Integrative Approaches to Soybean Resilience, Productivity, and Utility: A Review of Genomics, Computational Modeling, and Economic Viability
Abstract
:1. Introduction
2. Genomic Analysis for Soybean Resilience Under Abiotic Stress
2.1. Drought and Salt Tolerance Responsive Genetic Elements in Soybean
2.2. Computational Genomics
2.3. Potential for Computational Simulation
2.4. Economic Cost and Challenges of Adopting Advanced Technologies in Soybean Improvements
3. Nutrient Composition and Health Benefits of Soybean Varieties
3.1. Nutritional Profile of Soybeans
3.1.1. Lipid and Fatty Acid
3.1.2. Phytoestrogens
3.1.3. Vitamins
3.1.4. Secondary Metabolites
3.1.5. Carbohydrates
3.1.6. Essential Minerals
3.2. Metabolomics and Nutrient Analysis
3.3. Health Implications
4. Computational Approaches in Soybean Disease Detection and Management
4.1. Disease Identification Through Deep Learning
4.2. Model Performance and Limitations
Model/ Study | Disease(s) Identified | Techniques | Accuracy | Key Findings | Limitations | Reference |
---|---|---|---|---|---|---|
Soybean Seed Defect Identification Network (SSDINet) | Soybean Seed Defects | CNN, Depth wise separable convolutions, Squeeze-and-excitation blocks | 98.64% | Lightweight network with 1.15 million parameters and a processing time of 4.70 ms. | It may not generalize well across different crops or disease types. | [152] |
AlexNet and GoogleNet for Soybean Diseases | Bacterial blight, Brown spot, FLS | Convolutional Neural Networks (CNNs), Hyperparameter tuning | AlexNet: 98.75%, GoogleNet: 96.25% | The deep CNN model outperformed traditional machine learning methods in disease identification. | Limited to specific soybean diseases, may struggle with complex backgrounds. | [154,155] |
SoyNet | Soybean diseases (16 categories) | CNN, Background subtraction, Deep learning-based model | 98.14% | Outperformed nine other CNN models, including VGG19, ResNet50, and LeNet. | Background subtraction may not work well in noisy or cluttered images. | [160] |
Transfer Learning (AlexNet and GoogleNet) | Soybean diseases (3 classes) | Transfer learning, Pre-trained CNN models | AlexNet: 98.75%, GoogleNet: 96.25% | Achieved high classification accuracy for disease identification using leaf images. | Transfer learning may not always generalize well to novel disease types. | [163,187] |
Soybean Disease Recognition Model | Bacterial blight, Brown spot, FLS | CNN, Background subtraction, SoyNet model | 98.14% | Superior accuracy, precision, recall, and F1-score for disease recognition. | May face challenges with complex backgrounds and diverse lighting conditions. | [179] |
Tomato Disease | Tomato diseases | AlexNet, VGG16, CNNs | AlexNet: 97.49%, VGG16: 97.29% | Achieved high accuracy in identifying tomato diseases using CNN models. | The dataset size is limited and may not perform well with rare tomato diseases. | [162] |
Plant Disease | Healthy and various environmental conditions | CNN (AlexNet, GoogleNet) | 99.35% | CNN achieved high accuracy across different environments but faced challenges in generalizing. | Limited cross-environment generalization may struggle in extreme weather conditions. | [167] |
Rice Disease | Rice diseases | CNNs | 95.45% | High accuracy for detecting rice diseases using CNN models. | It may not generalize well to other crops beyond rice. | [168] |
Tomato Disease | Tomato diseases (26 types) | Pre-trained CNN (AlexNet) | 99.35% | Remarkable accuracy for identifying 26 diseases in 14 crop species using a large dataset. | It may overfit certain disease types and lack robustness in real-world field conditions. | [169] |
Tomato Disease | Tomato diseases | Capsule Network (CapsNet) | 96.39% | Focused on large-scale tomato disease detection with high classification accuracy. | Requires large datasets for training and may not generalize well to small datasets. | [173] |
Apple Disease | Apple diseases | MobileNetV2 | 99.36% | Achieved exceptional accuracy using a smaller dataset for apple disease classification. | It may not perform as well on larger, more diverse datasets. | [174] |
Mango Classification | Mango classification | DNN-based model | 98.57% | Effective object detection for mangoes with high classification accuracy. | Limited to small-scale datasets, it may not be generalized to large-scale deployments. | [175] |
Plant Species | Multiple plant species | PlaNet model | 97.95% | High accuracy was achieved for large-scale plant species classification. | It may not handle rare species well; dataset dependency is critical. | [176] |
4.3. Future Directions
5. Predictive Modeling for Soybean Yield Optimization
Machine Learning in Yield Prediction
6. Economic and Environmental Viability of Soybeans as a Biofuel
6.1. Market Potential and Economic Analysis
6.2. Environmental Benefits and Sustainability
6.3. Modeling the Economic-Environmental Trade-Off
6.4. Ecological Impact of Soybean Production for Biofuels
7. Climate Change Impact on Soybean Growth and Productivity
7.1. Climate Variables Affecting Soybean Growth
7.2. Computational Modeling of Climate Effects
8. Soybean Microbiome and Soil Health
8.1. Soybean-Specific Microbial Communities
8.2. Computational Metagenomics in Soybean Rhizosphere
8.3. Applications of the Soybean Microbiome for Sustainable Agriculture
9. Future Perspectives in Integrative Soybean Research
9.1. Cross-Disciplinary Integration
9.2. Policy and Research Directions for Soybean Production
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chandra, S.; Maranna, S.; Saini, M.; Kumawat, G.; Nataraj, V.; Satpute, G.; Rajesh, V.; Verma, R.; Ratnaparkhe, M.; Gupta, S. Achievements, challenges and prospects of hybrid soybean. In Plant Male Sterility Systems for Accelerating Crop Improvement; Springer: Singapore, 2022; pp. 167–193. [Google Scholar]
- Siamabele, B. The significance of soybean production in the face of changing climates in Africa. Cogent Food Agric. 2021, 7, 1933745. [Google Scholar] [CrossRef]
- Anwar, M. Biodiesel feedstocks selection strategies based on economic, technical, and sustainable aspects. Fuel 2021, 283, 119204. [Google Scholar] [CrossRef]
- Sedibe, M.M.; Mofokeng, A.M.; Masvodza, D.R. Soybean production, constraints, and future prospects in poorer countries: A review. In Production and Utilization of Legumes-Progress and Prospects; IntechOpen: London, UK, 2023. [Google Scholar]
- Klein, H.S.; Luna, F.V. The growth of the soybean frontier in South America: The case of Brazil and Argentina. Rev. Hist. Econ. J. Iber. Lat. Am. Econ. Hist. 2021, 39, 427–468. [Google Scholar] [CrossRef]
- Khan, A.; Awan, A.A.; Yasin, M.; Ramzan, A.; Cheema, M.W.A.; Jan, A. Edible Oilseeds: Historical Perspectives, Recent Advances, and Future Directions. In Edible Oilseeds Research-Updates and Prospects; IntechOpen: London, UK, 2024. [Google Scholar]
- Baraibar, M.; Deutsch, L. The Soybean Through World History: Lessons for Sustainable Agrofood Systems; Taylor & Francis: Abingdon, UK, 2023. [Google Scholar]
- Qiao, Y.; Zhang, K.; Zhang, Z.; Zhang, C.; Sun, Y.; Feng, Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res. Int. 2022, 158, 111575. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Raza, R.Z.; Zafar, M.; Ali, O.M.; Ahmed, R.; Rahim, J.; Ijaz, R.; Ahmad, Z.; Bethune, B.J. Integrated fertilizers synergistically bolster temperate soybean growth, yield, and oil content. Sustainability 2022, 14, 2433. [Google Scholar] [CrossRef]
- Šeremešić, S.; Rajković, M.; Milić, S.; Dolijanović, Ž.; Đalović, I.; Vojnov, B. The Response of Soybean Yield to Different Cropping Pattern in a Long-term experiment on Chernozem. In Proceedings of the 2nd Central European ISTRO Conference, Brno, Czech Republic, 6–8 September 2022; Mendel University in Brno: Brno, Czech Republic, 2022. [Google Scholar]
- Tamasgen Idosa, N. Effects of Replacing Soybean Meal with Graded Levels of Linseed (Linumusitatissimum L.) Meal on Productivity and Product Quality of Layers and Broilers; Haramaya University: Harar, Ethiopia, 2020. [Google Scholar]
- Vogel, J.T.; Liu, W.; Olhoft, P.; Crafts-Brandner, S.J.; Pennycooke, J.C.; Christiansen, N. Soybean yield formation physiology—A foundation for precision breeding based improvement. Front. Plant Sci. 2021, 12, 719706. [Google Scholar] [CrossRef] [PubMed]
- Wójcik-Gront, E.; Gozdowski, D.; Derejko, A.; Pudełko, R. Analysis of the Impact of Environmental and Agronomic Variables on Agronomic Parameters in Soybean Cultivation Based on Long-Term Data. Plants 2022, 11, 2922. [Google Scholar] [CrossRef]
- Poudel, S.; Vennam, R.R.; Shrestha, A.; Reddy, K.R.; Wijewardane, N.K.; Reddy, K.N.; Bheemanahalli, R. Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Sci. Rep. 2023, 13, 1277. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Alghabari, F.; Rauf, M.; Zhao, T.; Javed, M.M.; Alshamrani, R.; Ghazy, A.-H.; Al-Doss, A.A.; Khalid, T.; Yang, S.H. Optimization of soybean physiochemical, agronomic, and genetic responses under varying regimes of day and night temperatures. Front. Plant Sci. 2024, 14, 1332414. [Google Scholar] [CrossRef]
- Kumar, R.; Das, S.P.; Choudhury, B.U.; Kumar, A.; Prakash, N.R.; Verma, R.; Chakraborti, M.; Devi, A.G.; Bhattacharjee, B.; Das, R. Advances in genomic tools for plant breeding: Harnessing DNA molecular markers, genomic selection, and genome editing. Biol. Res. 2024, 57, 80. [Google Scholar] [CrossRef]
- Kuzbakova, M.; Khassanova, G.; Oshergina, I.; Ten, E.; Jatayev, S.; Yerzhebayeva, R.; Bulatova, K.; Khalbayeva, S.; Schramm, C.; Anderson, P. Height to first pod: A review of genetic and breeding approaches to improve combine harvesting in legume crops. Front. Plant Sci. 2022, 13, 948099. [Google Scholar] [CrossRef]
- Ma, H.; Li, H.; Ge, F.; Zhao, H.; Zhu, B.; Zhang, L.; Gao, H.; Xu, L.; Li, J.; Wang, Z. Improving Genomic Predictions in Multi-Breed Cattle Populations: A Comparative Analysis of BayesR and GBLUP Models. Genes 2024, 15, 253. [Google Scholar] [CrossRef] [PubMed]
- Shende, R.; Shinde, R. Marker Assisted Selection (MAS) for Crop Improvement; Kripa Drishti Publications: Pune, India, 2023. [Google Scholar]
- Ravelombola, W.; Qin, J.; Shi, A.; Song, Q.; Yuan, J.; Wang, F.; Chen, P.; Yan, L.; Feng, Y.; Zhao, T. Genome-wide association study and genomic selection for yield and related traits in soybean. PLoS ONE 2021, 16, e0255761. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Vats, S.; Kumawat, S.; Bisht, A.; Bhatt, V.; Shivaraj, S.; Padalkar, G.; Goyal, V.; Zargar, S.; Gupta, S. Omics advances and integrative approaches for the simultaneous improvement of seed oil and protein content in soybean (Glycine max L.). Crit. Rev. Plant Sci. 2021, 40, 398–421. [Google Scholar] [CrossRef]
- Shingote, P.R.; Gotarkar, D.N.; Kale, R.R.; Limbalkar, O.M.; Wasule, D.L. Recent advances and applicability of GBS, GWAS, and GS in soybean. In Genotyping by Sequencing for Crop Improvement; Wiley: Hoboken, NJ, USA, 2022; pp. 218–249. [Google Scholar]
- Zhou, X.; Guo, T. Genomic Tools in Soybean Breeding: Innovations and Impacts. Legume Genom. Genet. 2024, 15, 126–139. [Google Scholar] [CrossRef]
- Bisht, A.; Saini, D.K.; Kaur, B.; Batra, R.; Kaur, S.; Kaur, I.; Jindal, S.; Malik, P.; Sandhu, P.K.; Kaur, A. Multi-omics assisted breeding for biotic stress resistance in soybean: Challenges and opportunities. Mol. Biol. Rep. 2022, 50, 3787–3814. [Google Scholar] [CrossRef] [PubMed]
- Hina, A.; Razzaq, M.K.; Abbasi, A.; Shehzad, M.B.; Arshad, M.; Sanaullah, T.; Arshad, K.; Raza, G.; Ali, H.M.; Hayat, F. Genomic blueprints of soybean (Glycine max) pathogen resistance: Revealing the key genes for sustainable agriculture. Funct. Plant Biol. 2024, 51, FP23295. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Zhou, J.; Zhang, A.; Wang, J.; Liu, Y.; Wang, L.; Pi, W.; Li, Z.; Yue, W.; Cai, J. Advances in CRISPR/Cas9-based research related to soybean [Glycine max (Linn.) Merr] molecular breeding. Front. Plant Sci. 2023, 14, 1247707. [Google Scholar] [CrossRef] [PubMed]
- Bhat, J.A.; Adeboye, K.A.; Ganie, S.A.; Barmukh, R.; Hu, D.; Varshney, R.K.; Yu, D. Genome-wide association study, haplotype analysis, and genomic prediction reveal the genetic basis of yield-related traits in soybean (Glycine max L.). Front. Genet. 2022, 13, 953833. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Wang, C.; Ni, Y.; Liu, X. The Role of Chloride Channels in Plant Responses to NaCl. Int. J. Mol. Sci. 2023, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Kaur, K.; Khare, T.; Srivastava, A.K.; Suprasanna, P.; Kumar, V. Genome-wide identification, characterization and transcriptional profiling of NHX-type (Na+/H+) antiporters under salinity stress in soybean. 3 Biotech 2021, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, S.; Premkumar, A. Ion changes and signaling under salt stress in wheat and other important crops. Plants 2023, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.R.; Ashokkumar, V.; Muthusamy, S.; Palanisamy, S. Role of DREB genes in the regulation of salt stress-mediated defense responses in plants. J. Appl. Biol. Biotechnol. 2023, 11, 1–9. [Google Scholar]
- Chen, K.; Tang, W.; Zhou, Y.; Chen, J.; Xu, Z.; Ma, R.; Dong, Y.; Ma, Y.; Chen, M. AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs. Plant Physiol. Biochem. 2022, 170, 287–295. [Google Scholar] [CrossRef]
- Feng, C.; Gao, H.; Zhou, Y.; Jing, Y.; Li, S.; Yan, Z.; Xu, K.; Zhou, F.; Zhang, W.; Yang, X. Unfolding molecular switches for salt stress resilience in soybean: Recent advances and prospects for salt-tolerant smart plant production. Front. Plant Sci. 2023, 14, 1162014. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Qin, R.; Li, H.; Du, Q.; Li, X.; Yang, H.; Kong, F.; Liu, B.; Yu, D.; Wang, H. Genome-wide association studies reveal novel loci for herbivore resistance in wild soybean (Glycine soja). Int. J. Mol. Sci. 2022, 23, 8016. [Google Scholar] [CrossRef]
- Sinha, K.; Jana, S.; Pramanik, P.; Bera, B. Selection on synonymous codon usage in soybean (Glycine max) WRKY genes. Sci. Rep. 2024, 14, 26530. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.J.; Susmita, C.; Sripathy, K.; Agarwal, D.K.; Pal, G.; Singh, A.N.; Kumar, S.; Rai, A.K.; Simal-Gandara, J. Molecular characterization and genetic diversity studies of Indian soybean (Glycine max (L.) Merr.) cultivars using SSR markers. Mol. Biol. Rep. 2022, 49, 2129–2140. [Google Scholar] [CrossRef]
- Tripathi, N.; Tripathi, M.K.; Tiwari, S.; Payasi, D.K. Molecular breeding to overcome biotic stresses in soybean: Update. Plants 2022, 11, 1967. [Google Scholar] [CrossRef] [PubMed]
- Bertheau, Y. Advances in Identifying GM Plants: Toward the Routine Detection of ‘Hidden’ and ‘New’ Gmos; Burleigh Dodds Science Publishing: Cambridge, UK, 2021. [Google Scholar]
- Li, J.; Ni, Q.; He, G.; Huang, J.; Chao, H.; Li, S.; Chen, M.; Hu, G.; Whelan, J.; Shou, H. SoyOD: An Integrated Soybean Multi-omics Database for Mining Genes and Biological Research. Genom. Proteom. Bioinform. 2024, 22, qzae080. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yue, X.-L.; Feng, J.-Y.; Gong, X.; Zhang, W.-J.; Zuo, J.-F.; Zhang, Y.-M. Identification of QTNs, QTN-by-environment interactions, and their candidate genes for salt tolerance related traits in soybean. BMC Plant Biol. 2024, 24, 316. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, S.; Wang, Z.; Yuan, Y.; Zhang, Z.; Liang, Q.; Yang, X.; Duan, Z.; Liu, Y.; Kong, F. Progress in soybean functional genomics over the past decade. Plant Biotechnol. J. 2022, 20, 256–282. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.R.G.; Nadarajah, K. QTL and candidate genes: Techniques and advancement in abiotic stress resistance breeding of major cereals. Int. J. Mol. Sci. 2022, 24, 6. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, P. The DREB transcription factor, a biomacromolecule, responds to abiotic stress by regulating the expression of stress-related genes. Int. J. Biol. Macromol. 2023, 243, 125231. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Dong, S. Screening and identification of drought tolerance of spring soybean at seedling stage under climate change. Front. Sustain. Food Syst. 2022, 6, 988319. [Google Scholar] [CrossRef]
- Clevinger, E.M.; Biyashev, R.; Schmidt, C.; Song, Q.; Batnini, A.; Bolaños-Carriel, C.; Robertson, A.E.; Dorrance, A.E.; Saghai Maroof, M. Comparison of Rps loci toward isolates, singly and combined inocula, of Phytophthora sojae in soybean PI 407985, PI 408029, PI 408097, and PI424477. Front. Plant Sci. 2024, 15, 1394676. [Google Scholar] [CrossRef] [PubMed]
- Hamabwe, S.M. Identification of Morpho-Physiological Traits for Drought Tolerance and Their Associated Genomic Regions in Andean Gene Pool of Common Bean (Phaseolus Vulgaris L.); University of Nairobi: Nairobi, Kenya, 2023. [Google Scholar]
- Sahito, J.H.; Zhang, H.; Gishkori, Z.G.N.; Ma, C.; Wang, Z.; Ding, D.; Zhang, X.; Tang, J. Advancements and prospects of genome-wide association studies (GWAS) in maize. Int. J. Mol. Sci. 2024, 25, 1918. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Jia, B.; Sun, M.; Sun, X. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. Front. Plant Sci. 2022, 13, 1002302. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.-X.; Guo, X.-Y.; Qu, Y.; Zhang, Z.-W.; Bao, L.-G.; Ye, R.-Y.; Chang, R.-Z.; Qiu, L.-J. Salt Tolerance in Soybeans: Focus on Screening Methods and Genetics. Plants 2023, 13, 97. [Google Scholar] [CrossRef] [PubMed]
- Salami, S.A.; Arad, N. MicroRNA-mediated Regulation of Drought Stress Response. In Plant MicroRNAs and Stress Response; CRC Press: Boca Raton, FL, USA, 2023; pp. 120–143. [Google Scholar]
- Jagoda Arachchige, C.S.P. Genome Wide Association Study of Soybean [(Glycine max (L.) Merr.] Germplasm Derived from Canadian X Chinese Crosses to Mine for Unique Seed-Yield Alleles; University of Guelph: Guelph, ON, Canada, 2021. [Google Scholar]
- Li, M.-W.; Jiang, B.; Han, T.; Zhang, G.; Lam, H.-M. Genomic research on soybean and its impact on molecular breeding. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–42. [Google Scholar]
- Škrabišová, M.; Dietz, N.; Zeng, S.; Chan, Y.O.; Wang, J.; Liu, Y.; Biová, J.; Joshi, T.; Bilyeu, K.D. A novel Synthetic phenotype association study approach reveals the landscape of association for genomic variants and phenotypes. J. Adv. Res. 2022, 42, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Rani, R.; Raza, G.; Ashfaq, H.; Rizwan, M.; Razzaq, M.K.; Waheed, M.Q.; Shimelis, H.; Babar, A.D.; Arif, M. Genome-wide association study of soybean (Glycine max [L.] Merr.) germplasm for dissecting the quantitative trait nucleotides and candidate genes underlying yield-related traits. Front. Plant Sci. 2023, 14, 1229495. [Google Scholar] [CrossRef]
- Montarry, J.; Mimee, B.; Danchin, E.G.; Koutsovoulos, G.D.; Ste-Croix, D.T.; Grenier, E. Recent advances in population genomics of plant-parasitic nematodes. Phytopathology 2021, 111, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qi, Y.; Sun, G.; Zhang, S.; Li, W.; Wang, Y. Improving Soybean Breeding Efficiency Using Marker-Assisted Selection. Mol. Plant Breed. 2024, 15, 259–268. [Google Scholar] [CrossRef]
- Giudice, G.; Moffa, L.; Varotto, S.; Cardone, M.F.; Bergamini, C.; De Lorenzis, G.; Velasco, R.; Nerva, L.; Chitarra, W. Novel and emerging biotechnological crop protection approaches. Plant Biotechnol. J. 2021, 19, 1495–1510. [Google Scholar] [CrossRef]
- Sun, T.; Ma, N.; Wang, C.; Fan, H.; Wang, M.; Zhang, J.; Cao, J.; Wang, D. A golgi-localized sodium/hydrogen exchanger positively regulates salt tolerance by maintaining higher K+/Na+ ratio in soybean. Front. Plant Sci. 2021, 12, 638340. [Google Scholar] [CrossRef] [PubMed]
- Leung, H.-S.; Chan, L.-Y.; Law, C.-H.; Li, M.-W.; Lam, H.-M. Twenty years of mining salt tolerance genes in soybean. Mol. Breed. 2023, 43, 45. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Li, C.; Gao, C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 2020, 21, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Dvorianinova, E.M.; Zinovieva, O.L.; Pushkova, E.N.; Zhernova, D.A.; Rozhmina, T.A.; Povkhova, L.V.; Novakovskiy, R.O.; Sigova, E.A.; Turba, A.A.; Borkhert, E.V. Key FAD2, FAD3, and SAD Genes Involved in the Fatty Acid Synthesis in Flax Identified Based on Genomic and Transcriptomic Data. Int. J. Mol. Sci. 2023, 24, 14885. [Google Scholar] [CrossRef]
- Rahman, S.U.; McCoy, E.; Raza, G.; Ali, Z.; Mansoor, S.; Amin, I. Improvement of soybean; A way forward transition from genetic engineering to new plant breeding technologies. Mol. Biotechnol. 2023, 65, 162–180. [Google Scholar] [CrossRef]
- Fu, M.; Chen, L.; Cai, Y.; Su, Q.; Chen, Y.; Hou, W. CRISPR/Cas9-mediated mutagenesis of GmFAD2-1A and/or GmFAD2-1B to create high-oleic-acid soybean. Agronomy 2022, 12, 3218. [Google Scholar] [CrossRef]
- Sim, J.; Kuwabara, C.; Sugano, S.; Adachi, K.; Yamada, T. Recent advances in the improvement of soybean seed traits by genome editing. Plant Biotechnol. 2023, 40, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Ding, C.; Li, W.; Wang, D.; Cui, D. Applications of metabolomics in the research of soybean plant under abiotic stress. Food Chem. 2020, 310, 125914. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zenda, T.; Tian, Z.; Huang, Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. Front. Plant Sci. 2023, 14, 1111875. [Google Scholar] [CrossRef] [PubMed]
- Mazandarani, A.; Kalaji, M.H.; Mosremi, A.G.; Abbasi, F. Evaluation of Some Defense Gene Expression in Soybean Cultivars under Drought Stress. Preprints 2022. [Google Scholar] [CrossRef]
- Gyimesi, G.; Hediger, M.A. Systematic in silico discovery of novel solute carrier-like proteins from proteomes. PLoS ONE 2022, 17, e0271062. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, M.; Satish, L.; Sharma, A.; Kurungara Vinod, K.; Emamverdian, A.; Zhou, M.; Wei, Q. Transposable elements in plants: Recent advancements, tools and prospects. Plant Mol. Biol. Rep. 2022, 40, 628–645. [Google Scholar] [CrossRef]
- Diwan, A.; Ninawe, A.; Harke, S. Gene editing (CRISPR-Cas) technology and fisheries sector. Can. J. Biotechnol. 2017, 1, 65–72. [Google Scholar] [CrossRef]
- Naeem, M.; Majeed, S.; Hoque, M.Z.; Ahmad, I. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 2020, 9, 1608. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34. [Google Scholar] [CrossRef]
- Vargas-Almendra, A.; Ruiz-Medrano, R.; Núñez-Muñoz, L.A.; Ramírez-Pool, J.A.; Calderón-Pérez, B.; Xoconostle-Cázares, B. Advances in Soybean Genetic Improvement. Plants 2024, 13, 3073. [Google Scholar] [CrossRef]
- Souza, J.L.; Nunes, V.V.; Calazans, C.C.; Torres, M.F.O.; de Freitas, B.A.L.; Silva-Mann, R. Crispr-Based Solutions for Agriculture: A Systematic Review. In Proceedings of the International Symposium on Technological Innovation, Ontario, Canada, 28–31 October 2021. [Google Scholar]
- Sami, A.; Xue, Z.; Tazein, S.; Arshad, A.; He Zhu, Z.; Ping Chen, Y.; Hong, Y.; Tian Zhu, X.; Jin Zhou, K. CRISPR–Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered 2021, 12, 5814–5829. [Google Scholar] [CrossRef]
- Breen, C.; Ndlovu, N.; McKeown, P.C.; Spillane, C. Legume seed system performance in sub-Saharan Africa: Barriers, opportunities, and scaling options. A review. Agron. Sustain. Dev. 2024, 44, 20. [Google Scholar] [CrossRef]
- Azadi, H.; Samiee, A.; Mahmoudi, H.; Jouzi, Z.; Rafiaani Khachak, P.; De Maeyer, P.; Witlox, F. Genetically modified crops and small-scale farmers: Main opportunities and challenges. Crit. Rev. Biotechnol. 2016, 36, 434–446. [Google Scholar] [CrossRef]
- Fiaz, S.; Khan, S.A.; Noor, M.A.; Ali, H.; Ali, N.; Alharthi, B.; Qayyum, A.; Nadeem, F. CRISPR/Cas9 regulations in plant science. In CRISPR and RNAi Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 33–45. [Google Scholar]
- Ghouri, M.Z.; Munawar, N.; Aftab, S.O.; Ahmad, A. Regulation of CRISPR edited food and feed: Legislation and future. In GMOs and Political Stance; Elsevier: Amsterdam, The Netherlands, 2023; pp. 261–287. [Google Scholar]
- Ahmad, A.; Ghouri, M.Z.; Munawar, N.; Ismail, M.; Ashraf, S.; Aftab, S.O. Regulatory, ethical, and social aspects of CRISPR crops. In CRISPR Crops: The Future of Food Security; Springer: Singapore, 2021; pp. 261–287. [Google Scholar]
- Molinari, M.D.C.; Pagliarini, R.F.; Florentino, L.H.; Lima, R.N.; Arraes, F.B.M.; Abbad, S.V.; de Farias, M.P.; Mertz-Henning, L.M.; Rech, E.; Nepomuceno, A.L. Navigating the Path from Lab to Market: Regulatory Challenges and Opportunities for Genome Editing Technologies for Agriculture. In Plant Genome Editing Technologies; Springer: Berlin/Heidelberg, Germany, 2024; pp. 25–63. [Google Scholar]
- Srivastava, R.K.; Singh, R.B.; Pujarula, V.L.; Bollam, S.; Pusuluri, M.; Chellapilla, T.S.; Yadav, R.S.; Gupta, R. Genome-wide association studies and genomic selection in pearl millet: Advances and prospects. Front. Genet. 2020, 10, 1389. [Google Scholar] [CrossRef] [PubMed]
- Krissaane, I.; De Niz, C.; Gutiérrez-Sacristán, A.; Korodi, G.; Ede, N.; Kumar, R.; Lyons, J.; Manrai, A.; Patel, C.; Kohane, I. Scalability and cost-effectiveness analysis of whole genome-wide association studies on Google Cloud Platform and Amazon Web Services. J. Am. Med. Inform. Assoc. 2020, 27, 1425–1430. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, D.N. Sustainable agriculture and plant breeding. In Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–34. [Google Scholar]
- Wissuwa, M.; Mazzola, M.; Picard, C. Novel Approaches in Plant Breeding for Rhizosphere-Related Traits; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Sargent, D.; Conaty, W.C.; Tissue, D.T.; Sharwood, R.E. Synthetic biology and opportunities within agricultural crops. J. Sustain. Agric. Environ. 2022, 1, 89–107. [Google Scholar] [CrossRef]
- Gohil, N.; Bhattacharjee, G.; Lam, N.L.; Perli, S.D.; Singh, V. CRISPR-Cas systems: Challenges and future prospects. Prog. Mol. Biol. Transl. Sci. 2021, 180, 141–151. [Google Scholar] [PubMed]
- Haidar, S.; Hooker, J.; Lackey, S.; Elian, M.; Puchacz, N.; Szczyglowski, K.; Marsolais, F.; Golshani, A.; Cober, E.R.; Samanfar, B. Harnessing Multi-Omics Strategies and Bioinformatics Innovations for Advancing Soybean Improvement: A Comprehensive Review. Plants 2024, 13, 2714. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, R.; Chaudhary, N.; Shams, R.; Dash, K.K. Genetically modified crops and sustainable development: Navigating challenges and opportunities. Food Sci. Biotechnol. 2024, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Yoosefzadeh-Najafabadi, M.; Rajcan, I.; Eskandari, M. Optimizing genomic selection in soybean: An important improvement in agricultural genomics. Heliyon 2022, 8, e11873. [Google Scholar] [CrossRef]
- Khan, F.; Hakeem, K.R. Genetic modification of crop plants: Issues and challenges. In Crop Production and Global Environmental Issues; Springer: Berlin/Heidelberg, Germany, 2015; pp. 369–384. [Google Scholar]
- Lynd, L.R.; Wyman, C.E.; Gerngross, T.U. Biocommodity engineering. Biotechnol. Prog. 1999, 15, 777–793. [Google Scholar] [CrossRef]
- Liu, K.; Liu, K. Soybean improvements through plant breeding and genetic engineering. In Soybeans; Springer: Berlin/Heidelberg, Germany, 1997; pp. 478–523. [Google Scholar]
- Qaim, M. The economics of genetically modified crops. Annu. Rev. Resour. Econ. 2009, 1, 665–694. [Google Scholar] [CrossRef]
- Qaim, M. Agricultural biotechnology adoption in developing countries. Am. J. Agric. Econ. 2005, 87, 1317–1324. [Google Scholar] [CrossRef]
- Smyth, S.J. Genetically modified crops, regulatory delays, and international trade. Food Energy Secur. 2017, 6, 78–86. [Google Scholar] [CrossRef]
- Barrows, G.; Sexton, S.; Zilberman, D. Agricultural biotechnology: The promise and prospects of genetically modified crops. J. Econ. Perspect. 2014, 28, 99–120. [Google Scholar] [CrossRef]
- Tiedje, J.M.; Colwell, R.K.; Grossman, Y.L.; Hodson, R.E.; Lenski, R.E.; Mack, R.N.; Regal, P.J. The planned introduction of genetically engineered organisms: Ecological considerations and recommendations. Ecology 1989, 70, 298–315. [Google Scholar] [CrossRef]
- Zhang, D.; Hussain, A.; Manghwar, H.; Xie, K.; Xie, S.; Zhao, S.; Larkin, R.M.; Qing, P.; Jin, S.; Ding, F. Genome editing with the CRISPR-Cas system: An art, ethics and global regulatory perspective. Plant Biotechnol. J. 2020, 18, 1651–1669. [Google Scholar] [CrossRef] [PubMed]
- Bartkowski, B.; Theesfeld, I.; Pirscher, F.; Timaeus, J. Snipping around for food: Economic, ethical and policy implications of CRISPR/Cas genome editing. Geoforum 2018, 96, 172–180. [Google Scholar] [CrossRef]
- Memi, F.; Ntokou, A.; Papangeli, I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Semin. Perinatol. 2018, 42, 487–500. [Google Scholar] [CrossRef]
- Ampofo, J.; Abbey, L. Sprouted Legumes: Biochemical Changes, Nutritional Impacts and Food Safety Concerns. In Advances in Plant Sprouts: Phytochemistry and Biofunctionalities; Springer: Berlin/Heidelberg, Germany, 2023; pp. 173–199. [Google Scholar]
- Geng, J.; Li, J.; Zhu, F.; Chen, X.; Du, B.; Tian, H.; Li, J. Plant sprout foods: Biological activities, health benefits, and bioavailability. J. Food Biochem. 2022, 46, e13777. [Google Scholar] [CrossRef]
- Kim, I.-S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Noreen, S.; Khalid, W.; Mubarik, F.; Niazi, M.K.; Koraqi, H.; Ali, A.; Lima, C.M.G.; Alansari, W.S.; Eskandrani, A.A. Extraction of bioactive compounds from different vegetable sprouts and their potential role in the formulation of functional foods against various disorders: A literature-based review. Molecules 2022, 27, 7320. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Hao, X.; Ji, X.; Zhu, Y.; Chen, X.; Yao, Y. A systematic review of black soybean (Glycine max (L.) Merr.): Nutritional composition, bioactive compounds, health benefits, and processing to application. Food Front. 2024, 5, 1188–1211. [Google Scholar] [CrossRef]
- Furqoni, H. Dynamics of Soybean Seed Protein and Oil Content with Depth in the Canopy; The University of Nebraska-Lincoln: Lincoln, NE, USA, 2024. [Google Scholar]
- Liu, G.; Yan, L.; Wang, S.; Yuan, H.; Zhu, Y.; Xie, C.; Wang, P.; Yang, R. A novel type of sprout food development: Effects of germination on phytic acid, glucosinolates, and lipid profiles in rapeseed. Food Biosci. 2023, 55, 102893. [Google Scholar] [CrossRef]
- Bansal, P.; Babbar, N.; Kumar, V.; Kaur, S.; Aggarwal, P. Soybean Spouts: A Healthier Alternative. In Advances in Plant Sprouts: Phytochemistry and Biofunctionalities; Springer: Berlin/Heidelberg, Germany, 2023; pp. 299–312. [Google Scholar]
- Pham, A.T.; Lee, J.D.; Shannon, J.G.; Bilyeu, K.D. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol. 2010, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, J.; Zhang, G.; Liu, J.; Manan, S.; Hu, H.; Zhao, J. Two types of soybean diacylglycerol acyltransferases are differentially involved in triacylglycerol biosynthesis and response to environmental stresses and hormones. Sci. Rep. 2016, 6, 28541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; He, H.; Xu, C.J. Overexpression of Type 1 and 2 Diacylglycerol Acyltransferase Genes (JcDGAT1 and JcDGAT2) Enhances Oil Production in the Woody Perennial Biofuel Plant Jatropha curcas. Plants 2021, 10, 699. [Google Scholar] [CrossRef]
- Blázovics, A.; Csorba, B.; Ferencz, A. The beneficial and adverse effects of phytoestrogens. OBM Integr. Complement. Med. 2022, 7, 1–35. [Google Scholar] [CrossRef]
- Swallah, M.S.; Yang, X.; Li, J.; Korese, J.K.; Wang, S.; Fan, H.; Yu, H.; Huang, Q. The pros and cons of soybean bioactive compounds: An overview. Food Rev. Int. 2023, 39, 5104–5131. [Google Scholar] [CrossRef]
- Mikulić, M.; Krstonošić, M.A.; Sazdanić, D.; Cvejić, J. Health Perspectives on Soy Isoflavones. In Phytochemicals in Soybeans; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–44. [Google Scholar]
- Kalli, S.; Araya-Cloutier, C.; de Bruijn, W.J.; Chapman, J.; Vincken, J.-P. Induction of promising antibacterial prenylated isoflavonoids from different subclasses by sequential elicitation of soybean. Phytochemistry 2020, 179, 112496. [Google Scholar] [CrossRef]
- Bragagnolo, F.S.; Funari, C.S.; Ibáñez, E.; Cifuentes, A. Metabolomics as a tool to study underused soy parts: In search of bioactive compounds. Foods 2021, 10, 1308. [Google Scholar] [CrossRef]
- Dilawari, R.; Kaur, N.; Priyadarshi, N.; Prakash, I.; Patra, A.; Mehta, S.; Singh, B.; Jain, P.; Islam, M.A. Soybean: A key player for global food security. In Soybean Improvement: Physiological, Molecular and Genetic Perspectives; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–46. [Google Scholar]
- Kim, I.-S.; Kim, C.-H.; Yang, W.-S. Physiologically active molecules and functional properties of soybeans in human health—A current perspective. Int. J. Mol. Sci. 2021, 22, 4054. [Google Scholar] [CrossRef] [PubMed]
- Mitharwal, S.; Saini, A.; Chauhan, K.; Taneja, N.K.; Oberoi, H.S. Unveiling the nutrient-wealth of black soybean: A holistic review of its bioactive compounds and health implications. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70001. [Google Scholar] [CrossRef]
- Kumar, M.; Suhag, R.; Hasan, M.; Dhumal, S.; Radha; Pandiselvam, R.; Senapathy, M.; Sampathrajan, V.; Punia, S.; Sayed, A.A. Black soybean (Glycine max (L.) Merr.): Paving the way toward new nutraceutical. Crit. Rev. Food Sci. Nutr. 2023, 63, 6208–6234. [Google Scholar] [CrossRef]
- Shen, B. The Saponin Composition of Common Canadian Pulses. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2020. [Google Scholar]
- Manoharlal, R.; Saiprasad, G. Contrasting germination behavior of nodding broomrape towards soybean seeds-and sprouts-extract is associated with their corresponding phytohormones, sugars and isoflavones contents. Acta Physiol. Plant. 2024, 46, 96. [Google Scholar] [CrossRef]
- Wojciechowski, K.; Jurek, I.; Góral, I.; Campana, M.; Geue, T.; Gutberlet, T. Surface-active extracts from plants rich in saponins–effect on lipid mono-and bilayers. Surf. Interfaces 2021, 27, 101486. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, J.; Wu, S.; Fang, S.; Bilal, M.; Xie, C.; Wang, P.; Yin, Y.; Yang, R. Novel strategy to raise the content of aglycone isoflavones in soymilk and gel: Effect of germination on the physicochemical properties. Food Res. Int. 2024, 186, 114335. [Google Scholar] [CrossRef]
- Pathak, A.; Singh, S.P. Study on the health benefit and utilization of sprouted grains for development of value-added food products: A review. Ann. Phytomed. 2022, 11, 155–165. [Google Scholar] [CrossRef]
- Matoša Kočar, M.; Vila, S.; Petrović, S.; Rebekić, A.; Sudarić, A.; Josipović, A.; Markulj Kulundžić, A. Assessment of phenotypic variability of saccharides in soybean genotypes suitable for growing in Europe. J. Cent. Eur. Agric. 2020, 21, 92–103. [Google Scholar] [CrossRef]
- Feng, Z.; Morton, J.D.; Maes, E.; Kumar, L.; Serventi, L. Exploring faba beans (Vicia faba L.): Bioactive compounds, cardiovascular health, and processing insights. Crit. Rev. Food Sci. Nutr. 2024; online ahead of print. [Google Scholar]
- Kumari, V.; Thakur, R.; Kumari, J.; Kumari, A.; Khajuria, D. Nutritional improvement in soybean (Glycine max (L.) Merrill) through plant breeding and biotechnological interventions. Crop Pasture Sci. 2023, 75, CP23155. [Google Scholar] [CrossRef]
- Olías, R.; Delgado-Andrade, C.; Padial, M.; Marín-Manzano, M.C.; Clemente, A. An updated review of soy-derived beverages: Nutrition, processing, and bioactivity. Foods 2023, 12, 2665. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolska-Iwanek, J.; Zagrodzki, P.; Galanty, A.; Fołta, M.; Kryczyk-Kozioł, J.; Szlósarczyk, M.; Rubio, P.S.; Saraiva de Carvalho, I.; Paśko, P. Determination of essential minerals and trace elements in edible sprouts from different botanical families—Application of Chemometric analysis. Foods 2022, 11, 371. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, R.; Zhou, Y.; Gu, Z. A comparative transcriptome and proteomics analysis reveals the positive effect of supplementary Ca2+ on soybean sprout yield and nutritional qualities. J. Proteom. 2016, 143, 161–172. [Google Scholar] [CrossRef]
- Chmielowska-Bąk, J.; Zinicovscaia, I.; Frontasyeva, M.; Milczarek, A.; Micheli, S.; Vysochanska, M.; Deckert, J. Soybean seedlings enriched with iron and magnesium-Impact on germination, growth and antioxidant properties. Ecol. Chem. Eng. S 2018, 25, 631–641. [Google Scholar] [CrossRef]
- Xiao, Z.; Pan, Y.; Wang, C.; Li, X.; Lu, Y.; Tian, Z.; Kuang, L.; Wang, X.; Dun, X.; Wang, H. Multi-functional development and utilization of rapeseed: Comprehensive analysis of the nutritional value of rapeseed sprouts. Foods 2022, 11, 778. [Google Scholar] [CrossRef]
- Maruyama, K.; Urano, K.; Kusano, M.; Sakurai, T.; Takasaki, H.; Kishimoto, M.; Yoshiwara, K.; Kobayashi, M.; Kojima, M.; Sakakibara, H. Metabolite/phytohormone–gene regulatory networks in soybean organs under dehydration conditions revealed by integration analysis. Plant J. 2020, 103, 197–211. [Google Scholar] [CrossRef]
- Maruyama, K.; Urano, K.; Yoshiwara, K.; Morishita, Y.; Sakurai, N.; Suzuki, H.; Kojima, M.; Sakakibara, H.; Shibata, D.; Saito, K. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol. 2014, 164, 1759–1771. [Google Scholar] [CrossRef] [PubMed]
- Simó, C.; Ibáñez, C.; Valdés, A.; Cifuentes, A.; García-Cañas, V. Metabolomics of genetically modified crops. Int. J. Mol. Sci. 2014, 15, 18941–18966. [Google Scholar] [CrossRef]
- Benevenuto, R.F.; Zanatta, C.B.; Guerra, M.P.; Nodari, R.O.; Agapito-Tenfen, S.Z. Proteomic profile of glyphosate-resistant soybean under combined herbicide and drought stress conditions. Plants 2021, 10, 2381. [Google Scholar] [CrossRef]
- Virdi, K.S.; Spencer, M.; Stec, A.O.; Xiong, Y.; Merry, R.; Muehlbauer, G.J.; Stupar, R.M. Similar seed composition phenotypes are observed from CRISPR-generated in-frame and knockout alleles of a soybean KASI ortholog. Front. Plant Sci. 2020, 11, 1005. [Google Scholar] [CrossRef]
- Shen, B.; Schmidt, M.A.; Collet, K.H.; Liu, Z.-B.; Coy, M.; Abbitt, S.; Molloy, L.; Frank, M.; Everard, J.D.; Booth, R. RNAi and CRISPR–Cas silencing E3-RING ubiquitin ligase AIP2 enhances soybean seed protein content. J. Exp. Bot. 2022, 73, 7285–7297. [Google Scholar] [CrossRef]
- Yu, T.F.; Hou, Z.H.; Wang, H.L.; Chang, S.Y.; Song, X.Y.; Zheng, W.J.; Zheng, L.; Wei, J.T.; Lu, Z.W.; Chen, J. Soybean steroids improve crop abiotic stress tolerance and increase yield. Plant Biotechnol. J. 2024, 22, 2333–2347. [Google Scholar] [CrossRef]
- Bakrim, S.; El Omari, N.; Khan, E.J.; Khalid, A.; Abdalla, A.N.; Chook, J.B.; Goh, K.W.; Ming, L.C.; Aboulaghras, S.; Bouyahya, A. Phytosterols activating nuclear receptors are involving in steroid hormone-dependent cancers: Myth or fact? Biomed. Pharmacother. 2023, 169, 115783. [Google Scholar] [CrossRef]
- Barreira, J.C.; Ferreira, I.C. Steroids in natural matrices: Chemical features and bioactive properties. Biotechnol. Bioact. Compd. Sources Appl. 2015, 395–431. [Google Scholar] [CrossRef]
- Dukariya, G.; Shah, S.; Singh, G.; Kumar, A. Soybean and its products: Nutritional and health benefits. J. Nutr. Sci. Healthy Diet. 2020, 1, 22–29. [Google Scholar]
- Zio, S.; Tarnagda, B.; Tapsoba, F.; Zongo, C.; Savadogo, A. Health interest of cholesterol and phytosterols and their contribution to one health approach. Heliyon 2024, 10, e40132. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Willocquet, L. Modeling the impact of crop diseases on global food security. Annu. Rev. Phytopathol. 2020, 58, 313–341. [Google Scholar] [CrossRef]
- Sharma, K.; Shivandu, S.K. Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture. Sens. Int. 2024, 5, 100292. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. J. Sens. Actuator Netw. 2024, 13, 39. [Google Scholar] [CrossRef]
- Mushtaque, M.A.R. Integration of Wireless Sensor Networks, Internet of Things, Artificial Intelligence, and Deep Learning in Smart Agriculture: A Comprehensive Survey: Integration of Wireless Sensor Networks, Internet of Things. J. Innov. Intell. Comput. Emerg. Technol. (JIICET) 2024, 1, 8–19. [Google Scholar]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
- Misra, N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020, 9, 6305–6324. [Google Scholar] [CrossRef]
- Gouiza, N.; Jebari, H.; Reklaoui, K. Integration of iot-enabled technologies and artificial intelligence in diverse domains: Recent advancements and future trends. J. Theor. Appl. Inf. Technol. 2024, 102, 1975–2029. [Google Scholar]
- Raj, M.; Gupta, S.; Chamola, V.; Elhence, A.; Garg, T.; Atiquzzaman, M.; Niyato, D. A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0. J. Netw. Comput. Appl. 2021, 187, 103107. [Google Scholar] [CrossRef]
- Purnama, S.; Sejati, W. Internet of things, big data, and artificial intelligence in the food and agriculture sector. Int. Trans. Artif. Intell. 2023, 1, 156–174. [Google Scholar] [CrossRef]
- Singh, M.; Choudhury, R.A.; Chander, S. IoT, AI, and Blockchain: An Integrated System Investigation for Agriculture and Healthcare Units. In The Data-Driven Blockchain Ecosystem; CRC Press: Boca Raton, FL, USA, 2022; pp. 189–205. [Google Scholar]
- Babar, A.Z.; Akan, O.B. Sustainable and precision agriculture with the internet of everything (IoE). arXiv 2024, arXiv:2404.06341. [Google Scholar]
- Yogabalajee, V.; Sundaram, K.; Kanagaraj, K. Soybean Leaf Disease Classification using Enhanced Densenet121. In Proceedings of the 2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 14–15 March 2024. [Google Scholar]
- Barbedo, J.G.A. Deep Learning for Soybean Monitoring and Management. Seeds 2023, 2, 340–356. [Google Scholar] [CrossRef]
- Suryavanshi, A.; Kukreja, V.; Chamoli, S.; Mehta, S.; Garg, A. Synergistic Solutions: Federated Learning Meets CNNs in Soybean Disease Classification. In Proceedings of the 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 11–12 January 2024. [Google Scholar]
- Bhowmik, A.C.; Ahad, M.T.; Emon, Y.R. Machine Learning-Based Jamun Leaf Disease Detection: A Comprehensive Review. arXiv 2023, arXiv:2311.15741. [Google Scholar]
- Wen, S.; Peng, B.; Wei, X.; Luo, J.; Jiang, J. Convolutional neural network-based speckle tracking for ultrasound strain elastography: An unsupervised learning approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2023, 70, 354–367. [Google Scholar] [CrossRef]
- Dwivedi, S.P.; Jain, S.; Agrawal, P. Review of Using Various Deep Learning Techniques and Cycle-GANs with Transformer for Disease Detection and Classification in Plant Leaves. In Proceedings of the 2024 International Conference on Integrated Circuits, Communication, and Computing Systems (ICIC3S), Una, India, 8–9 June 2024. [Google Scholar]
- Abdal, M.N.; Islam, K.; Oshie, M.H.K.; Haque, M.A. A CNN Based Model for Plant Disease Classification using Transfer Learning. In Proceedings of the 2023 26th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 13–15 December 2023. [Google Scholar]
- Wallelign, S.; Polceanu, M.; Buche, C. Soybean plant disease identification using convolutional neural network. In The Thirty-First International Flairs Conference; Association for the Advancement of Artificial Intelligence: Washington, DC, USA, 2018. [Google Scholar]
- Selvam, L.; Kavitha, P. Classification of ladies finger plant leaf using deep learning. J. Ambient Intell. Humaniz. Comput. 2020, 1–9. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.J.; Feng, X.; Akilan, T. Recomputation of the dense layers for performance improvement of dcnn. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2912–2925. [Google Scholar] [CrossRef]
- Pandey, V.; Tripathi, U.; Singh, V.K.; Gaur, Y.S.; Gupta, D. Survey of Accuracy Prediction on the PlantVillage Dataset using different ML techniques. EAI Endorsed Trans. Internet Things 2024, 10, 12. [Google Scholar] [CrossRef]
- Simhadri, C.G.; Kondaveeti, H.K. Automatic recognition of rice leaf diseases using transfer learning. Agronomy 2023, 13, 961. [Google Scholar] [CrossRef]
- Shafik, W.; Tufail, A.; Namoun, A.; De Silva, L.C.; Apong, R.A.A.H.M. A systematic literature review on plant disease detection: Motivations, classification techniques, datasets, challenges, and future trends. IEEE Access 2023, 11, 59174–59203. [Google Scholar] [CrossRef]
- Balasubramanian, K. Feature analysis and classification of maize crop diseases employing AlexNet-inception network. Multimed. Tools Appl. 2024, 83, 26971–26999. [Google Scholar]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant disease detection and classification by deep learning. Plants 2019, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Nigar, N.; Faisal, H.M.; Umer, M.; Oki, O.; Lukose, J. Improving Plant Disease Classification with Deep Learning based Prediction Model using Explainable Artificial Intelligence. IEEE Access 2024, 12, 100005–100014. [Google Scholar] [CrossRef]
- Jamila, M. Predict Plant Diseases and Crop Health Analysis Using IA and IOT. 2023. Available online: http://archives.univ-biskra.dz/handle/123456789/27734 (accessed on 20 January 2024).
- Choudhary, S.; Saxena, B. Image-Based Crop Disease Detection using Machine Learning Approaches: A Survey. Int. J. Perform. Eng. 2023, 19, 122. [Google Scholar] [CrossRef]
- Elaraby, A.; Hamdy, W.; Alruwaili, M. Optimization of deep learning model for plant disease detection using particle swarm optimizer. Comput. Mater. Contin. 2022, 71, 4019–4031. [Google Scholar] [CrossRef]
- Hadipour-Rokni, R.; Asli-Ardeh, E.A.; Jahanbakhshi, A.; Sabzi, S. Intelligent detection of citrus fruit pests using machine vision system and convolutional neural network through transfer learning technique. Comput. Biol. Med. 2023, 155, 106611. [Google Scholar] [CrossRef]
- Jagadeesan, S.; Deepakraj, E.; Ramalingam, V.; Venkatachalam, I.; Vivekanandan, M.; Manjula, R. An Efficient Detection and Classification of Plant Diseases using Deep Learning Approach. In Proceedings of the 2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT), Bengaluru, India, 20–21 October 2023. [Google Scholar]
- Karki, S.; Basak, J.K.; Tamrakar, N.; Deb, N.C.; Paudel, B.; Kook, J.H.; Kang, M.Y.; Kang, D.Y.; Kim, H.T. Strawberry disease detection using transfer learning of deep convolutional neural networks. Sci. Hortic. 2024, 332, 113241. [Google Scholar] [CrossRef]
- Sucharitha, G.; Sirisha, M.; Pravalika, K.; Gayathri, K.N. A Study on the Performance of Deep Learning Models for Leaf Disease Detection. EAI Endorsed Trans. Internet Things 2024, 10. [Google Scholar] [CrossRef]
- Bhagat, S.; Kokare, M.; Haswani, V.; Hambarde, P.; Taori, T.; Ghante, P.; Patil, D. Advancing real-time plant disease detection: A lightweight deep learning approach and novel dataset for pigeon pea crop. Smart Agric. Technol. 2024, 7, 100408. [Google Scholar] [CrossRef]
- Maranga, M.; Szczerbiak, P.; Bezshapkin, V.; Gligorijevic, V.; Chandler, C.; Bonneau, R.; Xavier, R.J.; Vatanen, T.; Kosciolek, T. Comprehensive functional annotation of metagenomes and microbial genomes using a deep learning-based method. Msystems 2023, 8, e01178-22. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, T.; Datta, N.; Chakma, R.; Das, U.K.; Aziz, M.T.; Islam, M.; Salimullah, A.H.M.; Hossain, M.S.; Andersson, K. An Approach for Crop Prediction in Agriculture: Integrating Genetic Algorithms and Machine Learning. IEEE Access 2024, 12, 173583–173598. [Google Scholar] [CrossRef]
- Kunduracioglu, I.; Pacal, I. Advancements in deep learning for accurate classification of grape leaves and diagnosis of grape diseases. J. Plant Dis. Prot. 2024, 131, 1061–1080. [Google Scholar] [CrossRef]
- Thakur, D.; Gera, T.; Aggarwal, A.; Verma, M.; Kaur, M.; Singh, D.; Amoon, M. SUNet: Coffee Leaf Disease Detection using Hybrid Deep Learning Model. IEEE Access 2024, 12, 149173–149191. [Google Scholar] [CrossRef]
- Khodabandeh, M. Addressing the labeled data scarcity problem in deep learning. Sci. Rep. 2023, 14, 9645. [Google Scholar]
- Farahnakian, F.; Sheikh, J.; Zelioli, L.; Nidhi, D.; Seppä, I.; Ilo, R.; Nevalainen, P.; Heikkonen, J. Addressing imbalanced data for machine learning based mineral prospectivity mapping. Ore Geol. Rev. 2024, 174, 106270. [Google Scholar] [CrossRef]
- Jansi, K.; Amutha, A.; Shankar, A.B.; Adesh, J.; Kant, K. Plant Disease Classification Using Deep Learning for Agricultural Applications. In Harnessing AI in Geospatial Technology for Environmental Monitoring and Management; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 213–238. [Google Scholar]
- Zhu, H.; Lin, C.; Liu, G.; Wang, D.; Qin, S.; Li, A.; Xu, J.-L.; He, Y. Intelligent agriculture: Deep learning in UAV-based remote sensing imagery for crop diseases and pests detection. Front. Plant Sci. 2024, 15, 1435016. [Google Scholar] [CrossRef]
- Cyriac, R.; Thomas, J. Smart Farming with Cloud Supported Data Management Enabling Real-Time Monitoring and Prediction for Better Yield. In Intelligent Robots and Drones for Precision Agriculture; Springer: Berlin/Heidelberg, Germany, 2024; pp. 283–306. [Google Scholar]
- Li, Q.-C.; Xu, S.-W.; Zhuang, J.-Y.; Liu, J.-J.; Yi, Z.; Zhang, Z.-X. Ensemble learning prediction of soybean yields in China based on meteorological data. J. Integr. Agric. 2023, 22, 1909–1927. [Google Scholar] [CrossRef]
- Celis, J.; Xiao, X.; Wagle, P.; Adler, P.R.; White, P. A Review of Yield Forecasting Techniques and Their Impact on Sustainable Agriculture. In Transformation Towards Circular Food Systems; Springer: Berlin/Heidelberg, Germany, 2024; pp. 139–168. [Google Scholar]
- Malashin, I.; Tynchenko, V.; Gantimurov, A.; Nelyub, V.; Borodulin, A.; Tynchenko, Y. Predicting sustainable crop yields: Deep learning and explainable AI tools. Sustainability 2024, 16, 9437. [Google Scholar] [CrossRef]
- Ren, P.; Li, H.; Han, S.; Chen, R.; Yang, G.; Yang, H.; Feng, H.; Zhao, C. Estimation of soybean yield by combining maturity group information and unmanned aerial vehicle multi-sensor data using machine learning. Remote Sens. 2023, 15, 4286. [Google Scholar] [CrossRef]
- Torsoni, G.B.; de Oliveira Aparecido, L.E.; dos Santos, G.M.; Chiquitto, A.G.; da Silva Cabral Moraes, J.R.; de Souza Rolim, G. Soybean yield prediction by machine learning and climate. Theor. Appl. Climatol. 2023, 151, 1709–1725. [Google Scholar] [CrossRef]
- Valipour, M.; Khoshkam, H.; Bateni, S.M.; Jun, C.; Band, S.S. Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States. Agric. Water Manag. 2023, 283, 108311. [Google Scholar] [CrossRef]
- Manafifard, M. A new hyperparameter to random forest: Application of remote sensing in yield prediction. Earth Sci. Inform. 2024, 17, 63–73. [Google Scholar] [CrossRef]
- Abdel-salam, M.; Kumar, N.; Mahajan, S. A proposed framework for crop yield prediction using hybrid feature selection approach and optimized machine learning. Neural Comput. Appl. 2024, 36, 20723–20750. [Google Scholar] [CrossRef]
- Santos, L.B.; Gentry, D.; Tryforos, A.; Fultz, L.; Beasley, J.; Gentimis, T. Soybean yield prediction using machine learning algorithms under a cover crop management system. Smart Agric. Technol. 2024, 8, 100442. [Google Scholar] [CrossRef]
- Srikumar, K.; Tan, Y.H.; Kansedo, J.; Tan, I.S.; Mubarak, N.M.; Ibrahim, M.L.; Yek, P.N.Y.; Foo, H.C.Y.; Karri, R.R.; Khalid, M. A review on the environmental life cycle assessment of biodiesel production: Selection of catalyst and oil feedstock. Biomass Bioenergy 2024, 185, 107239. [Google Scholar] [CrossRef]
- Usman, M.; Li, Q.; Luo, D.; Xing, Y.; Dong, D. Valorization of soybean by-products for sustainable waste processing with health benefits. J. Sci. Food Agric. 2024; online ahead of print. [Google Scholar]
- Gulkirpik, E.; Donnelly, A.; Nowakunda, K.; Liu, K.; Andrade Laborde, J.E. Evaluation of a low-resource soy protein production method and its products. Front. Nutr. 2023, 10, 1067621. [Google Scholar] [CrossRef]
- Rosales Calderon, O.; Tao, L.; Abdullah, Z.; Talmadge, M.; Milbrandt, A.; Smolinski, S.; Moriarty, K.; Bhatt, A.; Zhang, Y.; Ravi, V. Sustainable Aviation Fuel State-of-Industry Report: Hydroprocessed Esters and Fatty Acids Pathway; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024. [Google Scholar]
- Glauber, J.W.; Laborde Debucquet, D. The Russia-Ukraine Conflict and Global Food Security; International Food Policy Research Institute: Washington, DC, USA, 2023. [Google Scholar]
- Staton, M.J. Reducing soybean harvest losses. In Encyclopedia of Digital Agricultural Technologies; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1109–1119. [Google Scholar]
- Lima, M.G.B.; Schilling-Vacaflor, A. Supply chain divergence challenges a ‘Brussels effect’ from Europe’s human rights and environmental due diligence laws. Glob. Policy 2024, 15, 260–275. [Google Scholar]
- Ahmed, N.; Banjare, M.K.; Singh, S.B.; Khan, A.B.; Sharma, K.N.; Behera, K. Biomass Wastes for Bioenergy-Based Applications. In Biomass Wastes for Sustainable Industrial Application; CRC Press: Boca Raton, FL, USA, 2024; pp. 343–364. [Google Scholar]
- Suhara, A.; Karyadi; Herawan, S.G.; Tirta, A.; Idris, M.; Roslan, M.F.; Putra, N.R.; Hananto, A.L.; Veza, I. Biodiesel sustainability: Review of progress and challenges of biodiesel as sustainable biofuel. Clean Technol. 2024, 6, 886–906. [Google Scholar] [CrossRef]
- Sánchez, A.S.; Junior, E.P.; Gontijo, B.M.; de Jong, P.; dos Reis Nogueira, I.B. Replacing fossil fuels with renewable energy in islands of high ecological value: The cases of Galápagos, Fernando de Noronha, and Príncipe. Renew. Sustain. Energy Rev. 2023, 183, 113527. [Google Scholar] [CrossRef]
- Prasad, S.; Yadav, K.K.; Kumar, S.; Pandita, P.; Bhutto, J.K.; Alreshidi, M.A.; Ravindran, B.; Yaseen, Z.M.; Osman, S.M.; Cabral-Pinto, M.M. Review on biofuel production: Sustainable development scenario, environment, and climate change perspectives—A sustainable approach. J. Environ. Chem. Eng. 2024, 12, 111996. [Google Scholar] [CrossRef]
- Osman, W.N.A.W.; Rosli, M.H.; Mazli, W.N.A.; Samsuri, S. Comparative review of biodiesel production and purification. Carbon Capture Sci. Technol. 2024, 13, 100264. [Google Scholar] [CrossRef]
- Kapuya, T. Comparative Analysis of Corporate Strategies in Agriculture: The Internationalisation of Agribusinesses in Sub-Saharan Africa; University of Pretoria: Pretoria, South Africa, 2018. [Google Scholar]
- Lipper, L.; Benton, T.G. Mega-Trends in the Southern African Region. 2020. Available online: https://cgspace.cgiar.org/items/b4276ea9-22f3-438d-8b61-69a60ecf1c6b (accessed on 20 January 2025).
- Mizik, T.; Gyarmati, G. Economic and sustainability of biodiesel production—A systematic literature review. Clean Technol. 2021, 3, 19–36. [Google Scholar] [CrossRef]
- Granjo, J.; Duarte, B.; Oliveira, N. Soybean biorefinery: Process simulation and analysis. Chem. Eng. Trans. 2015, 45, 583–588. [Google Scholar]
- Chowdhury, H.; Loganathan, B. Third-generation biofuels from microalgae: A review. Curr. Opin. Green Sustain. Chem. 2019, 20, 39–44. [Google Scholar] [CrossRef]
- Gebremariam, S.N.; Marchetti, J.M. Economics of biodiesel production. Energy Convers. Manag. 2018, 168, 74–84. [Google Scholar] [CrossRef]
- Páez, M.A.; Mele, F.D.; Guillén-Gosálbez, G. Multi-objective optimisation incorporating life cycle assessment. A case study of biofuels supply chain design. In Alternative Energy Sources and Technologies; Springer: Berlin/Heidelberg, Germany, 2016; pp. 465–492. [Google Scholar]
- Behzadi, S.; Farid, M. Examining the use of different feedstock for the production of biodiesel. Asia Pac. J. Chem. Eng. 2007, 2, 480–486. [Google Scholar] [CrossRef]
- Caldeira, C.; Freire, F.; Olivetti, E.A.; Kirchain, R.; Dias, L.C. Analysis of cost-environmental trade-offs in biodiesel production incorporating waste feedstocks: A multi-objective programming approach. J. Clean. Prod. 2019, 216, 64–73. [Google Scholar] [CrossRef]
- Pradana, Y.S.; Makertihartha, I.G.B.; Indarto, A.; Prakoso, T.; Soerawidjaja, T.H. A Review of biodiesel cold flow properties and its improvement methods: Towards sustainable biodiesel application. Energies 2024, 17, 4543. [Google Scholar] [CrossRef]
- Rincón, L.; Jaramillo, J.; Cardona, C. Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation. Renew. Energy 2014, 69, 479–487. [Google Scholar] [CrossRef]
- Gerbens-Leenes, W.; Hoekstra, A.Y.; van der Meer, T.H. The water footprint of bioenergy. Proc. Natl. Acad. Sci. USA 2009, 106, 10219–10223. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.; Shrestha, D.; Van Gerpen, J.; McAloon, A.; Yee, W.; Haas, M.; Duffield, J. Reassessment of life cycle greenhouse gas emissions for soybean biodiesel. Trans. ASABE 2012, 55, 2257–2264. [Google Scholar] [CrossRef]
- Xu, H.; Ou, L.; Li, Y.; Hawkins, T.R.; Wang, M. Life cycle greenhouse gas emissions of biodiesel and renewable diesel production in the United States. Environ. Sci. Technol. 2022, 56, 7512–7521. [Google Scholar] [CrossRef] [PubMed]
- Fargione, J.E.; Plevin, R.J.; Hill, J.D. The ecological impact of biofuels. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 351–377. [Google Scholar] [CrossRef]
- Lima, M.; Skutsch, M.; de Medeiros Costa, G. Deforestation and the social impacts of soy for biodiesel: Perspectives of farmers in the South Brazilian Amazon. Ecol. Soc. 2011, 16, 4. [Google Scholar] [CrossRef]
- Chang, W.-R.; Hwang, J.-J.; Wu, W. Environmental impact and sustainability study on biofuels for transportation applications. Renew. Sustain. Energy Rev. 2017, 67, 277–288. [Google Scholar] [CrossRef]
- Nordborg, M.; Cederberg, C.; Berndes, G.r. Modeling potential freshwater ecotoxicity impacts due to pesticide use in biofuel feedstock production: The cases of maize, rapeseed, salix, soybean, sugar cane, and wheat. Environ. Sci. Technol. 2014, 48, 11379–11388. [Google Scholar] [CrossRef]
- Requena, J.S.; Guimaraes, A.; Alpera, S.Q.; Gangas, E.R.; Hernandez-Navarro, S.; Gracia, L.N.; Martin-Gil, J.; Cuesta, H.F. Life Cycle Assessment (LCA) of the biofuel production process from sunflower oil, rapeseed oil and soybean oil. Fuel Process. Technol. 2011, 92, 190–199. [Google Scholar] [CrossRef]
- Zhang, Q.; Hong, J.; Zhang, T.; Tian, X.; Geng, Y.; Chen, W.; Zhai, Y.; Liu, W.; Shen, X.; Bai, Y. Environmental footprints of soybean production in China. Environ. Dev. Sustain. 2023, 25, 9047–9065. [Google Scholar] [CrossRef] [PubMed]
- Sieverding, H.L.; Bailey, L.M.; Hengen, T.J.; Clay, D.E.; Stone, J.J. Meta-Analysis of Soybean-based Biodiesel. J. Environ. Qual. 2015, 44, 1038–1048. [Google Scholar] [CrossRef]
- Zanon, A.J.; Streck, N.A.; Grassini, P. Climate and management factors influence soybean yield potential in a subtropical environment. Agron. J. 2016, 108, 1447–1454. [Google Scholar] [CrossRef]
- Asfaw, A.; Tesfaye, A.; Alamire, S.; Atnafe, M. Soybean genetic improvement in Ethiopia. In Proceedings of Food and Forage Legumes of Ethiopia: Progress and Prospects. In Proceedings of the Workshop on Food and Forage Legumes, Addis Ababa, Ethiopia, 22–26 September 2003; International Center for Agricultural Research in the Dry Areas: Beirut, Lebanon, 2006. [Google Scholar]
- Haskett, J.D.; Pachepsky, Y.A.; Acock, B. Effect of climate and atmospheric change on soybean water stress: A study of Iowa. Ecol. Model. 2000, 135, 265–277. [Google Scholar] [CrossRef]
- Sun, W.; Fleisher, D.; Timlin, D.; Li, S.; Wang, Z.; Reddy, V. Effects of elevated CO2 and temperature on soybean growth and gas exchange rates: A modified GLYCIM model. Agric. For. Meteorol. 2022, 312, 108700. [Google Scholar] [CrossRef]
- Thomasz, E.O.; Pérez-Franco, I.; García-García, A. Assessing the impact of climate change on soybean production in Argentina. Clim. Serv. 2024, 34, 100458. [Google Scholar] [CrossRef]
- Kothari, K.; Battisti, R.; Boote, K.J.; Archontoulis, S.V.; Confalone, A.; Constantin, J.; Cuadra, S.V.; Debaeke, P.; Faye, B.; Grant, B. Are soybean models ready for climate change food impact assessments? Eur. J. Agron. 2022, 135, 126482. [Google Scholar] [CrossRef]
- da Silva, E.H.F.M.; Boote, K.J.; Hoogenboom, G.; Gonçalves, A.O.; Junior, A.S.A.; Marin, F.R. Performance of the CSM-CROPGRO-soybean in simulating soybean growth and development and the soil water balance for a tropical environment. Agric. Water Manag. 2021, 252, 106929. [Google Scholar]
- Ma, L.; Fang, Q.; Sima, M.; Burkey, K.; Harmel, R. Simulated climate change effects on soybean production using two crop modules in RZWQM2. Agron. J. 2021, 113, 1349–1365. [Google Scholar] [CrossRef]
- Kothari, K.; Salmeron, M.; Battisti, R.; Boote, K.; Archontoulis, S.; Confalone, A.; Constantin, J.; Sanatiago, V.C.; Debaeke, P.; Faye, B. First Soybean Multi-model Sensitivity Analysis to CO 2, Temperature, Water, and Nitrogen. In ICROPM2020: Second International Crop Modelling Symposium; Inria: Montpellier, France, 2020. [Google Scholar]
- Motevali, A.; Hooshmandzadeh, N.; Fayyazi, E.; Valipour, M.; Yue, J. Environmental impacts of biodiesel production cycle from farm to manufactory: An application of sustainable systems engineering. Atmosphere 2023, 14, 399. [Google Scholar] [CrossRef]
- Jing, Q.; Huffman, T.; Shang, J.; Liu, J.; Pattey, E.; Morrison, M.; Jégo, G.; Qian, B. Modelling soybean yield responses to seeding date under projected climate change scenarios. Can. J. Plant Sci. 2017, 97, 1152–1164. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, W.; He, H.; Wang, Z.; Cao, Y. Effects of Sugarcane and soybean intercropping on the nitrogen-fixing bacterial community in the Rhizosphere. Front. Microbiol. 2021, 12, 713349. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Ma, Q.; Chen, Y.; Tian, B.; Xu, L.; Bai, Y.; Chen, W.; Li, X. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020, 14, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Ma, M.; Jiang, X.; Fan, F.; Meng, F.; Cao, F.; Chen, H.; Guan, D.; Li, L.; Li, J. Long-term effects of nitrogen fertilization and Bradyrhizobium inoculation on diazotrophic community structure and diversity in soybean cultivation. Appl. Soil Ecol. 2025, 206, 105806. [Google Scholar] [CrossRef]
- Cordeiro, C.F.d.S.; Echer, F.R. Interactive effects of nitrogen-fixing bacteria inoculation and nitrogen fertilization on soybean yield in unfavorable edaphoclimatic environments. Sci. Rep. 2019, 9, 15606. [Google Scholar] [CrossRef]
- Cvijanovic, G.; Dozet, G.; Djukic, V.; Dorcdevic, S.; Puzic, G. Microbial activity of soil during the inoculation of soya bean with symbiotic and free-living nitrogen-fixing bacteria. Afr. J. Biotechnol. 2012, 11, 590–597. [Google Scholar]
- Zhang, Y.; Zhang, R.; Zhao, S.; Li, S.; Meng, L. Impact of nitrogen use efficiency towards ammonia-oxidizing microbes in rhizosphere soil of intercropped soybean and maize. J. Soil. Sci. Plant Nutr. 2024, 24, 6113–6130. [Google Scholar] [CrossRef]
- Ben Gaied, R.; Brígido, C.; Sbissi, I.; Tarhouni, M. Sustainable strategy to boost legumes growth under salinity and drought stress in semi-arid and arid regions. Soil Syst. 2024, 8, 84. [Google Scholar] [CrossRef]
- Nimnoi, P.; Pongsilp, N.; Lumyong, S. Co-inoculation of soybean (Glycine max) with actinomycetes and Bradyrhizobium japonicum enhances plant growth, nitrogenase activity and plant nutrition. J. Plant Nutr. 2014, 37, 432–446. [Google Scholar] [CrossRef]
- Shayanthan, A. Characterization of bacterial communities in soybean cultivated soils of Manitoba. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 2024. [Google Scholar]
- Mayhood, P.M. Investigation of the Individual Soybean Root Nodule Microbiome. Master’s Thesis, Missouri State University, Springfield, MO, USA, 2020. [Google Scholar]
- Garibay-Valdez, E.; Calderón, K.; Vargas-Albores, F.; Lago-Lestón, A.; Martínez-Córdova, L.R.; Martínez-Porchas, M. Functional metagenomics for rhizospheric soil in agricultural systems. Microb. Genom. Sustain. Agroecosystems 2019, 1, 149–160. [Google Scholar]
- Merloti, L.F. Unraveling the Soil Microbiome in Brachiaria Pastures: Exploring Varietal Influences and Nitrogen Fertilizers; Universidade de São Paulo: São Paulo, Brazil, 2024. [Google Scholar]
- Lian, T.; Cheng, L.; Liu, Q.; Yu, T.; Cai, Z.; Nian, H.; Hartmann, M. Potential relevance between soybean nitrogen uptake and rhizosphere prokaryotic communities under waterlogging stress. ISME Commun. 2023, 3, 71. [Google Scholar] [CrossRef]
- Kharnaior, P.; Tamang, J.P. Metagenomic-metabolomic mining of kinema, a naturally fermented soybean food of the Eastern Himalayas. Front. Microbiol. 2022, 13, 868383. [Google Scholar] [CrossRef]
- Niranjan, V.; Setlur, A.S.; Skariyachan, S.; Chandrashekar, K. Applications of Microbial Consortia and Microbiome Interactions for Augmenting Sustainable Agrobiology. In Sustainable Agrobiology: Design and Development of Microbial Consortia; Springer: Berlin/Heidelberg, Germany, 2023; pp. 275–316. [Google Scholar]
- Longley, R. Impact of Agricultural Management and Microbial Inoculation on Soybean (Glycine max) and Its Associated Microbiome; Michigan State University: East Lansing, MI, USA, 2022. [Google Scholar]
- Akley, K.E. Impacts of Bradyrhizobium Inoculants on Growth and Yield of Tropical Soybean (Glycine max (L.) Merr.) Cultivars, Soil Health and Soil Microbiome; Kansas State University: Manhattan, KS, USA, 2019. [Google Scholar]
- Moretti, L.G.; Crusciol, C.A.C.; Leite, M.F.A.; Momesso, L.; Bossolani, J.W.; Costa, O.Y.A.; Hungria, M.; Kuramae, E.E. Diverse bacterial consortia: Key drivers of rhizosoil fertility modulating microbiome functions, plant physiology, nutrition, and soybean grain yield. Environ. Microbiome 2024, 19, 50. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q. Enhancing soil health and biodiversity through nitrogen fixation symbiosis in leguminous plants. Mol. Microbiol. Res. 2024, 14, 49–60. [Google Scholar] [CrossRef]
- Babujia, L.C.; Silva, A.P.; Nakatani, A.S.; Cantão, M.E.; Vasconcelos, A.T.R.; Visentainer, J.V.; Hungria, M. Impact of long-term cropping of glyphosate-resistant transgenic soybean [Glycine max (L.) Merr.] on soil microbiome. Transgenic Res. 2016, 25, 425–440. [Google Scholar] [CrossRef]
- Kodadinne Narayana, N.; Kingery, W.L.; Shankle, M.W.; Ganapathi Shanmugam, S. Differential response of soil microbial diversity and community composition influenced by cover crops and fertilizer treatments in a dryland soybean production system. Agronomy 2022, 12, 618. [Google Scholar] [CrossRef]
- Bandara, A.Y.; Weerasooriya, D.K.; Trexler, R.V.; Bell, T.H.; Esker, P.D. Soybean roots and soil from high-and low-yielding field sites have different microbiome composition. Front. Microbiol. 2021, 12, 675352. [Google Scholar] [CrossRef]
- Longley, R.; Noel, Z.A.; Benucci, G.M.N.; Chilvers, M.I.; Trail, F.; Bonito, G. Crop management impacts the soybean (Glycine max) microbiome. Front. Microbiol. 2020, 11, 1116. [Google Scholar] [CrossRef]
- Manikkath Haridas, D. Host Mediated Microbiome Selection to Study the Changes in the Nutrient Cycling, Root Exudation and Bacterial Population in the Rhizosphere of Soybean Genotypes; University of Reading: Reading, UK, 2023. [Google Scholar]
- Astapati, A.D.; Nath, S. The complex interplay between plant-microbe and virus interactions in sustainable agriculture: Harnessing phytomicrobiomes for enhanced soil health, designer plants, resource use efficiency, and food security. Crop Des. 2023, 2, 100028. [Google Scholar] [CrossRef]
- Verma, A.; Saini, J.K.; Singh, H.B.; Wiley, J. Phytomicrobiome Interactions and Sustainable Agriculture; Wiley Online Library: Hoboken, NJ, USA, 2021. [Google Scholar]
- Bonini Pires, C.A. From Microbes to Farmers Perspectives: Enhancing Soil Health Through on-Farm Sustainable Agricultural Practices. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2023. [Google Scholar]
- Wang, X.; Zeng, H.; Lin, L.; Huang, Y.; Lin, H.; Que, Y. Deep learning-empowered crop breeding: Intelligent, efficient and promising. Front. Plant Sci. 2023, 14, 1260089. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Li, W.; Zhang, H.; Li, L. Big data and artificial intelligence-aided crop breeding: Progress and prospects. J. Integr. Plant Biol. 2024; online ahead of print. [Google Scholar]
- Pagano, M.C.; Miransari, M. The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–26. [Google Scholar]
- Terzić, D.; Popović, V.; Tatić, M.; Vasileva, V.; Đekić, V.; Ugrenović, V.; Popović, S.; Avdić, P. Soybean area, yield and production in world. In Proceedings of the XXII Eco-Conference® 2018, Ecological Movement of Novi Sad, Novi Sad, Serbia, 26–28 September 2018. [Google Scholar]
- Yofa, R.; Perdana, R.; Aldillah, R.; Muslim, C.; Agustian, A. Strategies to increase soybean production by increasing the distribution of new superior varieties. IOP Conf. Ser. Earth Environ. Sci. 2021, 892, 012067. [Google Scholar] [CrossRef]
- Harsono, A.; Harnowo, D.; Ginting, E.; Elisabeth, D.A.A. Soybean in Indonesia: Current Status, Challenges and Opportunities to Achieve Self-Sufficiency; IntechOpen: London, UK, 2021. [Google Scholar]
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the World 2. Soybean—Worldwide production, use, and constraints caused by pathogens and pests. Food Secur. 2011, 3, 5–17. [Google Scholar] [CrossRef]
Gene Name | Effect on Plant | Techniques | Tolerant Stress Type | Tissues | Ref. |
---|---|---|---|---|---|
GmCLC1 | Enhances salinity tolerance by functioning as a chloride/proton antiporter | Expression analysis, Genetic mapping | Salinity | Roots, Leaves | [28] |
GmNHX1, GmNHX2 | Na+/H+ antiporters contributing to salt tolerance | Expression analysis, Genetic mapping | Salinity | Roots, All Organs (GmNHX2) | [29] |
GmsSOS1 | Na+ extrusion from roots regulates long-distance Na+ transport | Overexpression in Arabidopsis | Salinity | Roots, Shoots | [30] |
GmDREB2 | Binds to DRE motifs to enhance salinity tolerance | Transgenic plant generation | Salinity, Drought | Various Tissues | [31] |
GmERF | Regulates downstream stress-responsive genes, enhances salt tolerance | Transgenic plant generation | Salinity, Drought | Various Tissues | [32] |
GmbZIP44, 62, 78, 110 | Improves salt and drought tolerance by regulating proline, Na+, and K+ levels | Expression analysis, Transgenic plants | Salt, Drought | Various Tissues | [32] |
GmWRKY12 | Regulates stress-responsive genes, involves salt and drought tolerance | Transcriptional profiling | Salt, Drought | Various Tissues | [32] |
GmMYB48, GmWD40, GmDHN15, GmGST1, GmLEA | Upregulated in transgenic lines to enhance drought and salt tolerance | Transgenic plant generation, Expression analysis | Salt, Drought | Various Tissues | [33] |
Satt001 | Linked to drought tolerance via water-use efficiency | Genetic mapping, SSR markers | Drought | Various Tissues | [36] |
Satt002 | Associated with salinity tolerance via sodium ion exclusion | Genetic mapping, SSR markers | Salinity | Various Tissues | [36] |
Satt211 | Contributes to drought resistance via root system architecture | Genetic mapping, SSR markers | Drought | Roots | [37] |
Satt244 | Involved in osmotic adjustment under water-deficit conditions | Genetic mapping, SSR markers | Drought | Roots | [37] |
Satt312 | Linked to salt stress tolerance via ion transport regulation | Genetic mapping, SSR markers | Salinity | Various Tissues | [37] |
Satt337 | Associated with antioxidant enzyme activity under oxidative stress | Genetic mapping, SSR markers | Oxidative Stress (Salt) | Various Tissues | [37] |
GmCHX1 | Candidate gene for salt tolerance | Genome-wide sequencing, Fine mapping | Salinity | Roots | [40] |
GmSALT3 | Casual gene for salt tolerance on chromosome 3 | Fine mapping, Genetic mapping | Salinity | Roots | [49] |
GmNCL | Improves yield in salt-affected fields | Map-based cloning, Genetic mapping | Salinity | Various Tissues | [48] |
HaHB4 | Enhances drought tolerance, increases yield under water deficit | Transgenic plant generation, Molecular analysis | Drought | Leaves, Roots | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gai, Y.; Liu, S.; Zhang, Z.; Wei, J.; Wang, H.; Liu, L.; Bai, Q.; Qin, Q.; Zhao, C.; Zhang, S.; et al. Integrative Approaches to Soybean Resilience, Productivity, and Utility: A Review of Genomics, Computational Modeling, and Economic Viability. Plants 2025, 14, 671. https://doi.org/10.3390/plants14050671
Gai Y, Liu S, Zhang Z, Wei J, Wang H, Liu L, Bai Q, Qin Q, Zhao C, Zhang S, et al. Integrative Approaches to Soybean Resilience, Productivity, and Utility: A Review of Genomics, Computational Modeling, and Economic Viability. Plants. 2025; 14(5):671. https://doi.org/10.3390/plants14050671
Chicago/Turabian StyleGai, Yuhong, Shuhao Liu, Zhidan Zhang, Jian Wei, Hongtao Wang, Lu Liu, Qianyue Bai, Qiushi Qin, Chungang Zhao, Shuheng Zhang, and et al. 2025. "Integrative Approaches to Soybean Resilience, Productivity, and Utility: A Review of Genomics, Computational Modeling, and Economic Viability" Plants 14, no. 5: 671. https://doi.org/10.3390/plants14050671
APA StyleGai, Y., Liu, S., Zhang, Z., Wei, J., Wang, H., Liu, L., Bai, Q., Qin, Q., Zhao, C., Zhang, S., Xiang, N., & Zhang, X. (2025). Integrative Approaches to Soybean Resilience, Productivity, and Utility: A Review of Genomics, Computational Modeling, and Economic Viability. Plants, 14(5), 671. https://doi.org/10.3390/plants14050671