Integrated Nematode Management Strategies: Optimization of Combined Nematicidal and Multi-Functional Inputs
Abstract
1. Introduction
2. Emerging Strategies Associated with Integrated Nematode Management (INM)
2.1. General Bases of the Emerging INM Strategies
2.2. Favorable Combinations for Management of PPNs
2.2.1. Merits and Considerations for Applying Combined BCAs
2.2.2. Observing Contradictory Nominations of Some BCAs as Nematicides
2.2.3. Examples of Combined BCAs Alone or with Other Measures for PPN Management
2.2.4. Combined Measures Without BCAs for Management of PPNs
3. Prospects of Future Combinations
3.1. Astute Manipulation and Avoiding Drawbacks for Multi-Functional Management
3.2. Examining Further Combinations on a Case-by-Case Basis to Enlighten Growers
3.3. Incorporation of Sophisticated Tools and Techniques for INM
4. Broader Consideration of Combinations for IPM
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Abd-Elgawad, M.M.M. Spatial distribution of nematodes to improve their sampling and management decision. Pakistan J. Nematol. 2023, 41, 144–152. [Google Scholar] [CrossRef]
- Ali, A.; El-Ashry, R. Potential effect of the nematicide oxamyl and surfactant combinations on root-knot nematode Meloidogyne incognita infecting tomato plants. Egyptian Acad. J. Biol. Sci. F. Toxic. Pest Cont. 2021, 13, 159–176. [Google Scholar] [CrossRef]
- Santos, L.B.; de Souza Júnior, J.P.; de Mello Prado, R.; Ferreira Junior, R.; de Souza, V.F.; dos Santos Sarah, M.M.; Soares, P.L.M. Silicon allows halving cadusafos dose to control Meloidogyne incognita and increase cotton development. Silicon 2022, 14, 3809–3816. [Google Scholar] [CrossRef]
- Zafar, M.I.; Khalid, A.; Kali, S.; Khan, F.; Tahir, M.; Ali, M.; Siddiqa, A. Organic amendments as an ecofriendly substitute of carbofuran for the suppression of nematodes associated with Malus pumila. S. Afr. J. Bot. 2022, 144, 187–193. [Google Scholar] [CrossRef]
- Umetsu, N.; Shirai, Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.X.; Song, B. Chemical Nematicides: Recent research progress and outlook. J. Agric. Food Chem. 2020, 68, 12175–12188. [Google Scholar] [CrossRef] [PubMed]
- Nnamdi, C.; Hajihassani, A. Effect of different rates, application timing, and combination of non-fumigant nematicides in control of Meloidogyne incognita in watermelon in plasticulture. Plant Health Prog. 2023, 24, 375–379. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, X.; Chen, Y.; Peng, J.; Yi, C.; Chen, J. Recent research progress of heterocyclic nematicidal active compounds: A review. J. Heterocycl. Chem. 2023, 60, 1287. [Google Scholar] [CrossRef]
- Noling, J.W. Nematode Management in Tomatoes, Peppers, and Eggplant. University of Florida publication Series no. ENY-032, Florida, USA, 2019, p. 16. Available online: https://edis.ifas.ufl.edu/publication/NG032 (accessed on 30 November 2024).
- Starr, J.L.; Cook, R.; Bridge, J. Plant Resistance to Parasitic Nematodes; CABI: Wallingford, UK, 2002. [Google Scholar]
- Starr, J.L.; Roberts, P.A. Resistance to plant-parasitic nematodes. In Nematology, Advances and Perspective; Chen, Z.X., Chen, S.Y., Dickson, D.W., Eds.; CABI: Wallingford, UK, 2004; Volume 2, pp. 879–907. [Google Scholar]
- Han, S.; Schliemann, W.; Liu, S. Editorial: Resistance of plants to parasitic nematodes and its application in breeding. Front. Plant Sci. 2024, 15, 1439535. [Google Scholar] [CrossRef]
- Lian, Y.; Yuan, M.; Wei, H.; Li, J.; Ding, B.; Wang, J.; Lu, W.; Koch, G. Identification of resistant sources from Glycine max against soybean cyst nematode. Front. Plant Sci. 2023, 14, 1143676. [Google Scholar] [CrossRef]
- Devran, Z.; Özalp, T.; Studholme, D.J.; Tör, M. Mapping of the gene in tomato conferring resistance to root-knot nematodes at high soil temperature. Front. Plant Sci. 2023, 14, 1267399. [Google Scholar] [CrossRef] [PubMed]
- Sikora, R.A.; Molendijk, L.P.G.; Desaeger, J. Integrated nematode management and crop health: Future challenges and opportunities. In Integrated Nematode Management: State-of-the-Art and Visions for the Future; Sikora, R.A., Desaeger, J., Molendijk, L.P.G., Eds.; CABI: Wallingford, UK, 2022; pp. 3–10. [Google Scholar]
- Hammam, M.M.A.; Abd-El-Khair, H.; El-Nagdi, W.M.A.; Abd-Elgawad, M.M.M. Can Agricultural practices in strawberry fields induce plant–nematode interaction towards Meloidogyne-suppressive soils? Life 2022, 12, 1572. [Google Scholar] [CrossRef] [PubMed]
- D’Addabbo, T.; Ladurner, E.; Troccoli, A. Nematicidal activity of a garlic extract formulation against the grapevine nematode Xiphinema index. Plants 2023, 12, 739. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Exploiting plant-phytonematode interactions to upgrade safe and effective nematode control. Life 2022, 12, 1916. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Upgrading strategies for managing nematode pests on profitable crops. Plants 2024, 13, 1558. [Google Scholar] [CrossRef]
- Hada, A.; Singh, D.; Papolu, P.K.; Banakar, P.; Raj, A.; Rao, U. Host-mediated RNAi for simultaneous silencing of different functional groups of genes in Meloidogyne incognita using fusion cassettes in Nicotiana tabacum. Plant Cell Rep. 2021, 40, 2287–2302. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M.; Kour, F.F.H.; Montasser, S.A.; Hammam, M.M.A. Distribution and losses of Tylenchulus semipenetrans in citrus orchards on reclaimed land in Egypt. Nematology 2016, 18, 1141–1150. [Google Scholar] [CrossRef]
- Chitwood, D.J. Nematicides. In Encyclopedia of Agrochemicals; Plimmer, J.R., Ed.; JohnWiley & Sons: New York, NY, USA, 2003; Volume 3, pp. 1104–1115. [Google Scholar]
- Abd-Elgawad, M.M.M. Optimizing safe approaches to manage plant-parasitic nematodes. Plants 2021, 10, 1911. [Google Scholar] [CrossRef]
- Meyer, S.L.F.; Roberts, D.P. Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi. J. Nematol. 2002, 34, 1–8. [Google Scholar]
- Abd-Elgawad, M.M.M.; Askary, T.H. Fungal and bacterial nematicides in integrated nematode management strategies. Egypt. J. Biol. Pest Cont. 2018, 28, 74. [Google Scholar] [CrossRef]
- Poveda, J.; Abril-Urias, P.; Escobar, C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front. Microbiol. 2020, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Sikora, R.A.; Desaeger, J.; Molendijk, L.P.G. (Eds.) Integrated Nematode Management: State-of-the-Art and Visions for the Future; CABI: Wallingford, UK, 2022; 498p. [Google Scholar]
- Abd-Elgawad, M.M.M. Challenges in field application of biopesticides for successful crop pest management. In Pest Management: Methods, Applications and Challenges; Askary, T., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2022; pp. 331–366. [Google Scholar] [CrossRef]
- Topalović, O.; Heuer, H.; Reineke, A.; Zinkernagel, J.; Hallmann, J. Antagonistic role of the microbiome from a Meloidogyne hapla-suppressive soil against species of plant-parasitic nematodes with different life strategies. Nematology 2019, 22, 75–86. [Google Scholar] [CrossRef]
- Topalović, O.; Hussain, M.; Heuer, H. Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Front. Microbiol. 2020, 11, 313. [Google Scholar] [CrossRef]
- Dutta, T.K.; Khan, M.R.; Phani, V. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Curr. Plant Biol. 2019, 17, 17–32. [Google Scholar] [CrossRef]
- Duncan, L.W.; Stuart, R.J.; El-Borai, F.E.; Campos-Herrera, R.; Pathak, E.; Giurcanu, M.; Graham, J.H. Modifying orchard planting sites conserves entomopathogenic nematodes, reduces weevil herbivory and increases citrus tree growth, survival and fruit yield. Biol. Cont. 2013, 64, 26–36. [Google Scholar] [CrossRef]
- Nielsen, A.L.; Spence, K.O.; Nakatani, J.; Lewis, E.E. Effect of soil salinity on entomopathogenic nematode survival and behaviour. Nematology 2011, 3, 859–867. [Google Scholar]
- Abd-Elgawad, M.M.M.; Duncan, L.W.; Hammam, M.M.A.; Elborai, F.; Shehata, I.E. Effect of mulching manures and use of Heterorhabditis bacteriophora on strawberry fruit yield, Temnorhynchus baal and Meloidogyne javanica under field conditions. Arab J. Plant Prot. 2024, 42, 306–317. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Pathak, E.; El-Borai, F.E.; Schumann, A.; Abd-Elgawad, M.M.M.; Duncan, L.W. New citriculture system suppresses native and augmented entomopathogenic nematodes. Biol. Cont. 2013, 66, 183–194. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Stuart, R.J.; Pathak, E.; EL-Borai, F.E.; Duncan, L.W. Temporal patterns of entomopathogenic nematodes in Florida citrus orchards: Evidence of natural regulation by microorganisms and nematode competitors. Soil Biol. Biochem. 2019, 128, 193–204. [Google Scholar]
- Jin, N.; Liu, S.-M.; Peng, H.; Huang, W.-K.; Kong, L.-A.; Peng, D.-L. Effect of Aspergillus niger NBC001 on the soybean rhizosphere microbial community in a soybean cyst nematode-infested field. J. Integr. Agric. 2021, 20, 3230–3239. [Google Scholar] [CrossRef]
- Yu, R.Z.Z.; Cui, H.; Ye, C.; Qiao, M. Aspergillus niger produces lethal compounds against nematodes. Pest Manag. Sci. 2023, 79, 4617–4625. [Google Scholar] [CrossRef]
- Khan, M.; Tanaka, K. Purpureocillium lilacinum for plant growth promotion and biocontrol against root-knot nematodes infecting eggplant. PLoS ONE 2023, 18, e0283550. [Google Scholar] [CrossRef]
- Ghahremani, Z.; Escudero, N.; Saus, E.; Gabaldón, T.; Sorribas, F.J. Pochonia chlamydosporia induces plant-dependent systemic resistance to Meloidogyne incognita. Front. Plant Sci. 2019, 10, 945. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Guzmán, P.; Kumar, A.; de los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.d.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma Species: Our best fungal allies in the biocontrol of plant diseases—A Review. Plants 2023, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Guo, H.; Zhang, K.; Zhao, M.; Ruan, J.; Chen, J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front. Microbiol. 2023, 14, 1160551. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Pasteuria species for nematodes management in organic farms. In Sustainable Management of Nematodes in Agriculture, Vol.2: Role of Microbes-Assisted Strategies; Sustainability in Plant and Crop Protection, vol 19; Chaudhary, K.K., Meghvansi, M.K., Siddiqui, S., Eds.; Springer Int. Publishing: Cham, Switzerland, 2024; pp. 265–296. [Google Scholar] [CrossRef]
- Sahebani, N.; Gholamrezaee, N. The biocontrol potential of Pseudomonas fluorescens CHA0 against root knot nematode (Meloidogyne javanica) is dependent on the plant species. Biol. Cont. 2021, 152, 104445. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Bacillus species: Prospects and applications for root-knot disease management. In Microbial Biostimulants: Biorational Pesticides for Management of Plant Pathogens; Ahmad, F., Pandey, R., Eds.; Apple Academic Press: Spinnaker Way, NJ, USA, 2025; pp. 79–105. [Google Scholar]
- Mani, J.; Kandasamy, D.; Vendan, R.T.; Harish, S.; Mannu, J.; Nagachandrabose, S. Unlocking the potential of Streptomyces species as promising biological control agents against phytonematodes. Physiol. Molecul. Pl. Pathol. 2024, 134, 102465. [Google Scholar] [CrossRef]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-Lopez, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecul. Pl. Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Spiegel, Y.; Oren, O.; Ehlers, R.-U. Critical terms during development and commercialization of microbial agents for the control of plant parasitic nematodes. In Integrated Nematode Management: State-of-the-Art and Visions for the Future; Sikora, R.A., Desaeger, J., Molendijk, L.P.G., Eds.; CABI: Wallingford, UK, 2022; pp. 446–454. [Google Scholar]
- Gupta, I.; Singh, R.; Muthusamy, S.; Sharma, M.; Grewal, K.; Singh, H.P.; Batish, D.R. Plant essential oils as biopesticides: Applications, mechanisms, innovations, and constraints. Plants 2023, 12, 2916. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Nematode spatial distribution in the service of biological pest control. Egypt. J. Biol. Pest Cont. 2024, 34, 3. [Google Scholar] [CrossRef]
- Dababat, A.A.; Ali, M.A.; Singh, R. The need for integrated management of the cereal cyst nematodes, Heterodera spp. In Central Western Asia and North Africa. In Integrated Nematode Management: State-of-the-Art and Visions for the Future; Sikora, R.A., Desaeger, J., Molendijk, L.P.G., Eds.; CABI: Wallingford, UK, 2022; pp. 20–26. [Google Scholar]
- Liu, X.; Mei, S.; Salles, J.F. Inoculated microbial consortia perform better than single strains in living soil: A meta-analysis. Appl. Soil Ecol. 2023, 190, 105011. [Google Scholar] [CrossRef]
- Yadav, S.P.; Sharma, C.; Pathak, P.; Kanaujia, A.; Saxena, M.J.; Kalra, A. Management of phyto-parasitic nematodes using bacteria and fungi and their consortia as biocontrol agents. Environ. Sci. Adv. 2025, 4, 335–354. [Google Scholar] [CrossRef]
- Duponnois, R.; Ba, A.M.; Mateille, T. Effects of some rhizosphere bacteria for the biocontrol of nematodes of the genus Meloidogyne with Arthrobotrys oligospora. Fundam. Appl. Nematol. 1998, 21, 157–163. [Google Scholar]
- Hojat Jalali, A.A.; Segers, R.; Coosemans, J. Biocontrol of Heterodera schachtii using combinations of the sterile fungus, StFCH1-l, Embellisia chlamydospora and Verticillium chlamydosporium. Nematologica 1998, 44, 345–355. [Google Scholar]
- Maheswari, T.U.; Mani, A. Combined efficacy of Pasteuria penetrans and Paecilomyces lilacinus on the biocontrol of Meloidogyne javanica on tomato. Int. Nematol. Network Newslet. 1988, 5, 10–11. [Google Scholar]
- Siddiqui, I.A.; Ehteshamul-Haque, S.; Ghaffar, A. Root dip treatment with Pseudomonas aeruginosa and Trichoderma spp., in the control of root rot-root knot disease complex in chili (Capsicum annum L.). Pakistan J. Nematol. 1999, 17, 67–75. [Google Scholar]
- Abd-Elgawad, M.M.M. Status of entomopathogenic nematodes in integrated pest management strategies in Egypt. In Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes; Abd-Elgawad, M.M.M., Askary, T.H., Coupland, J., Eds.; CABI: Wallingford, UK, 2017; pp. 473–501. [Google Scholar]
- Hussain, M.; Zouhar, M.; Rysanek, P. Suppression of Meloidogyne incognita by the entomopathogenic fungus Lecanicillium muscarium. Plant Dis. 2018, 102, 977–982. [Google Scholar] [CrossRef]
- Sharma, I.P.; Sharma, A.K. Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis 2017, 71, 175–183. [Google Scholar] [CrossRef]
- EPA. Aldicarb; Cancellation Order for Amendments to Terminate Usesfed; Regist; EPA: Washington, DC, USA, 2012.
- EPA. Carbofuran; Product Cancellation Orderfed; Regist; EPA: Washington, DC, USA, 2009.
- Yadav, S.; Patil, J.A. The Emerging Nematode Problems in Horticultural Crops and Their Management. Available online: https://www.intechopen.com/chapters/77717 (accessed on 8 December 2024).
- Lagerlöf, J.; Insunza, V.; Lundegårdh, B.; Rämert, B. Interaction between a fungal plant disease, fungivorous nematodes and compost suppressiveness. Acta Agric. Scandinavica Sect. B Pl Soil Sci. 2011, 61, 372–377. [Google Scholar]
- Haraguchi, S.; Yoshiga, T. Potential of the fungal feeding nematode Aphelenchus avenae to control fungi and the plant parasitic nematode Ditylenchus destructor associated with garlic. Biol. Cont. 2020, 143, 104203. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Laquale, S.; Perniola, M.; Candido, V. Biostimulants for plant growth promotion and sustainable management of phytoparasitic nematodes in vegetable crops. Agronomy 2019, 9, 616. [Google Scholar] [CrossRef]
- Wilson, M.J.; Jackson, T.A. Progress in the commercialization of bionematicides. BioControl 2013, 58, 715–722. [Google Scholar] [CrossRef]
- Saikia, D.; Bhagawati, B. Management of Meloidogyne incognita and Rhizoctonia solani complex on okra through integration of Trichoderma viride, Glomus fasciculatum and mustard cake. Indian J. Nematol. 2014, 44, 139–143. [Google Scholar]
- Youssef, M.M.A.; El-Nagdi, W.M.A.; Abd-El-Khair, H.; Elkelany, U.S.; Abd-Elgawad, M.M.M.; Dawood, M.G. Is use of two Trichoderma species sole or combined with a plant extract effective for the biocontrol Meloidogyne incognita on potato and soil microorganisms diversity? Pakistan J. Nematol. 2023, 41, 153–164. [Google Scholar] [CrossRef]
- Pandey, R.; Khan, M.R.; Abd-Elgawad, M.M.M. Nematode problems in medicinal plants and their sustainable management. In Nematode Diseases of Crops and their Sustainable Management; Khan, M.R., Quintanilla, M., Eds.; Academic Press: London, UK, 2023; pp. 515–527. [Google Scholar] [CrossRef]
- Khan, M.R.; Quintanilla, M. (Eds.) Nematode Diseases of Crops and their Sustainable Management; Academic Press: London, UK, 2023; 721p. [Google Scholar] [CrossRef]
- Goswami, J.; Pandey, R.K.; Tewari, J.P.; Goswami, B.K. Management of root-knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J. Environ. Sci. Health Part B 2008, 43, 237–240. [Google Scholar] [CrossRef]
- Jang, J.Y.; Choi, Y.H.; Shin, T.S.; Kim, T.H.; Shin, K.S.; Park, H.W.; Kim, J.C. Biological control of Meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. PLoS ONE 2016, 11, e0156230. [Google Scholar] [CrossRef]
- Noweer, E.M.A.; Elkelany, U.S. Biological control of root-knot nematode (Meloidogyne incognita) infesting eggplant by the nematode-trapping fungus (Dactylaria brochopaga) and the nematode egg parasitic fungus (Verticilium chlamydosporium) under field conditions. J. Innov. Pharm. Biol. Sci. 2019, 6, 1–6. [Google Scholar]
- El-Ashry, R.M.; Ali, M.A.S.; Elsobki, A.E.A. Integrated management of Meloidogyne incognita on tomato using combinations of abamectin, Purpureocillium lilacinum, rhizobacteria, and botanicals compared with nematicide. Egypt. J. Biol. Pest Cont. 2021, 31, 93. [Google Scholar] [CrossRef]
- Bo, T.; Kong, C.; Zou, S.; Mo, M.; Liu, Y. Bacillus nematocida B16 enhanced the rhizosphere colonization of Pochonia chlamydosporia ZK7 and controlled the efficacy of the root-knot nematode Meloidogyne incognita. Microorganisms 2022, 10, 218. [Google Scholar] [CrossRef]
- El-Marzoky, A.M.; Ali, M.A.M.S.; Elnahal, A.S.M.; Abuljadayel, D.A.; Alkherb, W.A.H.; Moustafa, M.; Alshaharni, M.O.; Abd El-Aal, E.M. The combination effect of Purpureocillium lilacinum Strain (AUMC10620) and Avermectin (B1a and B1b) on control citrus nematode Tylenchulus semipenetrans (Cobb) under laboratory and field conditions. Biology 2025, 14, 60. [Google Scholar] [CrossRef]
- Ahmad, F.; Pandey, R. (Eds.) Microbial Biostimulants: Biorational Pesticides for Management of Plant Pathogens; Apple Academic Press: Spinnaker Way, NJ, USA, 2025; 430p. [Google Scholar]
- Evans, K.; Haydock, P.P.J. Interactions of nematode with root-rot fungi. In Nematode Interactions; Khan, M.W., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 104–133. [Google Scholar]
- Sitaramaiah, K.; Pathak, K.N. Nematode bacterial disease interactions. In Nematode Interactions; Khan, M.W., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 232–250. [Google Scholar]
- Naik, V.N.; Sharma, D.D.; Thippeswamy, T.; Sivaprasad, V. Integrated approach for management of root disease complex in mulberry (Morus spp.). Indian J. Nematol. 2015, 45, 207–212. [Google Scholar]
- Kumar, N.U.; Ravichandra, N.G.; Nataraja, A. Ecofriendly management of wilt complex in black pepper (Piper nigrum L.). Indian J. Nematol. 2018, 48, 146–155. [Google Scholar]
- Khan, M.R.; Mohiddin, F.A.; Haque, Z.; Sharma, R.K. Disease complexes and their sustainable management. In Nematode Diseases of Crops and their Sustainable Management; Khan, M.R., Quintanilla, M., Eds.; Academic Press: London, UK, 2023; pp. 65–96. [Google Scholar] [CrossRef]
- Chaudhary, K.K.; Kaul, R.K. Efficacy of Pasteuria penetrans and various oil seed cakes in management of Meloidogyne incognita in chilli pepper (Capsicum annuum L.). J. Agric. Sci. Tech. 2013, 15, 617–626. [Google Scholar]
- Sharf, R.; Abbasi, A.; Akhtar, A. Combined effect of biofertilizers and fertilizer in the management of Meloidogyne incognita and also on the growth of red kidney bean (Phaseolus vulgaris). Int. J. Plant Pathol. 2014, 5, 1–11. [Google Scholar] [CrossRef]
- Parihar, K.; Rehman, B.; Ganai, M.A.; Asif, M.; Siddiqui, M.A. Role of oil cakes and Pochonia chlamydosporia for the management of Meloidogyne javanica attacking Solanum melongena L. J. Pl. Path. 2015, 6, 12–20. [Google Scholar] [CrossRef]
- Huang, W.K.; Cui, J.K.; Liu, S.M.; Kong, L.A.; Wu, Q.S.; Huan Peng, H.; He, W.T.; Sun, J.H.; Peng, D.L. Testing various biocontrol agents against the root-knot nematode (Meloidogyne incognita) in cucumber plants identifies a combination of Syncephalastrum racemosum and Paecilomyces lilacinus as being most effective. Biol. Cont. 2016, 92, 31–37. [Google Scholar] [CrossRef]
- Baheti, B.L.; Dodwadiya, M.; Bhati, S.S. Eco-friendly management of maize cyst nematode, Heterodera zeae on sweet corn (Zea mays L. saccharata). J. Entomol. Zool. Stud. 2017, 5, 989–993. [Google Scholar]
- Mostafa, F.A.M.; Khalil, A.E.; Nour El Deen, A.H.; Ibrahim, D.S. The role of Bacillus megaterium and other bio-agents in controlling root-knot nematodes infecting sugar beet under field conditions. Egypt. J. Biol. Pest Cont. 2018, 28, 1–6. [Google Scholar] [CrossRef]
- El-Nagdi, W.M.A.; Abd-El-Khair, H.; Soliman, G.M.; Ameen, H.H.; El-Sayed, G.M. Application of protoplast fusants of Bacillus licheniformis and Pseudomonas aeruginosa on Meloidogyne incognita in tomato and eggplant. Middle East J. Appl. Sci. 2019, 9, 622–629. [Google Scholar]
- Regmi, H.; Desaeger, J. Integrated management of root-knot nematode (Meloidogyne spp.) in Florida tomatoes combining host resistance and nematicides. Crop Protect. 2020, 134, 105170. [Google Scholar] [CrossRef]
- Asyiah, I.N.; Prihatin, J.; Hastuti, A.D.; Winarso, S.; Widjayanthi, L.; Nugroho, D.; Firmansyah, K.; Pradana, A.P. Cost-effective bacteria-based bionematicide formula to control the root-knot nematode Meloidogyne spp. on tomato plants. Biodiversity J. 2021, 22, 3256–3264. [Google Scholar]
- d’Errico, G.; Greco, N.; Vinale, F.; Marra, R.; Stillittano, V.; Davino, S.W.; Woo, S.L.; D’Addabbo, T. Synergistic effects of Trichoderma harzianum, 1,3 Dichloropropene and organic matter in controlling the root-knot nematode Meloidogyne incognita on tomato. Plants 2022, 11, 2890. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Manzano, F.E.; Amora, D.X.; Martínez-Gómez, Á.; Moelbak, L.; Escobar, C. Biocontrol of Meloidogyne spp. in Solanum lycopersicum using a dual combination of Bacillus strains. Front. Plant Sci. 2023, 13, 1077062. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vinothini, K.; Nakkeeran, S.; Saranya, N.; Jothi, P.; Richard, J.I.; Perveen, K.; Glick, B.R.; Sayyed, R.Z.; Mastinu, A. Rhizosphere engineering of biocontrol agents enriches soil microbial diversity and effectively controls root-knot nematodes. Microb. Ecol. 2024, 87, 120. [Google Scholar] [CrossRef]
- Waswa, S.J.; Wanjohi, W.J.; Mwangi, M. Integrated management of root-knot nematodes on tree tomato. Rhizosphere 2025, 33, 101012. [Google Scholar] [CrossRef]
- Khan, M.W. (Ed.) Nematode Interactions; Springer: Dordrecht, The Netherlands, 1993; 377p. [Google Scholar]
- Ismail, W.; Johri, J.K.; Zaidi, A.A.; Singh, B.P. Influence of root-knot nematode, tobacco mosaic virus & complex on the growth & carbohydrates of Solanum khasianum Clarke. Indian J. Exp. Biol. 1979, 17, 1266–1267. [Google Scholar]
- Huang, S.P.; Chu, E.Y. Inhibitory Effect of Watermelon Mosaic Virus on Meloidogyne javanica (Treub) Chitwood infecting Cucurbita pepo L. J. Nematol. 1984, 16, 109. [Google Scholar]
- Bhat, A.A.; Shakeel, A.; Waqar, S.; Handoo, Z.A.; Khan, A.A. Microbes vs. Nematodes: Insights into biocontrol through antagonistic organisms to control root-knot nematodes. Plants 2023, 12, 451. [Google Scholar] [CrossRef]
- Moura, R.M.; Powell, N.T. Estudos sobre o complexo TMV M. incognita em tomate. Soc. Bras. De Nematol. Publicacao 1977, 2, 175–181. [Google Scholar]
- Burns, A.R.; Baker, R.J.; Kitner, M.; Knox, J.; Cooke, B.; Volpatti, J.R.; Vaidya, A.S.; Puumala, E.; Palmeira, B.M.; Redman, E.M.; et al. Selective control of parasitic nematodes using bioactivated nematicides. Nature 2023, 618, 102–109. [Google Scholar] [CrossRef]
- Knox, J.; Burns, A.R.; Cooke, B.; Cammalleri, S.R.; Kitner, M.; Ching, J.; Castelli, J.M.P.; Puumala, E.; Snider, J.; Koury, E.; et al. Cyprocide selectively kills nematodes via cytochrome P450 bioactivation. Nat. Commun. 2024, 15, 5529. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.L.F.; Roberts, D.P.; Chitwood, D.J.; Carta, L.K.; Lumsden, R.D.; Mao, W. Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 2001, 31, 75–86. [Google Scholar]
- Paulitz, T.C. Biochemical and ecological aspects of competition in biological control. In New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases; Baker, R.R., Dunn, P.E., Alan, R., Eds.; Liss, Inc.: New York, NY, USA, 1990; pp. 713–724. [Google Scholar]
- Ali, A.A.I.; Mahgoub, S.A.; Ahmed, A.F.; Mosa, W.F.; El-Saadony, M.T.; Mohamed, M.D.; Alomran, M.M.; Al-Gheffari, H.K.; El-Tarabily, K.A.; AbuQamar, S.F.; et al. Utilizing endophytic plant growth-promoting bacteria and the nematophagous fungus Purpureocillium lilacinum as biocontrol agents against the root-knot nematode (Meloidogyne incognita) on tomato plants. Eur. J. Plant Pathol. 2024, 170, 417–436. [Google Scholar] [CrossRef]
- Han, P.; Rodriguez-Saona, C.; Zalucki, M.P.; Liu, S.S.; Desneux, N. A theoretical framework to improve the adoption of green integrated pest management tactics. Commun. Biol. 2024, 7, 337. [Google Scholar] [CrossRef]
- Han, P.; Rodriguez-Saona, C.; Zalucki, M.P.; Wyckhuys, K.A.G.; Desneux, N. Call for system-level integrated studies to increase the adoption of ‘green’ IPM tactics. Entomol. Gen. 2024, 44, 1355–1357. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Understanding molecular plant–nematode interactions to develop alternative approaches for nematode control. Plants 2022, 11, 2141. [Google Scholar] [CrossRef]
- Boyette, C.D.; Hoagland, R.E.; Stetina, K.C. Interaction of a bioherbicidal fungus with a phenoxy herbicide for controlling velvetleaf (Abutilon theophrasti). Biocont. Sci. Technol. 2024, 34, 323–335. [Google Scholar] [CrossRef]
- Salama, H.S.; Abd-Elgawad, M.M.M. Quarantine problems: An analytical approach with special reference to palm weevils and phytonematodes. Arch. Phytopathol. Pl Protect. 2003, 36, 41–46. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Johnson, E.; El-Borai, F.; Stuart, R.; Graham, J.; Duncan, L. Long-term stability of entomopathogenic nematode spatial patterns in soil as measured by sentinel insects and real-time PCR assays. Ann. Appl. Biol. 2011, 158, 55–68. [Google Scholar] [CrossRef]
- Su, Y.; Zhu, X.; Jing, H.; Yu, H.; Liu, H. Establishment of a sensitive and reliable droplet digital PCR assay for the detection of Bursaphelenchus xylophilus. Plants 2024, 13, 2701. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Optimizing sampling and extraction methods for plant-parasitic and entomopathogenic nematodes. Plants 2021, 10, 629. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran, D.M. CRISPR-PN2: A flexible and genome-aware platform for diverse CRISPR experiments in parasitic nematodes. BioTechniques 2001, 71, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Helms, A.M.; Ray, S.; Matulis, N.L.; Kuzemchak, M.C.; Grisales, W.; Tooker, J.F.; Ali, J. Chemical cues linked to risk: Cues from below-ground natural enemies enhance plant defences and influence herbivore behaviour and performance. Funct. Ecol. 2019, 33, 798–808. [Google Scholar] [CrossRef]
- Habteweld, A.; Kantor, M.; Kantor, C.; Handoo, Z. Understanding the dynamic interactions of root-knot nematodes and theirhost: Role of plant growth promoting bacteria and abiotic factors. Front. Plant Sci. 2024, 15, 1377453. [Google Scholar] [CrossRef]
- Könker, J.; Zenker, S.; Meierhenrich, A.; Patel, A.; Dietz, K.-J. Pochonia chlamydosporia synergistically supports systemic plant defense response in Phacelia tanacetifolia against Meloidogyne hapla. Front. Plant Sci. 2025, 15, 1497575. [Google Scholar] [CrossRef]
- Silva, J.C.P.; Campos, V.P.; Barros, A.F.; Pedroso, L.A.; Silva, M.F.; Souza, J.T.; Pedroso, M.P.; Medeiros, F.H.V. Performance of volatiles emitted from different plant species against juveniles and eggs of Meloidogyne incognita. Crop Prot. 2019, 116, 196–203. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Cavaco, T.; Gonçalves, D.; Barbosa, P.; Teixeira, D.M.; Moiteiro, C.; Inácio, M.L. First report on the synergistic interaction between essential oils against the pinewood nematode Bursaphelenchus xylophilus. Plants 2023, 12, 2438. [Google Scholar] [CrossRef]
- Sarri, K.; Mourouzidou, S.; Ntalli, N.; Monokrousos, N. Recent advances and developments in the nematicidal activity of essential oils and their components against root-knot nematodes. Agronomy 2024, 14, 213. [Google Scholar] [CrossRef]
- Saharan, R.; Patil, J.A.; Yadav, S.; Kumar, A.; Goyal, V. The nematicidal potential of novel fungus, Trichoderma asperellum FbMi6 against Meloidogyne incognita. Sci. Rep. 2023, 13, 6603. [Google Scholar] [CrossRef]
- Elshahawy, I.; Saied, N.; Abd-El-Kareem, F.; Abd-Elgawad, M. Enhanced activity of Trichoderma asperellum introduced in solarized soil and its implications on the integrated control of strawberry-black root rot. Heliyon 2024, 10, e36795. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Revolutionizing nematode management: Nanomaterials as a promising approach for managing economically important plant-parasitic nematodes—Current knowledge and future challenges. In Nanotechnology in Plant Disease Management; Mahmood, I., Ansari, R.A., Rizvi, R., Eds.; Taylor & Francis: London, UK, 2025; pp. 23–44. [Google Scholar]
- Caparco, A.A.; González-Gamboa, I.; Hays, S.S.; Pokorski, J.K.; Steinmetz, N.F. Nanoparticles made from plant viruses could be farmers’ new ally in pest control. Nano Lett. 2023, 23, 5785–5793. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elgawad, M.M.M. Nanonematicides: Production, mechanisms, efficacy, opportunities and challenges. Nematology 2024, 26, 479–489. [Google Scholar] [CrossRef]
- Agarwal, S.; Curran, Z.C.; Yu, G.; Mishra, S.; Baniya, A.; Bogale, M.; Hughes, K.; Salichs, O.; Zare, A.; Jiang, Z.; et al. Plant parasitic nematode identification in complex samples with deep learning. J. Nematol. 2023, 55, 20230045. [Google Scholar] [PubMed]
- Dritsoulas, A.; Campos-Herrera, R.; Blanco-Pérez, R.; Duncan, L.W. Comparing high throughput sequencing and real time qPCR for characterizing entomopathogenic nematode biogeography. Soil Biol. Biochem. 2020, 145, 107793. [Google Scholar]
- Dritsoulas, A.; El-Borai, F.E.; Shehata, I.E.; Hammam, M.M.; El-Ashry, R.M.; Mohamed, M.M.; Abd-Elgawad, M.M.; Duncan, L.W. Reclaimed desert habitats favor entomopathogenic nematode and microarthropod abundance compared to ancient farmlands in the Nile Basin. J. Nematol. 2021, 53, 1–13. [Google Scholar] [CrossRef]
- Ayaz, M.; Zhao, J.-T.; Zhao, W.; Chi, Y.-K.; Ali, Q.; Ali, F.; Khan, A.R.; Yu, Q.; Yu, J.-W.; Wu, W.-C.; et al. Biocontrol of plant parasitic nematodes by bacteria and fungi: A multi-omics approach for the exploration of novel nematicides in sustainable agriculture. Front. Microbiol. 2024, 15, 1433716. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wei, X.; Cui, Y.; Gu, X.; Li, X.; Yoshigan, T.; Abd-Elgawad, M.; Shapiro-Ilan, D.; Ruan, W.; et al. Direct antagonistic effect of entomopathogenic nematodes and their symbiotic bacteria on root-knot nematodes migration toward tomato roots. Plant Soil 2023, 484, 441–455. [Google Scholar] [CrossRef]
- Shehata, I.E.; Hammam, M.M.A.; Abd-Elgawad, M.M.M. Effects of inorganic fertilizers on virulence of the entomopathogenic nematode Steinernema glaseri and peanut germination under field conditions. Agronomy 2021, 11, 945. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Optimizing entomopathogenic nematode genetics and applications for the integrated management of horticultural pests. Horticulturae 2023, 9, 865. [Google Scholar] [CrossRef]
- Jaffuel, G.; Sbaiti, I.; Turlings, T.C.J. Encapsulated entomopathogenic nematodes can protect maize plants from Diabrotica balteata larvae. Insects 2020, 11, 27. [Google Scholar]
- Campos-Herrera, R.; Jaffuel, G.; Chiriboga, X.; Blanco-Pérez, R.; Fesselet, M.; Puža, V.; Mascher, F.; Turlings, T.C.J. Traditional and molecular detection methods reveal intense interguild competition and other multitrophic interactions associated with native entomopathogenic nematodes in Swiss tillage soils. Plant Soil 2015, 389, 237–255. [Google Scholar] [CrossRef]
- Syngenta United States. Clariva® Elite Beans. Available online: http://www.syngenta-us.com/seed-treatment/clariva-elite-beans (accessed on 19 November 2024).
- Rostami, M.; Olia, M.; Arabi, M. Evaluation of the effects of earthworm Eisenia fetida-based products on the pathogenicity of root-knot nematode (Meloidogyne javanica) infecting cucumber. Int. J. Recycl. Org. Waste Agricult. 2014, 3, 58. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Gao, L.; Tian, Y.; Ma, S. Functional characterization of CsBAS1, CsSND1, and CsIRX6 in cucumber defense against Meloidogyne incognita. Int. J. Mol. Sci. 2025, 26, 2133. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elgawad, M.M.M. Transformational technologies for more uptakes of entomopathogenic nematodes. Egypt. J. Biol. Pest Cont. 2025, 35, 1. [Google Scholar] [CrossRef]
- FIFRA. Section 2(ee) Recommendation. Available online: https://www3.epa.gov/pesticides/regulating/section18-training/module-1/story_content/external_files/PREP_Section18_Training_Section2ee_Attachment.pdf (accessed on 8 December 2024).
- Pessoa, P.H.; Silva, H.A.; da Silva Lima, L.; de Assis, R.B.; Neres, N.A.; de Almeida, J.C.; Cabral Filho, F.R.; de Andrade, C.L. Chemical characteristics and compatibility of mixtures at different agricultural application rates. Brazilian J. Sci. 2024, 3, 89–114. [Google Scholar] [CrossRef]
- Bultemeier, B.; Carter, E.; Sperry, B. Ensuring pesticide compatibility in tank mixes. Agric. Hortic. Enterp. 2024, 2024, 5. [Google Scholar] [CrossRef]
- Gandini, E.M.M.; Costa, E.S.; Santos, J.B.; Soares, M.A.; Barroso, G.M.; Corrêa, J.M.; Carvalho, A.G.; Zanuncio, J.C. Compatibility of pesticides and/or fertilizers in tank mixtures. J. Clean. Prod. 2020, 268, 122152. [Google Scholar] [CrossRef]
- Desaeger, J.; Wram, C.; Zasada, I. New reduced-risk agricultural nematicides—Rationale and review. J. Nematol. 2020, 52, e2020-91. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Fungi and Bacteria | Nematode (PPN) Target/Host Crop(s) | Mode of Action | Ref. |
---|---|---|---|
1. Fungi: Aspergillus niger van Tieghem (Eurotiales: Aspergillaceae) | Meloidogyne incognita/mung bean. Meloidogyne spp./tomato. M. javanica/pigeonpea and chickpea. M. incognita/okra and brinjal. Heterodera glycines/soybean | Egg parasite and induces systemic resistance against PPNs. The fungus contacts with a cyst or an egg mass to grow/colonize it, rapidly blocking larval formation. Its effective nematicidal metabolite is a calcium oxalate co-ordination compound | [37,38] |
Purpureocillium lilacinum (Thom) Luangsa-ard, Hou- braken, Hywel-Jones & Samson (Hypocreales: Ophiocordycipitaceae) | Meloidogyne graminicola/rice. M. incognita/black gram, bitter gourd, brinjal, potato, cowpea, betelvine, chrysanthemum, banana, cardamom, okra, tobacco, mock orange. M. javanica/tomato, tobacco. Rotylenchulus reniformis/tomato, chickpea. Heterodera cajani/pigeonpea. H. avenae/barley. Radopholus similis/banana. Tylenchulus semipenetrans/citrus, jambhiri, Khasi Mandarin. M. arenaria/brinjal | Egg parasite and produces antibiotics, viz., leucinostatin and lilacin and enzymes such as protease and chitinase, degrading the eggshell/inhibiting hatch. The degraded chitin releases ammonia, toxic to J2 of root-knot nematodes (RKNs). Its hyphae enter the vulva/anus of RKN females. The fungus penetrates the egg and develops profusely in and over the eggs, inhibiting juvenile development. The eggs swell/buckle. The developing juvenile in the egg is broken by the hyphae. Many conidiophores are produced and the hypha moves to the adjacent eggs | [39] |
Pochonia chlamydosporia (Goddard) Zare & W. Gams (Hypocreales: Clavicipitaceae) | M. incognita/tomato, bell pepper, brinjal, pigeonpea, common bean, lettuce. M. javanica/tomato, pepper, lettuce, broad bean, okra. H. schachtii/sugar beet. H. cajani/pigeonpea. H. avenae/wheat. M. hapla/tomato, lettuce. R. reniformis/cotton | Egg/adult female parasite of PPNs. The root-knot and cyst nematodes are the main hosts. It parasitizes citrus, burrowing, and reniform nematodes. It can colonize roots of plant species and induce local resistance in fungal–nematode–plant interactions with differential ability of two out of five isolates to induce systemic resistance against M. incognita in tomato but not in cucumber | [40] |
Trichoderma harzianum Rifai (Hypocreales: Hypocreaceae) | M. javanica/tomato. H. cajani/pigeonpea. M. incognita/chickpea, pea, brinjal, cardamom, French bean, pigeonpea, green gram, tomato. M. arenaria/maize. H. cajani/pigeonpea. M. graminicola/paddy | Secretes many lytic enzymes like chitinase, glucanases, and proteases which help parasitism of PPN eggs. The chitin layer is dissolved through enzymatic activity. The hyphae of T. harzianum penetrate the eggs and juvenile cuticle, proliferate within the organism, and produce toxic metabolites | [41] |
Trichoderma viride Pers. (Hypocreales: Hypocreaceae) | M. incognita/okra, tomato, green gram, betelvine, mulberry, soybean, chickpea, cowpea, cucumber, wheat. M. javanica/tomato, mungbean, brinjal. Helicotylenchus multicinctus/banana. Pratyl-enchus thornei/chickpea. M. graminicola/rice. R. reniformis/cowpea | Produces antibiotics like trichodermim, dermadin, trichoviridin, and sesquiterpene heptalic acid, which are involved in the suppression of nematodes and inhibiting egg hatching. Plant defense induction/priming via enhanced root development (nematode resistance and stress resistance) | [42] |
2. Bacteria: Pasteuria spp. (Bacillales: Pasteuriace-ae): P. penetrans Sayre & Starr. P. nishizawae Sayre & Starr (Sayre et al.). P. thornei Starr & Sayre. P. usgae Giblin-Davis et al. | Various nematode species of Meloidogyne, Pratylenchus, Heterodera, Globodera, Hoplolaimus and Belonolaimus on many vegetables, soybean, cotton, cucurbits, and floriculture. | Bacterial spores are attached to the nematode’s body and germinate, forming a germ tube that penetrates the body cuticle. Vegetative mycelial colonies eventually fill the body with a large number of endospores, leading to death or at least to a reduction in nematode feeding and reproduction | [43] |
Pseudomonas fluorescens Flugge (Migula) (Pseudomonadales: Pseudomonadaceae) | M. graminicola/rice. M. incognita/field pea, okra, tomato, brinjal, mulberry, grapevine, cucumber, sugarbeet, black gram, jasmine. H. cajani/pigeonpea. R. similis/banana. Hirschmanniella gracilis/rice. P. thornei/chickpea. T. semipenetrans/citrus | Produce antibiotics, viz., phenazines, tropolone, pyrrolnitrin, pyocyanin, and 2,4- diacetylphloro-glucinol, which have a suppressive effect on plant parasitic nematodes. The efficiency of the induction capacity of the defense system in different plants by inducers depends on the plant species | [44] |
Bacillus spp. (Bacillales: Bacillaceae): B. firmus Bredemann & Werner. B. thuringiensis Berliner. B. subtilis Ehrenberg (Cohn) | M. incognita, Radopholus similis, Ditylenchus dipsaci, Xiphinema index, Heterodera sp., T. semipenetrans and Meloidogyne spp. on many vegetables and field crops, as well as ornamentals (e.g., tomato, strawberries, flowers, trees, vines, permanent and seasonal crops) | Their mechanisms against the nematodes may vary from one species to another but they generally embrace antibiotic production, antagonism, and/or induced resistance. Specifically, their activities for RKN control depend on cry proteins–toxic particles of Bacillus thuringiensis, toxic antibiotic production, and expelling second-stage juveniles of RKNs by B. cereus; genes encode surfactin and iturin synthesis as antibiotics by B. subtilis to suppress Meloidogyne spp. populations, enzymatic activity of B. firmus that is able to colonize the plant roots; these bacteria can protect the roots and antagonize the nematodes | [45] |
Streptomyces spp. (Streptomycetales: Streptomycetaceae): S. avermitilis Kim & Goodfellow. S. yatensis Saintpierre et al. S. pactum Bhuyan et al. S. rochei Berger et al. S. lincolnensis Mason et al. S. antibioticus (Waksman & Woodruff) Waksman & Henrici | Meloidogyne spp. especially M. incognita, M. javanica and M. arenaria on many crops like tomato, rice, pepper, cabbage, peanut, soybean, mungbean, watermelon, cucumber | They produce secondary metabolites that exhibit potent nematicidal properties. Arenimycin, carboxamycin, fervenulin, hygromycin, and lincomycin are some of the Streptomyces-derived compounds that proved to have nematicidal potential. These bacteria also act as an elicitor of plant defense against nematode intruders. They evinced endophytic potential, plant growth promotion mechanism, compatible nature with other antagonists, and were safe to nontarget organisms | [46] |
BCA | Integrated with | The Target | Crop | Efficacy | Ref. |
---|---|---|---|---|---|
Pasteuria penetrans | Castor cake | Meloidogyne incognita | Chilli | Reduced galling index (84.75%) and M. incognita soil population (85.74%) | [84] |
T. viride | Pochonia chlamy-dosporia + Urea | M. incognita | Kidney bean | Significantly reduced galls and egg masses per root system | [85] |
P. chlamydosporia | Neem cake | M. javanica | Brinjal | A significant reduction in M. javanica reproduction when neem cake or mustard cake was added to the fungus-treated soil | [86] |
Mustard cake | |||||
Syncephalastrum racemosum | Paecilomyces lilacinus | M. incognita | Cucumber | Their combination significantly decreased the nematode density so severely that it is proposed as a new biocontrol strategy | [87] |
P. chlamydosporia | Neem cake | H. zeae | Sweet corn | Decline in cyst population in soil by 54.35% | [88] |
Bacillus megaterium | nemastrol | Meloidogyne spp. | Sugar beet | Integration of two or more components of such bio-agents gave better results in plant growth parameters than did single ones. The best suppression in nematode population (95.7%), root galling (83.0%), and egg masses (100%) was obtained by nemastrol + humic acid + bio-arc + sweet basil callus + oxamyl | [89] |
humic acid | |||||
dried sweet basil callus | |||||
Bacillus licheniformis | Pseudomonas aeruginosa | M. incognita | Tomato/eggplant | Their combination was highly effective in suppressing root knot reproduction but increasing plant growth parameters | [90] |
Nematode-resistant tomato cultivars | Fumigation with chloropicrin | Meloidogyne spp. | Tomato | Soil fumigation significantly increased fruit yield, especially in fall (95%) and to a lesser extent in spring (14.5%). Resistant cultivar Sanibel produced the highest fruit yields | [91] |
Pseudomonas dimunita | 3 isolates of Bacillus sp. | Meloidogyne spp. | Tomato | In a fortified formulation, they increased fruit weight by 33.61% and suppressed the total nematode populations. | [92] |
Trichoderma harzianum | 1,3 dichloropropene and organic matter | M. incognita | Tomato | Their combination caused synergistic effects of both plant growth/yield and M. incognita control relative to individual usage | [93] |
Bacillus Para-licheniformi FMCH001 | B. subtilis FMCH002 | Meloidogyne spp. | Tomato/Soybean | The combination interfered to reduce population densities of different stages of the RKNs and others (i.e., Pratylenchus spp.) via multiple modes of action | [94] |
Bacillus velezensis VB7 | Trichoderma koningiopsis TK | Meloidogyne spp. | Tomato | Increased diversity and abundance of rhizosphere bacterial communities that might be responsible for enhanced nematicidal properties. Their combined applications can enhance the nematicidal action to curb RKN infecting tomatoes | [95] |
Colletotrichum nigrum | Lantana extract +fluopyram | Meloidogyne spp. | Tomato | Significantly reduced nematode number (>21%) and gall (<2.0) and egg mass (<1.5) indices, and increased shoot height (>80%), dry weight (>70%), and dry root weight (>50%) | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elgawad, M.M.M. Integrated Nematode Management Strategies: Optimization of Combined Nematicidal and Multi-Functional Inputs. Plants 2025, 14, 1004. https://doi.org/10.3390/plants14071004
Abd-Elgawad MMM. Integrated Nematode Management Strategies: Optimization of Combined Nematicidal and Multi-Functional Inputs. Plants. 2025; 14(7):1004. https://doi.org/10.3390/plants14071004
Chicago/Turabian StyleAbd-Elgawad, Mahfouz M. M. 2025. "Integrated Nematode Management Strategies: Optimization of Combined Nematicidal and Multi-Functional Inputs" Plants 14, no. 7: 1004. https://doi.org/10.3390/plants14071004
APA StyleAbd-Elgawad, M. M. M. (2025). Integrated Nematode Management Strategies: Optimization of Combined Nematicidal and Multi-Functional Inputs. Plants, 14(7), 1004. https://doi.org/10.3390/plants14071004