Synergistic Effects of Zinc Oxide Nanoparticles and Moringa Leaf Extracts on Drought Tolerance and Productivity of Cucurbita pepo L. Under Saline Conditions
Abstract
:1. Introduction
2. Results
2.1. Effect of Nano-Zn and MLE on Growth and Productivity of Drought-Stressed Squash
2.2. Effect of Nano-Zn and MLE on H2O2 Concentration, Tissue Water Status, and Membrane Integrity of Drought-Stressed Squash
2.3. Effect of Nano-Zn and MLE on Photosynthetic Pigment Content, and Photosynthetic Efficiency of Drought-Stressed Squash
2.4. Effect of Nano-Zn and MLE on Osmoprotectants Accumulation of Drought-Stressed Squash
2.5. Effect of Nano-Zn and MLE on Antioxidative Defense System of Drought-Stressed Squash
3. Discussion
4. Materials and Methods
4.1. Experimental Conditions, Plant Details, and Irrigation Water Requirements
4.2. Treatments, and Experimental Design
4.3. Sampling and Measurements
4.4. Photosynthetic Pigments and Chlorophyll Fluorescence
4.5. Relative Water Content and Membrane Stability Index
4.6. Osmoprotectants
4.7. Oxidative Stress Indicator (H2O2)
4.8. Enzymatic and Non-Enzymatic Antioxidants
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abd El-Mageed, T.A.; Semida, W.M.; Rady, M.M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agric. Water Manag. 2017, 193, 46–54. [Google Scholar] [CrossRef]
- Amer, K.H. Effect of irrigation method and quantity on squash yield and quality. Agric. Water Manag. 2011, 98, 87–111. [Google Scholar] [CrossRef]
- Yildirim, E.; Ekinci, M.; Sahin, U.; Ors, S.; Turan, M.; Demir, İ.; Dursun, A.; Kotan, R. Improved water productivity in summer squash under water deficit with PGPR and synthetic methyl amine applications. Rhizosphere 2021, 20, 100446. [Google Scholar] [CrossRef]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant Salt Tolerance. In Agricultural Salinity Assessment and Management, 2nd ed.; Wallendar, W.W., Tanji, K.K., Eds.; ASCE Manual and Reports on Engineering Practice: Reston, VA, USA, 2012; pp. 405–459. [Google Scholar]
- Wanniarachchi, S.; Sarukkalige, R. A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future. Hydrology 2022, 9, 123. [Google Scholar] [CrossRef]
- Semida, W.M.; Abdelkhalik, A.; Rady, M.O.A.; Marey, R.A.; El-mageed, T.A.A. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci. Hortic. 2020, 272, 109580. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Pascual, B.; Nájera, I.; Baixauli, C.; Pascual-Seva, N. Regulated Deficit Irrigation as a Water-Saving Strategy for Onion Cultivation in Mediterranean Conditions. Agronomy 2019, 9, 521. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Abd El Mageed, T.A.; Semida, W.; Hemida, K.A.; Gyushi, M.A.H.; Rady, M.M.; Abdelkhalik, A.; Merah, O.; Brestic, M.; Mohamed, H.I.; Sabagh, A.E.; et al. Glutathione-mediated changes in productivity, photosynthetic efficiency, osmolytes, and antioxidant capacity of common beans (Phaseolus vulgaris) grown under water deficit. PeerJ 2023, 11, 15343. [Google Scholar] [CrossRef]
- Zhang, X.; Ibrahim, Z.; Khaskheli, M.B.; Raza, H.; Zhou, F.; Shamsi, I.H. Integrative Approaches to Abiotic Stress Management in Crops: Combining Bioinformatics Educational Tools and Artificial Intelligence Applications. Sustainability 2024, 16, 7651. [Google Scholar] [CrossRef]
- Ma, Y.; Dias, M.C.; Freitas, H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 2020, 11, 591911. [Google Scholar] [CrossRef]
- Paul, K.; Pauk, J.; Kondic-Spika, A.; Grausgruber, H.; Allahverdiyev, T.; Sass, L.; Vass, I. Co-occurrence of mild salinity and drought synergistically enhances biomass and grain retardation in wheat. Front. Plant Sci. 2019, 10, 501. [Google Scholar] [CrossRef] [PubMed]
- Goharrizi, K.J.; Baghizadeh, A.; Kalantar, M.; Fatehi, F. Combined effects of salinity and drought on physiological and biochemical characteristics of pistachio rootstocks. Sci. Hortic. 2020, 261, 108970. [Google Scholar] [CrossRef]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Abd El-mageed, T.A.; Mohamed, I.A.A.; Semida, W.M.; Al-elwany, O.A.A.I.; Ibrahim, I.M.; Hemida, K.A.; El-saadony, M.T.; Abuqamar, S.F.; El-tarabily, K.A. Soil application of effective microorganisms and nitrogen alleviates salt stress in hot pepper (Capsicum annum L.) plants. Front. Plant Sci. 2023, 13, 1079260. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef]
- Rady, M.M.; Alharby, H.F.; Desoky, E.M.; Maray, A.R.M.; Mohamed, I.A.A.; Howladar, S.M.; Abd, Y.H.; Faraz, A.; Ali, S.; Abdelkhalik, A. Citrate-containing lemon juice, as an organic substitute for chemical citric acid, proactively improves photosynthesis, antioxidant capacity, and enzyme gene expression in cadmium-exposed Phaseolus vulgaris. S. Afr. J. Bot. 2023, 160, 88–101. [Google Scholar] [CrossRef]
- Ologundudu, F. Antioxidant enzymes and non-enzymatic antioxidants as defense mechanism of salinity stress in cowpea (Vigna unguiculata L. Walp)—Ife brown and Ife bpc. Bull. Natl. Res. Cent. 2021, 45, 152. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Abd El-mageed, T.A.; Gyushi, M.A.H.; Hemida, K.A.; El-Saadony, M.T.; Abd El-Mageed, S.A.; Abdalla, H.; AbuQamar, S.F.; El-Tarabily, K.A.; Abdelkhalik, A. Coapplication of Effective Microorganisms and Nanomagnesium Boosts the Defenses Against Salt Stress in Ipomoea batatas. Front. Plant Sci. 2022, 13, 883274. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Desoky, E.S.M.; Babalghith, A.O.; El-Tahan, A.M.; Ibrahim, O.M.; Ebrahim, A.A.M.; Abd El-Mageed, T.A.; et al. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. Front. Plant Sci. 2022, 13, 946717. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.A.; Shoala, T.; Abdelkhalik, A.; El-Garhy, H.A.S.; Ismail, I.A.; Farrag, A.A. Nanoinhibitory Impacts of Salicylic Acid, Glycyrrhizic Acid Ammonium Salt, and Boric Acid Nanoparticles against Phytoplasma Associated with Faba Bean. Molecules 2022, 27, 1467. [Google Scholar] [CrossRef] [PubMed]
- Semida, W.M.; Abdelkhalik, A.; Mohamed, G.F.; Abd El-mageed, T.A.; El-Mageed, S.A.A.; Rady, M.M.; Ali, E.F. Foliar Application of Zinc Oxide Nanoparticles Promotes Drought Stress Tolerance in Eggplant (Solanum melongena L.). Plants 2021, 10, 421. [Google Scholar] [CrossRef]
- Ghani, M.I.; Saleem, S.; Rather, S.A.; Rehmani, M.S.; Alamri, S.; Rajput, V.D.; Kalaji, H.M.; Saleem, N.; Sial, T.A.; Liu, M. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere 2022, 289, 133202. [Google Scholar] [CrossRef]
- Karimian, Z.; Samiei, L. ZnO nanoparticles efficiently enhance drought tolerance in Dracocephalum kotschyi through altering physiological, biochemical and elemental contents. Front. Plant Sci. 2023, 14, 1063618. [Google Scholar] [CrossRef]
- Rukhsar-Ul-Haq; Kausar, A.; Hussain, S.; Javed, T.; Zafar, S.; Anwar, S.; Hussain, S.; Zahra, N.; Saqib, M. Zinc oxide nanoparticles as potential hallmarks for enhancing drought stress tolerance in wheat seedlings. Plant Physiol. Biochem. 2023, 195, 341–350. [Google Scholar] [CrossRef]
- Ramzan, M.; Ayub, F.; Shah, A.A.; Naz, G.; Shah, A.N.; Malik, A.; Sardar, R.; Telesiński, A.; Kalaji, H.M.; Dessoky, E.S.; et al. Synergistic Effect of Zinc Oxide Nanoparticles and Moringa oleifera Leaf Extract Alleviates Cadmium Toxicity in Linum usitatissimum: Antioxidants and Physiochemical Studies. Front. Plant Sci. 2022, 13, 900347. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Ali, B.; Adrees, M.; Arshad, M.; Hussain, A.; Zia ur Rehman, M.; Waris, A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 2019, 214, 269–277. [Google Scholar] [CrossRef]
- Hamedani, S.R.; Rouphael, Y.; Colla, G.; Colantoni, A.; Cardarelli, M. Biostimulants as a tool for improving environmental sustainability of greenhouse vegetable crops. Sustainability 2020, 12, 5101. [Google Scholar] [CrossRef]
- Desoky, E.S.M.; Elrys, A.S.; Rady, M.M. Integrative moringa and licorice extracts application improves Capsicum annuum fruit yield and declines its contaminant contents on a heavy metals-contaminated saline soil. Ecotoxicol. Environ. Saf. 2019, 169, 50–60. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Yap, Y.K.; El-sherif, F.; Habib, E.S.; Khattab, S. Moringa oleifera leaf extract enhanced growth, yield and silybin content while mitigating salt-induced adverse effects on the growth of silybum marianum. Agronomy 2021, 11, 2500. [Google Scholar] [CrossRef]
- Latif, H.H.; Mohamed, H.I. Exogenous applications of moringa leaf extract effect on retrotransposon, ultrastructural and biochemical contents of common bean plants under environmental stresses. S. Afr. J. Bot. 2016, 106, 221–231. [Google Scholar] [CrossRef]
- ur Rehman, H.; Alharby, H.F.; Bamagoos, A.A.; Abdelhamid, M.T.; Rady, M.M. Sequenced application of glutathione as an antioxidant with an organic biostimulant improves physiological and metabolic adaptation to salinity in wheat. Plant Physiol. Biochem. 2021, 158, 43–52. [Google Scholar] [CrossRef]
- Kaya, C.; Ugurlar, F.; Ashraf, M.; Nasser, M.; Ahmad, P. Exploring the synergistic effects of melatonin and salicylic acid in enhancing drought stress tolerance in tomato plants through fine-tuning oxidative-nitrosative processes and methylglyoxal metabolism. Sci. Hortic. 2023, 321, 112368. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M.; Mohamed, G.F.; Rady, M.M. Combined effect of foliar-applied salicylic acid and deficit irrigation on physiological–anatomical responses, and yield of squash plants under saline soil. S. Afr. J. Bot. 2016, 106, 8–16. [Google Scholar] [CrossRef]
- Semida, W.M.; Abd El-mageed, T.A.; Abdelkhalik, A.; Hemida, K.A.; Abdurrahman, H.A.; Howladar, S.M.; Leilah, A.A.A.; Rady, M.O.A. Selenium Modulates Antioxidant Activity, Osmoprotectants, and Photosynthetic Efficiency of Onion Under Saline Soil Conditions. Agronomy 2021, 11, 855. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Andrews, J.; Fugice, J.; Singh, U.; Bindraban, P.S.; Elmer, W.H.; Gardea-torresdey, J.L.; White, J.C. Facile Coating of Urea With Low-Dose ZnO Nanoparticles Promotes Wheat Performance and Enhances Zn Uptake Under Drought Stress. Front. Plant Sci. 2020, 11, 168. [Google Scholar] [CrossRef]
- Yang, K.-Y.; Doxey, S.; McLean, J.E.; Britt, D.; Watson, A.; Al Qassyb, D.; Jacobson, A.; Anderson, A.J. Remodeling of root morphology by CuO and ZnO nanoparticles: Effects on drought tolerance for plants colonized by a beneficial pseudomonad. Can. J. Fish. Aquat. Sci. 2018, 96, 175–186. [Google Scholar] [CrossRef]
- Cakmak, I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Akram, N.A.; Ashraf, M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 2020, 251, 3. [Google Scholar] [CrossRef] [PubMed]
- Rady, M.M.; Alshallash, K.S.; Desoky, E.M.; Taie, H.A.A.; Mohamed, I.A.A.; El-badri, A.M.; Howladar, S.M.; Abdelkhalik, A. Synergistic effect of trans-zeatin and silymarin on mitigation of cadmium stress in chili pepper through modulating the activity of antioxidant enzymes and gene expressions. J. Appl. Res. Med. Aromat. Plants 2023, 35, 100498. [Google Scholar] [CrossRef]
- Sun, L.; Song, F.; Guo, J.; Zhu, X.; Liu, S.; Liu, F. Nano-ZnO-Induced Drought Tolerance Is Associated with Melatonin Synthesis and Metabolism in Maize. Int. J. Mol. Sci. 2020, 21, 782. [Google Scholar] [CrossRef]
- Kheirizadeh Arough, Y.; Seyed Sharifi, R.; Seyed Sharifi, R. Bio fertilizers and zinc effects on some physiological parameters of triticale under water-limitation condition. J. Plant Interact. 2016, 11, 167–177. [Google Scholar] [CrossRef]
- Khalofah, A.; Bokhari, N.A.; Migdadi, H.M.; Alwahibi, M.S. Antioxidant responses and the role of Moringa oleifera leaf extract for mitigation of cadmium stressed Lepidium sativum L. S. Afr. J. Bot. 2020, 129, 341–346. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties; American Society of Agronomy, Inc.: Madison, WI, USA, 1982. [Google Scholar]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity. Laboratory methods. Methods Soil Anal.-Part 1 Phys. Mineral. Methods 1986, 9, 687–734. [Google Scholar]
- Ponce, V.M.; Pandey, R.P.; Ercan, S. Characterization of drought across climatic spectrum. J. Hydrol. Eng. 2000, 5, 222–224. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements; Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1988. [Google Scholar]
- Rady, M.M.; Mohamed, G.F. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hortic. 2015, 193, 105–113. [Google Scholar] [CrossRef]
- Jensen, M.E. Design and Operation of Farm Irrigation Systems; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1983; p. 827. [Google Scholar]
- Moran, R.; Porath, D. Chlorophyll determination in intact tissues using n,n-dimethylformamide. Plant Physiol. 1980, 65, 478–479. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Clark, A.J.J.; Landolt, W.; Bucher, J.B.B.; Strasser, R.J.J. Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environ. Pollut. 2000, 109, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Premachandra, G.S.; Saneoka, H.; Ogata, S. Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soyabean. J. Agric. Sci. 1990, 115, 63–66. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Einerich, D.W.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Dubey, R.S.; Rani, M. Influence of NaCl Salinity on Growth and Metabolic Status of Protein and Amino Acids in Rice Seedlings. J. Agron. Crop Sci. 1989, 162, 97–106. [Google Scholar] [CrossRef]
- Lamuela-Raventós, R.M. Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications; Apak, R., Capanoglu, E., Shahidi, F., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 107–115. ISBN 9781119135388. [Google Scholar]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Anderson, M.E. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985, 113, 548–555. [Google Scholar] [CrossRef]
- Dani, H.M.; Jagota, S.K. A New Calorimetric Technique for the Estimation of Vitamin C Using Folin Phenol Reagent. Anal. Biochem. 1982, 127, 178–182. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Aebi, H. Catalase In Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Sairam, R.K.; Rao, K.; Srivastava, G.C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002, 163, 1037–1046. [Google Scholar] [CrossRef]
Treatments | Leaf Number Plant−1 | Leaf Area DM (decimeter) | Plant Dry Weight (g plant−1) | |||
---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
Irrigation | ||||||
FI | 20.1 ± 1.11 a # | 24.0 ± 1.13 a | 416.7 ± 5.94 a | 401.6 ± 5.94 a | 232.3 ± 5.46 a | 218.1 ± 5.57 a |
DI | 19.5 ± 1.02 b | 16.7 ± 0.94 b | 368.4 ± 11.3 b | 356.1 ± 11.0 b | 174.1 ± 8.54 b | 162.9 ± 8.65 b |
MLE | ||||||
MLE− | 20.4 ± 1.08 b | 18.1 ± 1.08 b | 374.6 ± 11.7 b | 361.3 ± 11.2 b | 189.0 ± 9.87 b | 176.1 ± 9.48 b |
MLE+ | 25.1 ± 1.32 a | 22.6 ± 1.40 a | 410.1 ± 7.53 a | 396.5 ± 7.40 a | 217.4 ± 9.02 a | 204.9 ± 9.01 a |
Nano-Zn | ||||||
Nano-Zn0 | 17.8 ± 1.09 c | 15.6 ± 1.09 c | 351.3 ± 13.5 c | 338.3 ± 12.8 c | 168.8 ± 11.4 c | 156.0 ± 10.9 c |
Nano-Zn25 | 24.0 ± 1.20 b | 21.5 ± 1.32 b | 405.4 ± 7.73 b | 391.4 ± 7.50 b | 214.1 ± 9.49 b | 200.6 ± 9.25 b |
Nano-Zn50 | 26.5 ± 1.40 a | 24.0 ± 1.52 a | 421.1 ± 6.93 a | 407.1 ± 6.70 a | 226.7 ± 8.98 a | 214.9 ± 8.84 a |
Irrigation×MLE×Nano-Zn | ||||||
FI×MLE−×Nano-Zn0 | 19.3 ± 0.33 fg | 17.0 ± 0.58 f | 376.6 ± 1.42 i | 361.6 ± 1.40 h | 194.1 ± ±1.87 h | 178.7 ± 4.16 g |
FI×MLE−×Nano-Zn50 | 24.7 ± 0.33 d | 22.7 ± 0.33 d | 413.9 ± 0.69 e | 398.9 ± 1.69 d | 231.4 ± 0.45 d | 217.4 ± 0.45 d |
FI×MLE−×Nano-Zn100 | 26.7 ± 0.33 c | 24.7 ± 0.33 c | 427.6 ± 1.15 c | 412.6 ± 1.15 c | 241.4 ± 1.16 c | 227.4 ± 1.16 c |
FI×MLE+×Nano-Zn0 | 22.7 ± 0.33 e | 20.7 ± 0.33 e | 396.4 ± 2.24 g | 381.4 ± 2.22 f | 215.4 ± 1.37 f | 201.4 ± 1.37 e |
FI×MLE+×Nano-Zn50 | 29.7 ± 0.33 b | 27.7 ± 0.33 b | 436.5 ± 0.47 b | 421.5 ± 1.57 b | 249.9 ± 1.55 b | 235.9 ± 1.55 b |
FI×MLE+×Nano-Zn100 | 33.3 ± 0.33 a | 31.3 ± 0.33 a | 448.9 ± 1.45 a | 433.9 ± 1.45 a | 261.9 ± 1.19 a | 247.9 ± 1.19 a |
DI×MLE−×Nano-Zn0 | 13.0 ± 0.58 i | 11.3 ± 0.33 i | 278.3 ± 2.48 l | 269.3 ± 2.38 k | 120.1 ± 0.96 l | 111.1 ± 1.83 k |
DI×MLE−×Nano-Zn50 | 18.7 ± 0.33 g | 15.7 ± 0.33 g | 365.7 ± 1.36 j | 352.7 ± 2.36 i | 165.7 ± 1.94 j | 153.7 ± 0.93 i |
DI×MLE−×Nano-Zn100 | 20.3 ± 0.33 f | 17.3 ± 0.33 f | 385.4 ± 2.01 h | 372.4 ± 2.51 g | 181.2 ± 0.44 i | 168.2 ± 0.95 h |
DI×MLE+×Nano-Zn0 | 16.3 ± 0.33 h | 13.3 ± 0.33 h | 353.7 ± 1.93 k | 340.7 ± 2.93 j | 145.7 ± 1.22 k | 132.7 ± 0.56 j |
DI×MLE+×Nano-Zn50 | 23.0 ± 0.58 e | 20.0 ± 0.33 e | 405.2 ± 2.34 f | 392.2 ± 1.35 e | 209.5 ± 2.18 g | 195.5 ± 2.18 f |
DI×MLE+×Nano-Zn100 | 25.7 ± 0.33 cd | 22.7 ± 0.33 d | 422.3 ± 1.07 d | 409.3 ± 1.77 c | 222.2 ± 0.85 e | 216.2 ± 1.75 d |
Source of Variation | Fruits Number Plant−1 | Fruit Weight (g) | Yield (ton ha−1) | WUE (Kg m−3) | ||||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
Irrigation | ||||||||
FI | 10.67 ± 0.36 a # | 10.47 ± 0.37 a | 79.8 ± 0.58 a | 78.8 ± 0.53 a | 16.9 ± 0.49 a | 16.60 ± 0.68 a | 4.12 ± 0.12 b | 4.52 ± 0.19 b |
DI | 8.55 ± 0.36 b | 8.31 ± 0.33 b | 78.5 ± 0.55 b | 77.7 ± 0.50 b | 13.16 ± 0.55 b | 13.07 ± 0.59 b | 4.97 ± 0.21 a | 5.45 ± 0.25 a |
MLE | ||||||||
MLE− | 8.81 ± 0.40 b | 8.64 ± 0.39 b | 78.4 ± 0.54 b | 77.6 ± 0.46 b | 14.02 ± 0.68 b | 13.49 ± 0.65 b | 4.23 ± 0.19 b | 4.52 ± 0.19 b |
MLE+ | 10.41 ± 0.40 a | 10.13 ± 0.41 a | 79.9 ± 0.58 a | 78.9 ± 0.55 a | 16.0 ± 0.60 a | 16.18 ± 0.74 a | 4.86 ± 0.17 a | 5.45 ± 0.24 a |
Nano-Zn | ||||||||
Nano-Zn0 | 7.99 ± 0.41 c | 7.82 ± 0.37 c | 76.4 ± 0.47 c | 75.8 ± 0.41 c | 12.54 ± 0.75 c | 11.90 ± 0.61 c | 3.76 ± 0.17 c | 3.98 ± 0.16 c |
Nano-Zn25 | 9.91 ± 0.34 b | 9.65 ± 0.35 b | 80.0 ± 0.27 b | 79.0 ± 0.35 b | 15.9 ± 0.56 b | 15.41 ± 0.57 b | 4.82 ± 0.18 b | 5.21 ± 0.23 b |
Nano-Zn50 | 10.93 ± 0.49 a | 10.69 ± 0.49 a | 81.1 ± 0.48 a | 80.0 ± 0.38 a | 16.7 ± 0.67 a | 17.19 ± 0.86 a | 5.05 ± 0.18 a | 5.76 ± 0.12 a |
Irrigation×MLE×Nano-Zn | ||||||||
FI×MLE−×Nano-Zn0 | 8.67 ± 0.04 f | 8.33 ± 0.04 e | 76.1 ± 0.44 a | 75.44 ± 0.59 a | 13.72 ± 0.11 f | 12.71 ± 0.06 h | 3.36 ± 0.03 i | 3.46 ± 0.02 j |
FI×MLE−×Nano-Zn50 | 10.21 ± 0.09 cd | 10.11 ± 0.02 c | 79.5 ± 0.81 a | 78.16 ± 0.97 a | 16.5 ± 0.27 ac | 15.87 ± 0.13 d | 4.04 ± 0.07 gh | 4.33 ± 0.04 g |
FI×MLE−×Nano-Zn100 | 11.06 ± 0.08 b | 10.86 ± 0.08 b | 80.5 ± 0.59 a | 79.46 ± 0.59 a | 17.39 ± 0.36 c | 17.25 ± 0.15 c | 4.25 ± 0.09 fg | 4.70 ± 0.04 f |
FI×MLE+×Nano-Zn0 | 9.44 ± 0.10 e | 9.24 ± 0.10 d | 78.7 ± 0.23 a | 77.74 ± 0.23 a | 15.38 ± 0.24 d | 14.37 ± 0.12 f | 3.76 ± 0.06 h | 3.92 ± 0.03 h |
FI×MLE+×Nano-Zn50 | 11.30 ± 0.15 b | 11.13 ± 0.13 b | 81.0 ± 0.37 a | 80.33 ± 0.58 a | 18.43 ± 0.25 b | 17.81 ± 0.27 b | 4.51 ± 0.06 ef | 4.85 ± 0.07 f |
FI×MLE+×Nano-Zn100 | 13.33 ± 0.17 a | 13.13 ± 0.17 a | 83.3 ± 1.12 a | 81.60 ± 0.80 a | 19.75 ± 0.44 a | 21.56 ± 0.19 a | 4.83 ± 0.11 de | 5.88 ± 0.05 c |
DI×MLE−×Nano-Zn0 | 5.83 ± 0.14 h | 5.90 ± 0.13 g | 74.9 ± 0.42 a | 74.92 ± 0.40 a | 8.74 ± 0.29 h | 8.84 ± 0.21 j | 3.30 ± 0.11 i | 3.68 ± 0.09 i |
DI×MLE−×Nano-Zn50 | 8.22 ± 0.04 g | 7.99 ± 0.03 f | 79.6 ± 0.27 a | 78.58 ± 0.27 a | 13.61 ± 0.28 f | 12.61 ± 0.06 h | 5.14 ± 0.11 cd | 5.25 ± 0.02 e |
DI×MLE−×Nano-Zn100 | 8.86 ± 0.05 f | 8.66 ± 0.05 e | 79.9 ± 0.19 a | 78.88 ± 0.19 a | 14.10 ± 0.54 ef | 13.66 ± 0.12 g | 5.32 ± 0.20 bc | 5.69 ± 0.05 d |
DI×MLE+×Nano-Zn0 | 8.01 ± 0.03 g | 7.81 ± 0.03 f | 75.9 ± 0.60 a | 74.90 ± 0.60 a | 12.31 ± 0.49 g | 11.70 ± 0.13 i | 4.65 ± 0.19 e | 4.87 ± 0.05 f |
DI×MLE+×Nano-Zn50 | 9.91 ± 0.19 d | 9.37 ± 0.25 d | 80.0 ± 0.29 a | 79.01 ± 0.29 a | 14.82 ± 0.13 df | 15.34 ± 0.29 e | 5.59 ± 0.05 ab | 6.39 ± 0.12 b |
DI×MLE+×Nano-Zn100 | 10.46 ± 0.06 c | 10.11 ± 0.04 c | 80.6 ± 0.12 a | 79.93 ± 0.25 a | 15.37 ± 0.31 d | 16.27 ± 0.05 d | 5.80 ± 0.12 a | 6.78 ± 0.02 a |
Source of Variation | H2O2 (µmol g−1 FW) | MSI (%) | RWC (%) | |||
---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
Irrigation | ||||||
FI | 4.50 ± 0.14 b # | 4.60 ± 0.14 b | 77.3 ± 1.17 a | 75.3 ± 1.18 a | 73.1 ± 1.21 a | 71.2 ± 1.25 a |
DI | 6.50 ± 0.19 a | 6.60 ± 0.21 a | 69.4 ± 1.69 b | 67.1 ± 1.81 b | 62.5 ± 1.38 b | 60.9 ± 1.50 b |
MLE | ||||||
MLE− | 5.10 ± 0.25 b | 5.30 ± 0.25 b | 70.5 ± 1.96 b | 68.3 ± 2.00 b | 64.4 ± 1.61 b | 62.6 ± 1.71 b |
MLE+ | 5.90 ± 0.31 a | 6.00 ± 0.33 a | 76.3 ± 1.54 a | 74.2 ± 1.54 b | 71.1 ± 1.27 a | 69.5 ± 1.36 a |
Nano-Zn | ||||||
Nano-Zn0 | 4.70 ± 0.29 c | 4.80 ± 0.28 c | 67.3 ± 2.28 c | 64.6 ± 2.36 c | 61.2 ± 1.60 c | 59.1 ± 1.74 c |
Nano-Zn25 | 5.70 ± 0.32 b | 5.80 ± 0.34 b | 75.6 ± 1.65 b | 73.8 ± 1.62 b | 69.7 ± 1.32 b | 68.0 ± 1.32 b |
Nano-Zn50 | 6.10 ± 0.36 a | 6.30 ± 0.38 a | 77.2 ± 1.83 a | 75.4 ± 1.64 a | 72.4 ± 1.59 a | 71.1 ± 1.59 a |
Irrigation×MLE×Nano-Zn | ||||||
FI×MLE−×Nano-Zn0 | 5.35 ± 0.04 g | 5.36 ± 0.04 g | 68.4 ± 0.31 fg | 65.9 ± 0.18 g | 65.0 ± 0.54 g | 62.7 ± 0.16 g |
FI×MLE−×Nano-Zn50 | 4.37 ± 0.04 j | 4.89 ± 0.07 i | 77.7 ± 0.32 d | 75.8 ± 0.32 d | 72.2 ± 0.30 d | 70.2 ± 0.30 d |
FI×MLE−×Nano-Zn100 | 4.68 ± 0.05 i | 4.40 ± 0.06 j | 79.2 ± 0.56 c | 77.3 ± 0.35 c | 74.5 ± 0.43 c | 72.9 ± 0.43 c |
FI×MLE+×Nano-Zn0 | 5.03 ± 0.06 h | 5.09 ± 0.03 h | 74.0 ± 0.20 e | 72.2 ± 0.18 e | 69.9 ± 0.47 e | 68.6 ± 0.47 e |
FI×MLE+×Nano-Zn50 | 3.99 ± 0.01 k | 4.08 ± 0.02 k | 81.1 ± 0.08 b | 79.3 ± 0.08 b | 76.8 ± 0.27 b | 74.8 ± 0.27 b |
FI×MLE+×Nano-Zn100 | 3.61 ± 0.01 l | 3.73 ± 0.00 l | 83.4 ± 0.42 a | 81.5 ± 0.42 a | 79.9 ± 0.90 a | 77.8 ± 0.90 a |
DI×MLE−×Nano-Zn0 | 7.78 ± 0.02 a | 8.08 ± 0.02 a | 59.3 ± 0.76 h | 56.1 ± 0.58 i | 49.6 ± 0.37 j | 47.2 ± 0.52 j |
DI×MLE−×Nano-Zn50 | 6.54 ± 0.03 c | 6.69 ± 0.04 c | 69.2 ± 0.38 f | 67.4 ± 0.38 f | 62.1 ± 0.34 h | 60.1 ± 0.34 h |
DI×MLE−×Nano-Zn100 | 6.09 ± 0.03 d | 6.21 ± 0.05 d | 69.0 ± 0.30 f | 67.2f ± 0.28 g | 63.1 ± 0.38 h | 62.8 ± 0.38 g |
DI×MLE+×Nano-Zn0 | 7.18 ± 0.01 b | 7.31 ± 0.01 b | 67.4 ± 0.26 g | 64.3 ± 0.21 h | 60.3 ± 0.54 i | 57.9 ± 0.44 i |
DI×MLE+×Nano-Zn50 | 5.78 ± 0.04 e | 5.81 ± 0.04 e | 74.4 ± 0.47 e | 72.6 ± 0.20 e | 67.8 ± 0.13 f | 66.8 ± 0.13 f |
DI×MLE+×Nano-Zn100 | 5.57 ± 0.01 f | 5.64 ± 0.09 f | 77.2 ± 0.23 d | 75.4 ± 0.23 d | 71.9 ± 0.11 d | 70.9 ± 0.11 d |
Source of Variation | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | Carotenoids (mg g−1 FW) | |||
---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
Irrigation | ||||||
FI | 2.38 ± 0.05 a # | 2.24 ± 0.04 a | 1.61 ± 0.06 a | 1.49 ± 0.05 a | 0.75 ± 0.02 a | 0.68 ± 0.02 a |
DI | 1.80 ± 0.07 b | 1.68 ± 0.08 b | 1.05 ± 0.07 b | 0.94 ± 0.07 b | 0.65 ± 0.04 b | 0.41 ± 0.03 b |
MLE | ||||||
MLE− | 1.97 ± 0.09 b | 1.83 ± 0.09 b | 1.19 ± 0.09 b | 1.09 ± 0.08 b | 0.63 ± 0.04 b | 0.49 ± 0.04 b |
MLE+ | 2.22 ± 0.09 a | 2.09 ± 0.09 a | 1.47 ± 0.09 a | 1.34 ± 0.08 a | 0.78 ± 0.04 a | 0.60 ± 0.04 a |
Nano-Zn | ||||||
Nano-Zn0 | 1.82 ± 0.10 c | 1.68 ± 0.11 c | 1.02 ± 0.10 c | 0.94 ± 0.10 c | 0.55 ± 0.04 c | 0.43 ± 0.05 c |
Nano-Zn25 | 2.16 ± 0.10 b | 2.03 ± 0.10 b | 1.41 ± 0.10 b | 1.29 ± 0.09 b | 0.75 ± 0.02 b | 0.57 ± 0.04 b |
Nano-Zn50 | 2.30 ± 0.09 a | 2.17 ± 0.08 a | 1.55 ± 0.08 a | 1.42 ± 0.08 a | 0.81 ± 0.02 a | 0.63 ± 0.04 a |
Irrigation×MLE×Nano-Zn | ||||||
FI×MLE−×Nano-Zn0 | 2.07 ± 0.02 f | 1.96 ± 0.01 f | 1.21 ± 0.01 g | 1.16 ± 0.02 g | 0.607 ± 0.01 f | 0.274 ± 0.01 j |
FI×MLE−×Nano-Zn50 | 2.33 ± 0.01 d | 2.20 ± 0.01 d | 1.57 ± 0.01 d | 1.45 ± 0.01 d | 0.727 ± 0.00 d | 0.345 ± 0.01 i |
FI×MLE−×Nano-Zn100 | 2.42 ± 0.01 c | 2.28 ± 0.01 c | 1.68 ± 0.01 c | 1.53 ± 0.01 c | 0.780 ± 0.01 c | 0.432 ± 0.01 h |
FI×MLE+×Nano-Zn0 | 2.23 ± 0.01 e | 2.10 ± 0.01 e | 1.47 ± 0.01 e | 1.35 ± 0.01 e | 0.675 ± 0.00 e | 0.273 ± 0.01 j |
FI×MLE+×Nano-Zn50 | 2.54 ± 0.01 b | 2.40 ± 0.01 b | 1.80 ± 0.01 b | 1.65 ± 0.01 b | 0.838 ± 0.00 b | 0.542 ± 0.00 g |
FI×MLE+×Nano-Zn100 | 2.66 ± 0.01 a | 2.51 ± 0.01 a | 1.92 ± 0.01 a | 1.76 ± 0.01 a | 0.902 ± 0.00 a | 0.613 ± 0.00 e |
DI×MLE−×Nano-Zn0 | 1.41 ± 0.01 j | 1.23 ± 0.01 j | 0.61 ± 0.01 k | 0.55 ± 0.02 k | 0.305 ± 0.01 g | 0.582 ± 0.01 f |
DI×MLE−×Nano-Zn50 | 1.68 ± 0.02 h | 1.55 ± 0.02 h | 0.93 ± 0.02 i | 0.83 ± 0.01 i | 0.667 ± 0.00 e | 0.647 ± 0.01 d |
DI×MLE−×Nano-Zn100 | 1.88 ± 0.02 g | 1.75 ± 0.02 g | 1.13 ± 0.02 h | 1.00 ± 0.02 h | 0.720 ± 0.01 d | 0.685 ± 0.01 c |
DI×MLE+×Nano-Zn0 | 1.55 ± 0.02 i | 1.42 ± 0.02 i | 0.80 ± 0.02 j | 0.69 ± 0.01 j | 0.615 ± 0.00 f | 0.597 ± 0.01 ef |
DI×MLE+×Nano-Zn50 | 2.08 ± 0.01 f | 1.97 ± 0.01 f | 1.33 ± 0.01 f | 1.22 ± 0.01 f | 0.778 ± 0.00 c | 0.745 ± 0.00 b |
DI×MLE+×Nano-Zn100 | 2.23 ± 0.02 e | 2.14 ± 0.01 e | 1.48 ± 0.02 e | 1.37 ± 0.01 e | 0.842 ± 0.00 b | 0.802 ± 0.01 a |
Source of Variation | Fv/Fm | PI | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
Irrigation | ||||
FI | 0.817 ± 0.00 a # | 0.809 ± 0.00 a | 5.76 ± 0.11 a | 6.71 ± 0.12 a |
DI | 0.774 ± 0.01 b | 0.766 ± 0.01 b | 4.82 ± 0.13 b | 5.63 ± 0.17 b |
MLE | ||||
MLE− | 0.782 ± 0.01 b | 0.772 ± 0.01 b | 4.90 ± 0.15 b | 5.74 ± 0.19 b |
MLE+ | 0.809 ± 0.01 a | 0.803 ± 0.01 a | 5.67 ± 0.13 a | 6.60 ± 0.13 a |
Nano-Zn | ||||
Nano-Zn0 | 0.769 ± 0.01 c | 0.756 ± 0.01 c | 4.94 ± 0.21 c | 5.70 ± 0.28 c |
Nano-Zn25 | 0.802 ± 0.01 b | 0.795 ± 0.01 b | 5.28 ± 0.18 b | 6.28 ± 0.18 b |
Nano-Zn50 | 0.817 ± 0.01 a | 0.811 ± 0.01 a | 5.63 ± 0.18 a | 6.53 ± 0.18 a |
Irrigation×MLE×Nano-Zn | ||||
FI×MLE−×Nano-Zn0 | 0.791 ± 0.00 g | 0.786 ± 0.00 e | 5.14 ± 0.06 e | 5.84 ± 0.06 g |
FI×MLE−×Nano-Zn50 | 0.804 ± 0.00 e | 0.795 ± 0.00 d | 5.44 ± 0.02 d | 6.44 ± 0.02 d |
FI×MLE−×Nano-Zn100 | 0.822 ± 0.00 c | 0.813 ± 0.00 c | 5.67 ± 0.02 c | 6.67 ± 0.02 c |
FI×MLE+×Nano-Zn0 | 0.806 ± 0.00 e | 0.792 ± 0.00 d | 5.76 ± 0.04 c | 6.76 ± 0.04 c |
FI×MLE+×Nano-Zn50 | 0.836 ± 0.00 b | 0.829 ± 0.00 b | 6.10 ± 0.04 b | 7.43 ± 0.02 a |
FI×MLE+×Nano-Zn100 | 0.845 ± 0.00 a | 0.840 ± 0.00 a | 6.43 ± 0.18 a | 7.10 ± 0.03 b |
DI×MLE−×Nano-Zn0 | 0.720 ± 0.00 j | 0.698 ± 0.00 i | 3.87 ± 0.05h | 4.19 ± 0.01 i |
DI×MLE−×Nano-Zn50 | 0.772 ± 0.00 h | 0.763 ± 0.00 g | 4.49 ± 0.11 g | 5.49 ± 0.05 h |
DI×MLE−×Nano-Zn100 | 0.785 ± 0.00 g | 0.778 ± 0.00 f | 4.82 ± 0.07 f | 5.82 ± 0.07 g |
DI×MLE+×Nano-Zn0 | 0.759 ± 0.00 i | 0.749 ± 0.00 h | 4.99 ± 0.03 ef | 5.99 ± 0.03 f |
DI×MLE+×Nano-Zn50 | 0.797 ± 0.00 f | 0.793 ± 0.00 d | 5.12 ± 0.03 e | 6.10 ± 0.02 e |
DI×MLE+×Nano-Zn100 | 0.813 ± 0.00 d | 0.814 ± 0.00 c | 5.61 ± 0.06 cd | 6.21 ± 0.00 e |
Source of Variation | Total Soluble Sugars (mg g−1 DW) | Free Amino Acids (mg g−1 DW) | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
Irrigation | ||||
FI | 17.3 ± 0.54 b # | 17.6 ± 0.54 b | 9.40 ± 0.32 b | 9.60 ± 0.32 b |
DI | 28.1 ± 1.12 a | 28.3 ± 1.09 a | 12.9 ± 0.19 a | 13.1 ± 0.20 a |
MLE | ||||
MLE− | 20.9 ± 1.22 b | 21.2 ± 1.24 b | 10.6 ± 0.49 b | 10.8 ± 0.48 b |
MLE+ | 24.5 ± 1.77 a | 24.8 ± 1.72 a | 11.7 ± 0.47 a | 11.9 ± 0.48 a |
Nano-Zn | ||||
Nano-Zn0 | 19.2 ± 1.44 c | 19.5 ± 1.44 c | 10.0 ± 0.64 c | 10.2 ± 0.64 c |
Nano-Zn25 | 23.1 ± 1.64 b | 23.4 ± 1.67 b | 11.4 ± 0.54 b | 11.5 ± 0.53 b |
Nano-Zn50 | 25.8 ± 2.21 a | 25.9 ± 2.14 a | 12.1 ± 0.50 a | 12.3 ± 0.52 a |
Irrigation×MLE×Nano-Zn | ||||
FI×MLE−×Nano-Zn0 | 13.5 ± 0.06 l | 13.7 ± 0.22 i | 7.37 ± 0.06 k | 7.59 ± 0.21 l |
FI×MLE−×Nano-Zn50 | 17.1 ± 0.07 j | 17.4 ± 0.09 g | 9.19 ± 0.30 i | 9.33 ± 0.15 j |
FI×MLE−×Nano-Zn100 | 18.2 ± 0.09 i | 18.5 ± 0.09 g | 9.79 ± 0.03 h | 9.87 ± 0.02 i |
FI×MLE+×Nano-Zn0 | 15.6 ± 0.08 k | 16.0 ± 0.12 h | 8.51 ± 0.05 j | 8.61 ± 0.04 k |
FI×MLE+×Nano-Zn50 | 19.3 ± 0.09 h | 19.6 ± 0.11 f | 10.2 ± 0.07 g | 10.4 ± 0.08 h |
FI×MLE+×Nano-Zn100 | 20.1 ± 0.06 g | 20.3 ± 0.05 f | 11.9 ± 0.05 f | 11.7 ± 0.03 g |
DI×MLE−×Nano-Zn0 | 23.5 ± 0.06 f | 23.6 ± 0.04 e | 11.9 ± 0.04 e | 12.1 ± 0.05 f |
DI×MLE−×Nano-Zn50 | 24.8 ± 0.03 d | 24.9 ± 0.05 d | 12.6 ± 0.05 cd | 12.7 ± 0.03 d |
DI×MLE−×Nano-Zn100 | 28.2 ± 0.09 c | 28.9 ± 0.35 c | 12.9 ± 0.04 c | 13.1 ± 0.06 c |
DI×MLE+×Nano-Zn0 | 24.4 ± 0.06 e | 24.8 ± 0.31 d | 12.3 ± 0.06 d | 12.4 ± 0.03 e |
DI×MLE+×Nano-Zn50 | 31.2 ± 0.12 b | 31.8 ± 0.27 b | 13.6 ± 0.05 b | 13.7 ± 0.04 b |
DI×MLE+×Nano-Zn100 | 36.7 ± 0.09 a | 36.0 ± 1.01 a | 14.2 ± 0.13 a | 14.5 ± 0.08 a |
Soil Property | Value |
---|---|
Sand (%) | 72.2 |
Silt (%) | 14.4 |
Clay (%) | 13.4 |
Texture class | SL |
ρd (g.cm−3) | 1.76 |
Ksat (cm h−1) | 2.86 |
CEC (cmol kg−1) | 11.67 |
WP (%) | 10.83 |
AW (%) | 12.50 |
FC (%) | 24.21 |
pH | 7.68 |
ECe (dS m−1) | 6.45 |
CaCO3 (%) | 8.67 |
OM % | 0.92 |
Component | Unit | Value |
---|---|---|
Osmoprotectants | ||
Total amino acids | g g−1 DW | 0.16 |
Proline | g g−1 DW | 0.02 |
Total soluble sugars | 0.22 | |
Mineral nutrients | ||
Nitrogen (N) | g kg−1 DW | 30.9 |
Magnesium (Mg) | g kg−1 DW | 5.85 |
Potassium (K) | g kg−1 DW | 23.2 |
Calcium (Ca) | g kg−1 DW | 7.71 |
Phosphorus (P) | g kg−1 DW | 4.19 |
Sulphur (S) | g kg−1 DW | 2.33 |
Manganese (Mn) | g kg−1 DW | 0.87 |
Copper (Cu) | g kg−1 DW | 0.23 |
Zinc (Zn) | g kg−1 DW | 0.49 |
Iron (Fe) | g kg−1 DW | 1.09 |
Antioxidants | ||
Salicylic acid | µg g−1 DW | 92.4 |
Tocopherol | µg g−1 DW | 21.5 |
Glutathione (GSH) | µmol GSH g−1 DW | 0.36 |
Ascorbic acid (AsA; Vitamin C) | µmol AsA g−1 DW | 2.18 |
DPPH radical-scavenging activity | % | 76.3 |
Phytohormones | ||
Auxins | µg g−1 DW | 2.06 |
Gibberellins | µg g−1 DW | 1.99 |
Cytokinins | µg g−1 DW | 2.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelkhalik, A.; Gyushi, M.A.H.; Howladar, S.M.; Kutby, A.M.; Asiri, N.A.; Baeshen, A.A.; Nahari, A.M.; Alsamadany, H.; Semida, W.M. Synergistic Effects of Zinc Oxide Nanoparticles and Moringa Leaf Extracts on Drought Tolerance and Productivity of Cucurbita pepo L. Under Saline Conditions. Plants 2025, 14, 544. https://doi.org/10.3390/plants14040544
Abdelkhalik A, Gyushi MAH, Howladar SM, Kutby AM, Asiri NA, Baeshen AA, Nahari AM, Alsamadany H, Semida WM. Synergistic Effects of Zinc Oxide Nanoparticles and Moringa Leaf Extracts on Drought Tolerance and Productivity of Cucurbita pepo L. Under Saline Conditions. Plants. 2025; 14(4):544. https://doi.org/10.3390/plants14040544
Chicago/Turabian StyleAbdelkhalik, Abdelsattar, Mohammed A. H. Gyushi, Saad M. Howladar, Abeer M. Kutby, Nouf A. Asiri, Areej A. Baeshen, Aziza M. Nahari, Hameed Alsamadany, and Wael M. Semida. 2025. "Synergistic Effects of Zinc Oxide Nanoparticles and Moringa Leaf Extracts on Drought Tolerance and Productivity of Cucurbita pepo L. Under Saline Conditions" Plants 14, no. 4: 544. https://doi.org/10.3390/plants14040544
APA StyleAbdelkhalik, A., Gyushi, M. A. H., Howladar, S. M., Kutby, A. M., Asiri, N. A., Baeshen, A. A., Nahari, A. M., Alsamadany, H., & Semida, W. M. (2025). Synergistic Effects of Zinc Oxide Nanoparticles and Moringa Leaf Extracts on Drought Tolerance and Productivity of Cucurbita pepo L. Under Saline Conditions. Plants, 14(4), 544. https://doi.org/10.3390/plants14040544