Oxalis pes-caprae L. (Oxalidaceae): From Invasive Concern to Promising Bioresource for Health and Sustainable Applications
Abstract
1. Introduction
2. Data Sources
3. Botany, Ecology and Distribution
3.1. Taxonomy and Morphology
3.2. Ecology
3.3. Distribution
Brief History of the Spread of O. pes-caprae in the Mediterranean Region
4. Nutritive Features
5. Phytochemistry
Extraction | Compounds | Reference |
---|---|---|
Ethyl acetate, leaves and twigs | 4′-acetylphenyl 4-hydroxycinnamate; 4′-acetylphenyl sinapate; 4′-acetylphenyl 4-O-methylsinapate; 3′-acetylphenyl 4-methylsinapate; 4′-(1-hydroxyethyl)phenyl sinapate; 4-methylsinapate | [39] |
MeOH, leaves and twigs | (E)-3-methoxyphenyl 4-hydroxycinnamate; 2-methoxyphenyl 3-phenylpropanoate; 2-hydroxyethyl 3-phenylpropanoate; 4,4′-[1,1′-oxybis(ethane-1,1-diyl)]diphenol; dihydrocinnamic acid; 3-methoxyphenol; 2- Methoxyphenol; tangeretin; nobiletin; 5-demethylnobiletin; 4′-demethylnobiletin | [40] |
Water, leaves and twigs | (E)-4-[4-(2-carboxyethenyl)phenoxy]benzoic acid; p-coumaric acid; cis-p-coumaric acid; cinnamic acid; 1,2,3,4-tetrahydro-1-methyl-β-carboline-3-carboxylic acid; 4-hydroxybenzoic acid; 4-(1-hydroxyethyl)phenol; 3-(1-hydroxyethyl)phenol | [40] |
Ethyl acetate, leaves and twigs | (E)-4-(1-(4-(1-hydroxyethyl)phenoxy)ethyl) phenyl 3,4,5-trimethoxycinnamate; loliolide | [41] |
Ethyl acetate, aerial parts | Chlorogenic acid; Quinic ferulate; Luteolin glucosides; Cernuoside | [42] |
MeOH, aerial parts | Chlorogenic acid; Luteolin C-O-diglucoside | [42] |
Boiling water/n-butanol, aerial parts | Chlorogenic acid; Luteolin C-glucoside; Luteolin C-O-diglucoside; Cernuoside | [42] |
Hydroalcoholic (50%), leaves | 7,3′-dimethoxyl-2″-O-glycosyl orientin, 7,3′-dimethoxyl-6-desoxyhexose orientin, 6-hexosyl-8-acetylhexosyl luteolin, vitexin, 7,4′-dimethoxyl-2″-glycosyl vitexin, and 2″-O-rhamnosyl vitexin | [43] |
MeOH 80%, leaves and flowers | luteolin, luteolin-O-dihydrogalloyl-trihexoside, iso-luteolin-O-dihydrogalloyl-trihexosides, kaempferol-di-O-hexosides, kaempferol-O-coumaroyl-hexoside, kaempferol, kaempferol-3-apiosyl-hexoside, isovitexin-O-hexoside, kaempferol-hexoside, kaempferol-di-hexoside, kaempferol-pentose, apigenin-di-C-hexoside, iso-apigenin-di-C-hexosides, and quercetin-O-hexoside | [46] |
Classification | Name | Reference |
---|---|---|
Aldehydes | 3-methyl butanal | [38] |
nonanal | [38] | |
Alcohols | 3-hexen-1-ol | [38] |
phenylethyl alcohol | [38] | |
1-dodecanol | [38] | |
1-tetradecanol | [38] | |
Esters | 4-penten-1-yl acetate | [38] |
pentyl acetate | [38] | |
isoamyl propionate | [38] | |
3-hexenyl acetate | [38] | |
hexyl acetate | [38] | |
pentyl butanoate | [38] | |
isoamyl butanoate | [38] | |
1,1′-bicyclohexyl | [38] | |
ethyl nonanoate | [38] | |
isoamyl benzoate | [38] | |
ethyl dodecanoate | [38] | |
ethyl hexadecanoate | [38] | |
Ethers | diisoamyl ether | [38] |
Carboxylic acids | nonanoic acid | [38] |
Terpenes | linalool | [38] |
α-terpineol | [38] | |
β-caryophyllene | [38] | |
β-farnesene | [38] | |
humulene | [38] | |
nerolidol | [38] | |
loliolide | [41] | |
Others | 1,3-bis(1,1-dimethylethyl)benzene | [38] |
4,6-dimethyl dodecane | [38] | |
2,4-bis(1,1-dimethylethyl)phenol | [38] | |
hexadecane | [38] | |
pentadecane | [38] | |
cyclotetradecane | [38] |
6. Biological Activities
6.1. Antioxidant Activity
Activity | Extract | Dose | Reference |
---|---|---|---|
Antioxidant (DPPH test) | Hydroalcoholic (50%), leaves | IC50 17.9 μg/mL | [43] |
n-Hexane, flowers | IC50 24.6 μg/mL | [44] | |
Methanol, flowers | IC50 36.4 μg/mL | [44] | |
Methanol, leaves | IC50 46.3 μg/mL | [44] | |
n-Hexane, leaves | IC50 56.2 μg/mL | [44] | |
Methanol, stems | IC50 57.1 μg/mL | [44] | |
n-Hexane, stems | IC50 66.8 μg/mL | [44] | |
Aqueous, flowers | IC50 114 μg/mL | [46] | |
Methanolic, flowers | IC50 134 μg/mL | [46] | |
Methanol, leaves | IC50 214 μg/mL | [46] | |
Water, leaves | IC50 296 μg/mL | [46] | |
Acetone, leaves | IC50 5.2 μg/mL | [48] | |
Methanol, leaves | IC50 17.3 μg/mL | [48] | |
Water, leaves | IC50 31.4 μg/mL | [48] | |
Ethanol, leaves | IC50 73.2 μg/mL | [48] | |
n-Hexane, leaves | IC50 > 100 μg/mL | [48] | |
Antioxidant (Fe3+ reducing power) | Methanol, stems | 34.98 mg GAE/g | [44] |
Methanol, flowers | 795.8 mg AAE/g | [46] | |
Water, flowers | 690.8 mg AAE/g | [46] | |
Methanol, leaves | 507.8 mg AAE/g | [46] | |
Water, leaves | 387.4 mg AAE/g | [46] | |
Antioxidant (Increase in SOD, CAT, GPx, and GR activity in diabetic mice) | Methanol, flower | 150–250 mg/kg | [46] |
Antioxidant (Increase in DPPH radical scavenging activity in plasma of mice) | Methanol, N.S. | 100–200–400 mg/kg | [49] |
Antioxidant (Increase of liver GSH in mice) | Methanol, N.S. | 100–200–400 mg/kg | [49] |
Antidiabetic (Inhibition of α-amylase) | Methanol, flower | Inhibition of 68% at 187.5 µg/mL | [46] |
Antidiabetic (Inhibition of α-glucosidase) | Methanol, flower | Inhibition of 40% at 222.5 µg/mL | [46] |
Antidiabetic (Inhibition of non-enzymatic glycation) | Methanol, flower | Inhibition ~100% with 1 mg/mL | [46] |
Antidiabetic (Increase in carbohydrate metabolic enzyme activity in mice) | Methanol, flower | 150–250 mg/kg | [46] |
Antibacterial | Ethanol, methanol, acetone, n-hexane, and chloroform, N.S. | 1000, 1500, and 2500 ppm | [29] |
Antifungal | Ethanol, N.S. | 1000 ppm | [29] |
Vascular (Reduction of maximum contraction response to noradrenaline) | Hydroalcoholic (50%), leaves | Reduction of 58.4% with 0.66 mg/mL | [43] |
6.2. Antidiabetic Activity
6.3. Antibacterial and Antifungal Activities
6.4. Vascular Activity
6.5. Neuroprotective Activity
7. Sustainable Agricultural Application
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Early, R.; Bradley, B.; Dukes, J.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef]
- Petsikos, C.; Dalias, P.; Troumbis, A.Y. Effects of Oxalis pes-caprae L. invasion in olive groves. Agric. Ecosyst. Environ. 2007, 120, 325–329. [Google Scholar] [CrossRef]
- Pereira, A.G.; Fraga-Corral, M.; Garcia-Oliveira, P.; Lourenço-Lopes, C.; Carpena, M.; Prieto, M.A.; Simal-Gandara, J. The Use of Invasive Algae Species as a Source of Secondary Metabolites and Biological Activities: Spain as Case-Study. Mar. Drugs 2021, 19, 178. [Google Scholar] [CrossRef]
- McGaw, L.J.; Omokhua-Uyi, A.G.; Finnie, J.F.; Van Staden, J. Invasive alien plants and weeds in South Africa: A review of their applications in traditional medicine and potential pharmaceutical properties. J. Ethnopharmacol. 2022, 283, 114564. [Google Scholar] [CrossRef]
- Potgieter, L.J.; Gaertner, M.; Kueffer, C.; Larson, B.M.; Livingstone, S.W.; O’Farrell, P.J.; Richardson, D.M. Alien plants as mediators of ecosystem services and disservices in urban systems: A global review. Biol. Invasions. 2017, 19, 3571–3588. [Google Scholar] [CrossRef]
- Kozuharova, E.; Matkowski, A.; Woźniak, D.; Simeonova, R.; Naychov, Z.; Malainer, C.; Mocan, A.; Nabavi, S.M.; Atanasov, A.G. Amorpha fruticosa–A noxious invasive alien Plant in Europe or a medicinal plant against metabolic disease? Front. Pharmacol. 2017, 8, 333. [Google Scholar] [CrossRef]
- Kozuharova, E.; Malfa, G.A.; Acquaviva, R.; Zarev, Y.; Ionkova, I. Utility potential of the aggressive invasive Solanum elaeagnifolium Cav. (Solanaceae) as an option to control its expansion: Bioactive compounds and medicinal properties. Euro. Mediterr. J. Environ. Integr. 2024, 9, 1987–1992. [Google Scholar] [CrossRef]
- Munné-Bosch, S. Achieving the impossible: Prevention and eradication of invasive plants in Mediterranean-type ecosystems. Trends Plant Sci. 2024, 29, 437–446. [Google Scholar] [PubMed]
- Castro, S.; Loureiro, J.; Santos, C.; Ater, M.; Ayensa, G.; Navarro, L. Distribution of flower morphs, ploidy level and sexual reproduction of the invasive weed Oxalis pes-caprae in the western area of the Mediterranean region. Ann. Bot. Lond. 2007, 99, 507–517. [Google Scholar] [CrossRef]
- Gallardo, B. Europe’s top 10 invasive species: Relative importance of climatic, habitat and socio-economic factors. Ethol. Ecol. Evo. 2014, 26, 130–151. [Google Scholar] [CrossRef]
- World Flora Online (WFO). Oxalis sericea Thunb. Available online: http://www.worldfloraonline.org/taxon/wfo-0001089817 (accessed on 9 December 2024).
- Verdaguer, D.; Sala, A.; Vilà, M. Effect of Environmental Factors and Bulb Mass on the Invasive Geophyte Oxalis pes-caprae Development. Acta Oecol. 2010, 36, 92–99. [Google Scholar] [CrossRef]
- Plants of the World Online. Oxalis pes-caprae L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:77223906-1#synonyms (accessed on 4 February 2025).
- Papini, A.; Signorini, M.A.; Foggi, B.; Della Giovampaola, E.; Ongaro, L.; Vivona, L.; Antosuoso, U.; Pani, C.; Bruschi, P. History vs. legend: Retracing invasion and spread of Oxalis pes-caprae L. in Europe and the Mediterranean area. PLoS ONE 2017, 12, e0190237. [Google Scholar] [CrossRef] [PubMed]
- Acta Plantarum. Oxalis pes-caprae L. Available online: https://www.actaplantarum.org/flora/flora_info.php?id=502801 (accessed on 4 February 2025).
- Signorini, M.A.; Calamassi, R.; Bruschi, P.; Tani, C. Stigma and Style Anatomy and Ultrastructure in Italian Oxalis pes-caprae L. and Their Possible Connection with Self-Incompatibility. Flora 2014, 209, 471–483. [Google Scholar] [CrossRef]
- Sala, A.; Verdaguer, D.; Vilà, M. Sensitivity of the invasive geophyte Oxalis pes-caprae to nutrient availability and competition. Ann. Bot. 2007, 99, 637–645. [Google Scholar] [CrossRef]
- Biondi, E.; Blasi, C. Prodromo Della Vegetazione d’Italia; Ministero dell’Ambiente e della Tutela del Territorio e del Mare: Rome, Italy, 2015. [Google Scholar]
- Mucina, L.; Bültmann, H.; Dierßen, K.; Theurillat, J.-P.; Raus, T.; Čarni, A.; Šumberová, K.; Willner, W.; Dengler, J.; Gavilán García, R.; et al. Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veg. Sci. 2016, 19 (Suppl. 1), 3–264. [Google Scholar] [CrossRef]
- Lo Giudice, V. Effect of Oxalis pes-caprae L. on the Growth of Sour Orange (Citrus aurantium L.) Plants. Atti. Giornate Fitopatol. 1994, 1, 349–356. [Google Scholar]
- Plants of the World Online (POWO). Oxalis pes-caprae L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:375259-1 (accessed on 9 December 2024).
- Saccardo, P.A. Cronologia Della Flora Italiana; Tipografia del Seminario: Padova, Italy, 1909. [Google Scholar]
- Borzì, A. La vegetazione della Conca d’oro. In Palermo e la Conca d’oro; VII Congresso Geografico Italiano: Palermo, Italy, 1910; pp. 81–93. [Google Scholar]
- Maniero, F. Fitocronologia d’Italia; Leo S. Olschki: Firenze, Italy, 2000; p. 289. [Google Scholar]
- Raimondo, F.M.; Mazzola, P. Nota al catalogo ragionato. In Fiori di Sicilia. Acis Hortus Regius. L’Erbario di Giuseppe Riggio (Acireale 1811); Napolone, C., Ed.; Ricci Editore S.r.l.: Parma, Italy, 2007; pp. 338–339. [Google Scholar]
- Napoleone, C. (Ed.) Fiori di Sicilia. Acis Hortus Regius. L’Erbario di Giuseppe Riggio (Acireale 1811); Ricci Editore S.r.l.: Parma, Italy, 2007; p. 397. [Google Scholar]
- Faltein, Z.; Esler, K.J.; Midgley, G.F.; Ripley, B.S. Atmospheric CO2 concentrations restrict the growth of Oxalis pes-caprae bulbs used by human inhabitants of the Paleo-Agulhas plain during the Pleistocene glacials. Quat. Sci. Rev. 2020, 235, 105731. [Google Scholar] [CrossRef]
- De Vynck, J.C.; Van Wyk, B.E.; Cowling, R.M. Indigenous edible plant use by contemporary Khoe-San descendants of South Africa’s Cape South Coast. S. Afr. J. Bot. 2016, 102, 60–69. [Google Scholar] [CrossRef]
- Naila, S.; Ibrar, M. Pharmacological Studies of Oxalis pes-caprae L. Pharmacogn. J. 2018, 10, 705–711. [Google Scholar] [CrossRef]
- Michael, P.W. Studies on Oxalis pes-caprae L. in Australia: II. The control of the pentaploid variety. Weed Res. 1965, 5, 133–140. [Google Scholar] [CrossRef]
- Drobnik, J.; Drobnik, E. Timeline and bibliography of early isolations of plant metabolites (1770–1820) and their impact to pharmacy: A critical study. Fitoterapia 2016, 115, 155–164. [Google Scholar] [CrossRef]
- Noonan, S.C.; Savage, G.P. Oxalate content of foods and its effect on humans. Asia Pac. J. Clin. Nutr. 1999, 8, 64–74. [Google Scholar]
- Stepanova, N.; Tolstanova, G.; Aleksandrova, I.; Korol, L.; Dovbynchuk, T.; Driianska, V.; Savchenko, S. Gut microbiota’s oxalate-degrading activity and its implications on cardiovascular health in patients with kidney failure: A pilot prospective study. Medicina 2023, 59, 2189. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.K.; Nguyen, D.H.; Nguyen, H.V. Effects of processing on oxalate contents in plant foods: A review. J Food Compos. Anal. 2022, 112, 104685. [Google Scholar] [CrossRef]
- Salgado, N.; Silva, M.A.; Figueira, M.E.; Costa, H.S.; Albuquerque, T.G. Oxalate in Foods: Extraction Conditions, Analytical Methods, Occurrence, and Health Implications. Foods 2023, 12, 3201. [Google Scholar] [CrossRef] [PubMed]
- Cassland, P.; Sjöde, A.; Winestrand, S.; Jönsson, L.J.; Nilvebrant, N.O. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications. Appl. Biochem. Biotech. 2010, 161, 255–263. [Google Scholar] [CrossRef]
- Misiewicz, B.; Mencer, D.; Terzaghi, W.; VanWert, A.L. Analytical Methods for Oxalate Quantification: The Ubiquitous Organic Anion. Molecules 2023, 28, 3206. [Google Scholar] [CrossRef]
- Clemente-Villalba, J.; Burló, F.; Hernández, F.; Carbonell-Barrachina, Á.A. Potential Interest of Oxalis pes-caprae L., a Wild Edible Plant, for the Food and Pharmaceutical Industries. Foods 2024, 13, 858. [Google Scholar] [CrossRef] [PubMed]
- DellaGreca, M.; Purcaro, R.; Previtera, L.; Zarrelli, A. Phenyl cinnamate derivatives from Oxalis pes-caprae. Chem. Biodivers. 2008, 5, 2408–2414. [Google Scholar] [CrossRef]
- DellaGreca, M.; Previtera, L.; Purcaro, R.; Zarrelli, A. Phytotoxic aromatic constituents of Oxalis pes-caprae. Chem. Biodivers. 2009, 6, 459–465. [Google Scholar] [CrossRef]
- DellaGreca, M.; Previtera, L.; Zarrelli, A. A new aromatic component from Oxalis pes-caprae. Nat. Prod. Res. 2010, 24, 958–961. [Google Scholar] [CrossRef]
- Güçlütürk, I.; Detsi, A.; Weiss, E.K.; Ioannou, E.; Roussis, V.; Kefalas, P. Evaluation of anti-oxidant activity and identification of major polyphenolics of the invasive weed Oxalis pes-caprae. Phytochem. Analysis. 2012, 23, 642–646. [Google Scholar] [CrossRef]
- Gaspar, M.C.; Fonseca, D.A.; Antunes, M.J.; Frigerio, C.; Gomes, N.G.; Vieira, M.; Santos, A.E.; Cruz, M.T.; Cotrim, M.D.; Campos, M.G. Polyphenolic characterisation and bioactivity of an Oxalis pes-caprae L. leaf extract. Nat. Prod. Res. 2017, 32, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Gul, F.; Khan, I.; Iqbal, J.; Abbasi, B.A.; Shahbaz, A.; Capasso, R.; Amaro-Estrada, I.; Bin Jardan, J.A.; Cossio-Bayugar, R.; T Mahmood, T. Phytochemistry, biological activities and in silico molecular docking studies of Oxalis pes-caprae L. compounds against SARS-CoV-2. J. King Saud Univ. Sci. 2022, 34, 102136. [Google Scholar] [CrossRef]
- Lahlali, M.; Manaut, N.; Boualy, B.; Loudiki, M.; Douma, M. First report of the anti-cyanobacterial activity of the invasive weed Oxalis pes-caprae L. against Microcystis aeruginosa growth. Desalin. Water Treat. 2023, 296, 41–48. [Google Scholar]
- Kabach, I.; Bouchmaa, N.; Zouaoui, Z.; Ennoury, A.; El Asri, S.; Laabar, A.; Oumeslakht, L.; Cacciola, F.; El Majdoub, Y.O.; Mondello, L.; et al. Phytochemical profile and antioxidant capacity, α-amylase and α-glucosidase inhibitory activities of Oxalis pes-caprae extracts in alloxan-induced diabetic mice. Biomed. Pharmacother. 2023, 160, 114393. [Google Scholar] [CrossRef]
- Gülçin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Ondua, M.; Njoya, E.M.; Abdalla, M.A.; McGaw, L.J. Anti-inflammatory and antioxidant properties of leaf extracts of eleven South African medicinal plants used traditionally to treat inflammation. J. Ethnopharmacol. 2019, 234, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Belghoul, M.; Baghiani, A.; Khennouf, S.; Arrar, L. Sub-acute oral toxicity and in vivo antioxidant properties of Oxalis cernua. S. Afr. J. Bot. 2020, 133, 91–97. [Google Scholar] [CrossRef]
- Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A.; et al. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef]
- Di Giacomo, C.; Malfa, G.A.; Tomasello, B.; Bianchi, S.; Acquaviva, R. Natural Compounds and Glutathione: Beyond Mere Antioxidants. Antioxidants 2023, 12, 1445. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Yan, L.J. Protein oxidative modifications: Beneficial roles in disease and health. J. Biochem. Pharmacol. Res. 2013, 1, 15. [Google Scholar]
- Song, Q.; Liu, J.; Dong, L.; Wang, X.; Zhang, X. Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomed. Pharmacother. 2021, 140, 111750. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Cheng, K.W.; Xiao, J.; Wang, M. The multifunctional roles of flavonoids against the formation of advanced glycation end products (AGEs) and AGEs-induced harmful effects. Trends Food Sci. Technol. 2020, 103, 333–347. [Google Scholar] [CrossRef]
- Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A. Antimicrobial Effect of Different Herbal Plant Extracts against Different Microbial Population. Saudi J. Biol. Sci. 2020, 27, 3221–3227. [Google Scholar] [CrossRef]
- Aprilita, R.; Maksum, R.; Abdul, M.; Suyatna, F. Screening angiotensin converting enzyme (ACE) inhibitor activity of antihypertensive medicinal plants from Indonesia. Int. J. Pharm. Teach. Pract. 2013, 4, 527–532. [Google Scholar]
- Afifi, F.U.; Khalil, E.; Abdalla, S. Effect of isoorientin isolated from Arum palaestinum on uterine smooth muscle of rats and guinea pigs. J. Ethnopharmacol. 1999, 65, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, D.A.; Ferreira, M.; Campos, M.G.; Antunes, P.E.; Antunes, M.J.; Cotrim, M.D. Vascular effects of a polyphenolic fraction from Oxalis pes-caprae L.: Role of α-adrenergic receptors Sub-types. Nat. Prod. Res. 2020, 34, 3369–3372. [Google Scholar] [CrossRef]
- Lorenzo, P.; Galhano, C.; Dias, M.C. Organic Waste from the Management of the Invasive Oxalis pes-caprae as a Source of Nutrients for Small Horticultural Crops. Plants 2024, 13, 2358. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
Class (%) | Flowers | Leaves | Stems |
---|---|---|---|
Carbohydrates | 62.6 | 45.9 | 73.3 |
Fats | 6.7 | 12.7 | 3.5 |
Proteins | 13.5 | 19.4 | 8.9 |
Dietary Fibers | 30.7 | 28.7 | 36.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malfa, G.A.; Bianchi, S.; Spadaro, V.; Di Giacomo, C.; Raimondo, F.M.; Acquaviva, R. Oxalis pes-caprae L. (Oxalidaceae): From Invasive Concern to Promising Bioresource for Health and Sustainable Applications. Plants 2025, 14, 578. https://doi.org/10.3390/plants14040578
Malfa GA, Bianchi S, Spadaro V, Di Giacomo C, Raimondo FM, Acquaviva R. Oxalis pes-caprae L. (Oxalidaceae): From Invasive Concern to Promising Bioresource for Health and Sustainable Applications. Plants. 2025; 14(4):578. https://doi.org/10.3390/plants14040578
Chicago/Turabian StyleMalfa, Giuseppe Antonio, Simone Bianchi, Vivienne Spadaro, Claudia Di Giacomo, Francesco Maria Raimondo, and Rosaria Acquaviva. 2025. "Oxalis pes-caprae L. (Oxalidaceae): From Invasive Concern to Promising Bioresource for Health and Sustainable Applications" Plants 14, no. 4: 578. https://doi.org/10.3390/plants14040578
APA StyleMalfa, G. A., Bianchi, S., Spadaro, V., Di Giacomo, C., Raimondo, F. M., & Acquaviva, R. (2025). Oxalis pes-caprae L. (Oxalidaceae): From Invasive Concern to Promising Bioresource for Health and Sustainable Applications. Plants, 14(4), 578. https://doi.org/10.3390/plants14040578