Mineral Concentration in Spring Wheat Grain Under Organic, Integrated, and Conventional Farming Systems and Their Alterations During Processing
Abstract
1. Introduction
2. Results
2.1. Concentrations of Macro- and Micronutrients in Spring Wheat Grain
2.2. Concentrations of Macro- and Micronutrients in Wheat Grain and Their Byproducts
3. Discussion
4. Materials and Methods
4.1. Research Material
4.2. Methods—Macro- and Micronutrient Determination
4.3. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ORG | Organic |
INT | Integrated |
CONV | Conventional |
K | Potassium |
P | Phosphorus |
Mg | Magnesium |
Ca | Calcium |
Fe | Iron |
Zn | Zinc |
Mn | Manganese |
Cu | Copper |
d.m. | Dry matter |
GR | Grain |
BN | Bran |
FR | Flour |
BD | Bread |
References
- Rebouh, N.Y.; Khugaev, C.V.; Utkina, A.O.; Isaev, K.V.; Mohamed, E.S.; Kucher, D.E. Contribution of Eco-Friendly Agricultural Practices in Improving and Stabilizing Wheat Crop Yield: A Review. Agronomy 2023, 13, 2400. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/ (accessed on 15 January 2025).
- Ficco, D.B.M.; Borrelli, G.M. Nutritional Components of Wheat Based Food: Composition, Properties, and Uses. Foods 2023, 12, 4010. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Yub, L.; Lu, Y.; Niu, Y.; Liu, L.; Costa, J.; Yu, L. Phytochemical compositions, and antioxidant properties, and antiproliferative activities of wheat flour. Food Chem. 2012, 135, 325–331. [Google Scholar] [CrossRef]
- Cappelli, A.; Cini, E. Challenges and Opportunities in Wheat Flour, Pasta, Bread, and Bakery Product Production Chains: A Systematic Review of Innovations and Improvement Strategies to Increase Sustainability, Productivity, and Product Quality. Sustainability 2021, 13, 2608. [Google Scholar] [CrossRef]
- Nhemachena, C.R.; Kirsten, J. A historical assessment of sources and uses of wheat varietal innovations in South Africa. S. Afr. J. Sci. 2017, 113, 8. [Google Scholar] [CrossRef] [PubMed]
- Rosenfelder, P.; Eklund, M.; Mosenthin, R. Nutritive value of wheat and wheat by-products in pig nutrition: A review. Anim. Feed Sci. Technol. 2013, 185, 107–125. [Google Scholar] [CrossRef]
- Islam, M.Z.; Alam, M.N.; Rahman, M.M.; Islam, M.Z.; Rahman, A. Nutritional Values of Wheat and the Roles and Functions of Its Compositions in Health. Preprints 2024, 2024090710. [Google Scholar] [CrossRef]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef]
- Lebert, L.; Buche, F.; Sorin, A.; Aussenac, T. The Wheat Aleurone Layer: Optimisation of Its Benefits and Application to Bakery Products. Foods 2022, 11, 3552. [Google Scholar] [CrossRef]
- Chalamacharla, R.B.; Harsha, K.; Sheik, K.B.; Viswanatha, C.K. Wheat Bran-Composition and Nutritional Quality: A Review. Adv. Biotechnol. Microbiol. 2018, 9, 7. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Sułek, A.; Wyzińska, M. Evaluation the baking value of passage flours. Res. Rural Dev. 2019, 2, 36–42. [Google Scholar] [CrossRef]
- Li, C.; Wu, W. Wheat Bran: A Nutritional Treasure or Bread-Making Challenge?—A Mini-Review. Food Bioprocess. Technol. 2024, 17, 14–23. [Google Scholar] [CrossRef]
- Tako, E. Essential Minerals: Nutritional Requirements, Dietary Sources, and Deficiencies. In Nutrition Guide for Physicians and Related Healthcare Professions; Wilson, T., Temple, N.J., Bray, G.A., Eds.; Nutrition and Health; Humana: Cham, Switzerland, 2022; Chapter 35. [Google Scholar] [CrossRef]
- Kostova, I. The Role of Complexes of Biogenic Metals in Living Organisms. Inorganics 2023, 11, 56. [Google Scholar] [CrossRef]
- Frydrych, A.; Krośniak, M.; Jurowski, K. The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients—Critical Review: State-of-the-Art. Nutrients 2023, 15, 1012. [Google Scholar] [CrossRef]
- Ali, A.A.H. Overview of the Vital Roles of Macro Minerals in the Human Body. J. Trace Elem. Miner. 2023, 4, 100076. [Google Scholar] [CrossRef]
- Kiani, A.K.; Dhuli, K.; Donato, K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Connelly, S.T.; Bellinato, F.; Gisondi, P.; et al. Main Nutritional Deficiencies. J. Prev. Med. Hyg. 2022, 63 (2 Suppl. 3), E93–E101. [Google Scholar] [CrossRef]
- Ciołek, A.; Makarska, E.; Wesołowski, M.; Cierpiała, R. Content of Selected Nutrients in Wheat, Barley and Oat Grain from Organic and Conventional Farming. J. Elem. 2012, 17, 181–189. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Gałęzewski, L.; Knapowski, T.; Kozera, W.; Wacławowicz, R. Mineral Composition and Baking Value of the Winter Wheat Grain under Varied Environmental and Agronomic Conditions. J. Chem. 2018, 2018, 5013825. [Google Scholar] [CrossRef]
- Kozera, W.; Szczepanek, M.; Knapowski, T.; Tobiasova, E.; Nogalska, A. Mineral Composition and Protein Quality of Organically Grown Ancient Wheat under Reduced Tillage. J. Elem. 2023, 28, 773–791. [Google Scholar] [CrossRef]
- Rachoń, L.; Pałys, E.; Szumiło, G. Comparison of the Chemical Composition of Spring Durum Wheat Grain (Triticum durum) and Common Wheat Grain (Triticum aestivum ssp. vulgare). J. Elem. 2012, 17, 105–114. [Google Scholar] [CrossRef]
- Nitika, D.P.; Khetarpaul, N. Physico-Chemical Characteristics, Nutrient Composition, and Consumer Acceptability of Wheat Varieties Grown under Organic and Inorganic Farming Conditions. Int. J. Food Sci. Nutr. 2008, 59, 224–245. [Google Scholar] [CrossRef]
- Bulut, S. Mineral Content of Some Bread Wheat Cultivars. Cereal Res. Commun. 2022, 50, 1145–1153. [Google Scholar] [CrossRef]
- Dolijanović, Ž.; Nikolić, S.R.; Dragicevic, V.; Mutić, J.; Šeremešić, S.; Jovović, Z.; Popović Djordjević, J. Mineral Composition of Soil and the Wheat Grain in Intensive and Conservation Cropping Systems. Agronomy 2022, 12, 1321. [Google Scholar] [CrossRef]
- Legzdiņa, L.; Strazdiņa, V.; Beinaroviča, I.; Muceniece, R. Effect of Genotype and Farming System on Concentration of Mineral Elements in Organically and Conventionally Grown Cereals. Proc. Latvian Acad. Sci. Sect. B 2014, 68, 148–157. [Google Scholar] [CrossRef]
- Gaj, R.; Górski, D. Effects of Different Phosphorus and Potassium Fertilization on Contents and Uptake of Macronutrients (N, P, K, Ca, Mg) in Winter Wheat I. Content of Macronutrients. J. Cent. Eur. Agric. 2014, 15, 169–187. [Google Scholar] [CrossRef]
- Faizy, S.E.D.; Mashali, S.A.; Youssef, S.M.; Elmahdy, S.M. Study of Wheat Response to Nitrogen Fertilization, Micronutrients, and Their Effects on Some Soil Available Macronutrients. J. Sus. Agric. Sci. 2017, 43, 55–64. [Google Scholar] [CrossRef]
- Wrigley, C.W. Wheat: A Unique Grain for the World. In Wheat: Chemistry and Technology, 4th ed.; Wrigley, C.W., Ed.; AACC International: St. Paul, MN, USA, 2009; Chapter 1; pp. 1–17. [Google Scholar]
- Łaba, S.; Cacak-Pietrzak, G.; Łaba, R.; Sułek, A.; Szczepański, K. Food Losses in Consumer Cereal Production in Poland in the Context of Food Security and Environmental Impact. Agriculture 2022, 12, 665. [Google Scholar] [CrossRef]
- Erba, D.; Hidalgo, A.; Bresciani, J.; Brandolini, A. Environmental and Genotypic Influences on Trace Element and Mineral Concentrations in Whole Meal Flour of Einkorn (Triticum monococcum L. subsp. monococcum). J. Cereal Sci. 2011, 54, 250–254. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Q.; Yan, J.; Tang, J.; Zhao, R.; Zhang, Y.; He, Z.; Zou, C.; Ortiz-Monasterio, I. Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica 2010, 174, 303–313. [Google Scholar] [CrossRef]
- Alijosius, S.; Gruzauskas, R.; Bliznikas, S.; Sasyte, V.; Dapkus, D.; Turskis, Z. Grain Chemical Composition of Different Varieties of Winter Cereals. Zemdirbyste-Agriculture 2016, 103, 335–340. [Google Scholar] [CrossRef]
- Sathyaseelan, N.; Ramesh, K. Weather—Micronutrient Interactions in Soil and Plants—A Critical Review. Agriculture 2020, 10, 123–456. [Google Scholar]
- Ahmad, A.; Aslam, Z.; Abbas, R.N.; Bellitürk, K.; Hussain, S.; Hussain, S.; Ahmad, M.; Zulfiqar, U.; Moussa, I.M.; Elshikh, M.S. Enhancing Wheat Crop Resilience to Drought Stress through Cellulolytic Microbe-Enriched Cow Dung Vermicompost. ACS Omega 2024, 9, 2123–2133. [Google Scholar] [CrossRef]
- Karlsson, T.; Persson, P.; Skyllberg, U. Complexation of Copper(II) in Organic Soils and in Dissolved Organic Matter − EXAFS Evidence for Chelate Ring Structures. Environ. Sci. Technol. 2006, 40, 2623–2628. [Google Scholar]
- Duc, M.E.; Badr, M.E.; Schneider, A. Impact of Copper Deficiency in Humans. Ann. N. Y. Acad. Sci. 2014, 1314, 22–28. [Google Scholar] [CrossRef]
- Mitura, K.; Cacak-Pietrzak, G.; Feledyn-Szewczyk, B.; Szablewski, T.; Studnicki, M. Yield and Grain Quality of Common Wheat (Triticum aestivum L.) Depending on the Different Farming Systems (Organic vs. Integrated vs. Conventional). Plants 2023, 12, 1022. [Google Scholar] [CrossRef]
- Caldelas, C.; Rezzouk, F.Z.; Aparicio, N.; Araus, J.L. Analysis of the Various Diversity of Wheat Grain Mineral Content under Different Nitrogen Application Conditions. Adv. Resour. Res. 2023, 3, 83–107. [Google Scholar] [CrossRef]
- Golea, M.C.; Stroe, S.G.; Codină, G.G. Mineral Composition of Different Wheat Varieties Cultivated In Romania. Int. Multidiscip. Sci. GeoConference SGEM 2021, 21, 23–40. [Google Scholar] [CrossRef]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake. Int. J. Environ. Res. Public Health 2010, 7, 3442–3456. [Google Scholar] [CrossRef]
- Choi, I.; Kang, C.S.; Hyun, J.N.; Lee, C.K.; Park, K.G. Mineral Compositions of Korean Wheat Cultivars. Prev. Nutr. Food Sci. 2013, 18, 214–217. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, R.; Yang, Y.; Wang, J.; Guan, X.; Wang, M.; Li, N.; Xu, Y.; Jiang, L. Effect of Partial Organic Fertilizer Substitution on Heavy Metal Accumulation in Wheat Grains and Associated Health Risks. Agronomy 2023, 13, 2930. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, A.; Yadav, R.; Singh, D. Critical Assessment of Wheat Biofortification for Iron and Zinc: A Comprehensive Review of Conceptualization, Trends, Approaches, Bioavailability, Health Impact, and Policy Framework. Front. Nutr. 2024, 10, 1310020. [Google Scholar] [CrossRef]
- Borkowska, H. The Influence of Nitrogen Fertilization on the Content of the Choice of Microelements in Spring Wheat Grain. Ann. Univ. Mariae Curie-Sklodowska Sect. E 2004, 59, 747–753. (In Polish) [Google Scholar]
- Ryan, M.; Derrick, J.W.; Dann, P.R. Grain Mineral Concentrations and Yield of Wheat Grown Under Organic and Conventional Management. J. Sci. Food Agric. 2004, 84, 207–216. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Matallana-González, M.C.; Callejo, M.J.; Carrillo, J.M.; Morales, P.; Fernández-Ruiz, V. Durum and Bread Wheat Flours. Preliminary Mineral Characterization and Its Potential Health Claims. Agronomy 2021, 11, 108. [Google Scholar] [CrossRef]
- Onyekere, P.F.; Munir, N.; Găman, M.-A.; Egbuna, C.; Daniyal, M. Vitamins and Minerals: Types, Sources and Their Functions. In Functional Foods and Nutraceuticals; Springer: Berlin/Heidelberg, Germany, 2020; pp. 219–244. [Google Scholar] [CrossRef]
- Stevenson, L.; Phillips, F.; O’Sullivan, K.; Walton, J. Wheat Bran: Its Composition and Benefits to Health, A European Perspective. Int. J. Food Sci. Nutr. 2012, 63, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Wysocka, K.; Cacak-Pietrzak, G.; Feledyn-Szewczyk, B.; Studnicki, M. The Baking Quality of Wheat Flour (Triticum aestivum L.) Obtained from Wheat Grains Cultivated in Various Farming Systems (Organic vs. Integrated vs. Conventional). Appl. Sci. 2024, 14, 1886. [Google Scholar] [CrossRef]
- Sun, J.; Xu, S.; Du, Y.; Yu, K.; Jiang, Y.; Weng, H.; Yuan, W. Accumulation and Enrichment of Trace Elements by Yeast Cells and Their Applications: A Critical Review. Microorganisms 2022, 10, 1746. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. “Micronutrient Deficiency: Who Is Most Affected by the ‘Hidden Hunger’ of Micronutrient Deficiency?” Our World in Data. 2017. Available online: https://ourworldindata.org/micronutrient-deficiency (accessed on 5 February 2025).
- D’Elia, L. Potassium Intake and Human Health. Nutrients 2024, 16, 833. [Google Scholar] [CrossRef]
- Serna, J.; Bergwitz, C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020, 12, 3001. [Google Scholar] [CrossRef]
- Liguori, S.; Moretti, A.; Paoletta, M.; Gimigliano, F.; Iolascon, G. Role of Magnesium in Skeletal Muscle Health and Neuromuscular Diseases: A Scoping Review. Int. J. Mol. Sci. 2024, 25, 11220. [Google Scholar] [CrossRef]
- Passarelli, S.; Free, C.M.; Shepon, A.; Beal, T.; Batis, C.; Golden, C.D. Global Estimation of Dietary Micronutrient Inadequacies: A Modelling Analysis. Glob. Health Action 2024, 12, e1590–e1599. [Google Scholar]
- Cakmak, I.; Kutman, U.B. Agronomic Biofortification of Cereals with Zinc: A Review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- White, P.; Broadley, M. Biofortifying Crops with Essential Mineral Elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Available online: https://www.who.int/ (accessed on 16 January 2025).
- Gibson, R.S. The Role of Diet- and Host-Related Factors in Nutrient Bioavailability and Thus in Nutrient-Based Dietary Requirement Estimates. Food Nutr. Bull. 2007, 28 (Suppl. 1), S77–S100. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Kiouri, D.P.; Tsoupra, E.; Peana, M.; Perlepes, S.P.; Stefanidou, M.E.; Chasapis, C.T. Multifunctional role of zinc in human health: An update. EXCLI J. 2023, 22, 809–827. [Google Scholar] [CrossRef]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci. (Landmark Ed). 2018, 23, 1655–1679. [Google Scholar] [CrossRef] [PubMed]
- Angelova, M.; Asenova, S.; Nedkova, V.; Koleva-Kolarova, R. Copper in the Human Organism. Trakia J. Sci. 2011, 9, 88–98. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Microelements and Their Role in Human Health. In Soil Components and Human Health; Springer: Dordrecht, The Netherlands, 2018. [Google Scholar] [CrossRef]
- EFSA. Dietary Reference Values. Available online: https://www.efsa.europa.eu/en/topics/topic/dietary-reference-values (accessed on 15 January 2025).
- AACC. American Association of Cereal Chemistry Approved Methods, 10th ed.; Cereals & Grains Association: St. Paul, MN, USA, 2023; Available online: http://methods.aaccnet.org/toc.aspx (accessed on 16 January 2025).
Source of Variation | K | P | Mg | Ca |
---|---|---|---|---|
Year | ** | ** | ** | ** |
2019 | 4.84 b ± 0.25 | 3.33 ab± 0.36 | 1.14 a ± 0.07 | 0.48 b ± 0.10 |
2020 | 5.04 c ± 0.11 | 3.47 b ± 0.32 | 1.14 a ± 0.03 | 0.39 a ± 0.10 |
2021 | 4.67 a ± 0.18 | 3.17 a ± 0.31 | 1.19 b ± 0.05 | 0.41 ab ± 0.06 |
Cultivar | n.s. | ** | n.s. | ** |
Harenda | 4.78 a ± 0.18 | 3.47 b ± 0.19 | 1.17 a ± 0.05 | 0.44 b ± 0.11 |
Kandela | 4.89 a ± 0.30 | 3.28 b± 0.33 | 1.14 a ± 0.08 | 0.43 b ± 0.08 |
Mandaryna | 4.82 a ± 0.29 | 3.03 a ± 0.28 | 1.17 a ± 0.04 | 0.46 b ± 0.11 |
Serenada | 4.91 a ± 0.15 | 3.52 b ± 0.36 | 1.14 a ± 0.05 | 0.37 a ± 0.04 |
Farming system | n.s. | n.s. | n.s. | ** |
ORG | 4.84 a ± 0.26 | 3.29 a ± 0.38 | 1.15 a ± 0.23 | 0.38 a ± 0.04 |
INT | 4.82 a ± 0.21 | 3.34 a ± 0.31 | 1.15 a ± 0.06 | 0.42 b ± 0.08 |
CONV | 4.88 a ± 0.25 | 3.34 a ± 0.36 | 1.17 a ± 0.05 | 0.48 c ± 0.12 |
Source of Variation | Fe | Mn | Zn | Cu |
---|---|---|---|---|
Year | ** | ** | ** | n.s. |
2019 | 32.40 a ± 4.50 | 20.12 a ± 3.08 | 25.17 a ± 3.10 | 2.37 a ± 0.71 |
2020 | 28.35 a ± 6.54 | 29.26 b ± 8.34 | 33.33 b ± 8.17 | 2.60 a ± 0.98 |
2021 | 46.29 b ± 13.07 | 21.69 a ± 5.71 | 30.41 b ± 3.53 | 2.51 a ± 0.80 |
Cultivar | n.s. | ** | ** | n.s. |
Harenda | 33.33 a ± 4.08 | 25.38 b ± 8.27 | 30.09 b ± 4.03 | 2.63 a ± 0.75 |
Kandela | 37.87 a ± 17.78 | 22.28 a ± 6.47 | 27.05 a ± 3.01 | 2.55 a ± 0.97 |
Mandaryna | 32.79 a ± 13.96 | 21.59 a ± 6.67 | 26.59 a ± 2.26 | 2.43 a ± 0.73 |
Serenada | 38.74 a ± 2.99 | 25.51 b ± 7.10 | 34.81 c ± 9.62 | 2.36 a ± 0.89 |
Farming system | n.s. | ** | ** | ** |
ORG | 34.15 a ± 14.15 | 18.82 a ± 2.84 | 31.11 b ± 5.69 | 3.46 c ± 0.54 |
INT | 36.42 a ± 9.01 | 27.26 b ± 6.53 | 30.77 b ± 7.81 | 2.17 b ± 0.45 |
CONV | 36.49 a ± 12.62 | 24.99 b ± 8.38 | 27.02 a ± 4.18 | 1.85 a ± 0.31 |
Research Material | K | P | Mg | Ca |
---|---|---|---|---|
** | ** | ** | ** | |
Grain | 4.85 b ± 0.24 | 3.32 b ± 0.35 | 1.15 b ± 0.06 | 0.43 b ± 0.10 |
Bran | 8.50 c ± 1.55 | 7.66 c ± 0.27 | 3.72 c ± 0.22 | 1.02 c ± 0.19 |
Flour | 2.57 a ± 0.17 | 1.82 a ± 0.15 | 0.38 a ± 0.05 | 0.25 a ± 0.06 |
Bread | 2.87 a ± 0.16 | 1.91 a ± 0.17 | 0.40 a ± 0.03 | 0.31 ab ± 0.05 |
Research Material | Fe | Mn | Zn | Cu |
---|---|---|---|---|
** | ** | ** | ** | |
Grain | 35.68 c ± 11.64 | 23.69 b ± 7.23 | 29.64 b ± 6.35 | 2.49 b ± 0.83 |
Bran | 99.1 d ± 15.77 | 74.4 c ± 22.34 | 80.3 c ± 15.97 | 7.71 c ± 1.97 |
Flour | 11.17 a ± 2.49 | 5.61 a ± 2.18 | 10.11 a ± 2.87 | 1.21 a ± 0.26 |
Bread | 24.45 b ± 5.94 | 5.66 a ± 1.85 | 12.97 a ± 3.22 | 2.31 b ± 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysocka, K.; Cacak-Pietrzak, G.; Sosulski, T. Mineral Concentration in Spring Wheat Grain Under Organic, Integrated, and Conventional Farming Systems and Their Alterations During Processing. Plants 2025, 14, 1003. https://doi.org/10.3390/plants14071003
Wysocka K, Cacak-Pietrzak G, Sosulski T. Mineral Concentration in Spring Wheat Grain Under Organic, Integrated, and Conventional Farming Systems and Their Alterations During Processing. Plants. 2025; 14(7):1003. https://doi.org/10.3390/plants14071003
Chicago/Turabian StyleWysocka, Katarzyna, Grażyna Cacak-Pietrzak, and Tomasz Sosulski. 2025. "Mineral Concentration in Spring Wheat Grain Under Organic, Integrated, and Conventional Farming Systems and Their Alterations During Processing" Plants 14, no. 7: 1003. https://doi.org/10.3390/plants14071003
APA StyleWysocka, K., Cacak-Pietrzak, G., & Sosulski, T. (2025). Mineral Concentration in Spring Wheat Grain Under Organic, Integrated, and Conventional Farming Systems and Their Alterations During Processing. Plants, 14(7), 1003. https://doi.org/10.3390/plants14071003