precipitation, mm. | 70.9 | 67.8 | 64.9 | 38.8 | 43.6 | 135.5 | 111.3 | 121.2 | 19.7 | 85.2 |
Air temperature, °C | 13.4 | 6.8 | −1.0 | −1.2 | −4.0 | 5.4 | 12.8 | 17.6 | 24.5 | 25.0 |
Isolate | Origination | Virulence to Genes | Avirulence to Genes |
---|---|---|---|
Puccinia triticina | |||
Pt_1_TGT | Kazakhstan, Kostanay, 2021 | Lr: 1, 2a, 2b, 2c, 3a, 3bg, 3ka, 11, 14a, 16, 17, 20, 30 | Lr: 9, 19, 24, 25, 26, 29 |
Pt_1_ KHT | Kazakhstan, Almaty, 2022 | Lr: 2a, 2b, 2c, 3a, 3bg, 3ka, 11, 14a, 16, Lr17, 26, 30 | Lr: 1, 9, 15, 19, 24, 25, 26, 29 |
PtK1 | Russia, Chelyabinsk, 2022 | Lr: 1, 2a, 2b, 2c, 3a, 3bg, 3ka, 9,10, 14a, 14b, 15, 17, 18, 20, 30 | Lr: 19, 16, 24, 26, 28, 47, 51 |
PtK2 | Russia, Saratov, 2021 | Lr: 1, 2a, 2b, 2c, 3a, 3bg, 3ka, 10, 14a, 14b, 15, 16, 17, 18, 19, 20, 30 | Lr: 9, 24, 26, 28, 29, 47, 51 |
PtK3 | Russia, Novosibirsk, 2021 | Lr: 1, 2a, 2b, 2c, 3a, 3bg, 3ka, 10, 14a, 14b, 15, 16, 17, 18, 20, 26, 30 | Lr: 9, 19, 24, 28, 29, 47, 51 |
PtK4 | Russia, Dagestan, 2023 | Lr: 1, 2c, 3a, 3bg, 3ka, 10, 14a, 14b, 16, 17, 18, 20, 26, 30 | Lr: 2a, 2b, 9, 15, 19, 24, 28, 29, 47, 51 |
Puccinia striiformis f. sp. tritici | |||
Pst_1 | Kazakhstan, Taraz, 2022 | Yr: 1, 6, 7, 8, 12, 18, 27 | Yr: 5, 9, 10, SP, 26 |
Pst_2 | Kazakhstan, Almaty, 2022 | Yr: 1, 6, 8, 9, 18, 26 | Yr: 5, 7, 10, 12, SP, 27 |
Pst_3 | Russia, Novosibirsk, 2021 | Yr: 1, 2, 3, 6, 8, 9, 27, SD | Yr: 4, 5, 7, 10, 15, 17, 24, SP, ND |
Pst_4 | Russia, St. Petersburg, 2022 | Yr: 2, 3, 4, 6, 8, 9, 27 | Yr: 1, 5, 7, 10, 15, 17, 24, SP, SD, ND |
Puccinia graminis f. sp. tritici | |||
PgK1 | Kazakhstan, Kostanay, 2021 | Sr: 5, 6, 7b, 9a, 9d, 9g, 9e, 10, 17, 21, 36, 38, Tmp, McN | Sr: 8a, 9b, 11, 24, 30, 31 |
PgK2 | Kazakhstan, Almaty, 2022 | Sr: 5, 6, 9a, 9b, 9d, 9g, 10, 17, 21, 38, McN | Sr: 7b, 8a, 9e, 11, 24, 30, 31, 36, Tmp |
PgK3 | Russia, Saratov, 2022 | Sr: 5, 21, 9e, 7b, 11, 6, 8a, 9g, 36, 9b, 30, 17, 9a, 9d, 10, Tmp, 38, McN | Sr: 24, 31 |
PgK4 | Russia, Tatarstan, 2023 | Sr: 5, 21, 9e, 7b, 11, 6, 8a, 9g, 36, 9b, 3, 17, 9a, 9d, 10, Tmp, 24, 38, McN | Sr: 31 |
PgK5 | Russia, Saratov, 2022 | Sr: 5, 21, 9e, 7b, 11, 6, 8a, 9g, 36, 9b, 30, 9a, 9d, 10, Tmp, 31, 38, McN | Sr: 17, 24, 31 |
Gene | Marker | Allele Size, bp | References |
---|---|---|---|
Lr1 | WR003 F/R | 760 | [65] |
Lr3a | Xmwg798 | 365 | [66] |
Lr9 | SCS5 | 550 | [67] |
Lr10 | F1.2245/Lr10-6/r2 | 310 | [68] |
Lr25 | Lr25F20/R19 | 1800 | [69] |
Lr28 | SCS421 | 570 | [70] |
Lr29 | Lr29F24 | 900 | [69] |
Lr41 (39) | GDM35 | 190 | [71] |
Lr47 | PS10 | 282 | [72] |
Lr51 | S30-13L/AGA7-759 | 783, 422 | [73] |
Lr66 (Asp) | S13-R16 | 695 | [74] |
Lr19, Sr25 | SCS265 | 512 | [75] |
Lr20, Sr15 | STS638 | 542 | [76] |
Lr24, Sr24 | Sr24 ≠ 12, Sr24 ≠ 50 | 500, 200 | [77] |
Lr26, Sr31, Yr9 | SCM9 | 207 (1BL.1RS), 228 (1AL.1RS) | [78] |
Lr34, Sr57, Yr18 | csLV34 | 150 | [79] |
Lr37, Sr38, Yr17 | Ventriup/LN2 | 259 | [80] |
Lr_Yr6Agi2 | MF2/MR1r2 | 347 | [81] |
Sr2 | csSr2 | 172 | [82] |
Sr28 | wPt-7004-PCR, Xwmc332 | 194, 214, 217, 220 | [83] |
Sr26 | Sr26#43 | 207 | [77] |
Sr36 | Xwmc477, Xstm773-2 | 190, 155 | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rsaliyev, S.; Gultyaeva, E.; Baranova, O.; Kokhmetova, A.; Urazaliev, R.; Shaydayuk, E.; Abdikadyrova, A.; Abugali, G. Characterizing the Genetic Basis of Winter Wheat Rust Resistance in Southern Kazakhstan. Plants 2025, 14, 1146. https://doi.org/10.3390/plants14071146
Rsaliyev S, Gultyaeva E, Baranova O, Kokhmetova A, Urazaliev R, Shaydayuk E, Abdikadyrova A, Abugali G. Characterizing the Genetic Basis of Winter Wheat Rust Resistance in Southern Kazakhstan. Plants. 2025; 14(7):1146. https://doi.org/10.3390/plants14071146
Chicago/Turabian StyleRsaliyev, Shynbolat, Elena Gultyaeva, Olga Baranova, Alma Kokhmetova, Rahim Urazaliev, Ekaterina Shaydayuk, Akbope Abdikadyrova, and Galiya Abugali. 2025. "Characterizing the Genetic Basis of Winter Wheat Rust Resistance in Southern Kazakhstan" Plants 14, no. 7: 1146. https://doi.org/10.3390/plants14071146
APA StyleRsaliyev, S., Gultyaeva, E., Baranova, O., Kokhmetova, A., Urazaliev, R., Shaydayuk, E., Abdikadyrova, A., & Abugali, G. (2025). Characterizing the Genetic Basis of Winter Wheat Rust Resistance in Southern Kazakhstan. Plants, 14(7), 1146. https://doi.org/10.3390/plants14071146