Combined Use of Biostimulation and Deficit Irrigation Improved the Fruit Quality in Table Grape
Abstract
:1. Introduction
2. Results
2.1. Soil and Plant Water Status
2.2. Yield
2.3. Berry Quality
2.3.1. Physical Traits
2.3.2. Chemical Quality
3. Discussion
4. Materials and Methods
4.1. Experimental Conditions
4.2. Experimental Design and Treatments
4.3. Field Measurements
4.3.1. Crop Phenology
4.3.2. Soil and Plant Water Status
4.4. Harvest
4.5. Harvest Quality Traits
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alston, J.M.; Sambucci, O. Grapes in the World Economy. In The Grape Genome; Cantu, D., Walker, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–24. ISBN 978-3-030-18601-2. [Google Scholar]
- FAO. FAOSTAT Online Database. Available online: https://www.fao.org/faostat/en/ (accessed on 8 August 2023).
- MAPA Agricultural Statistics. Available online: https://www.mapa.gob.es/en/estadistica/temas/estadisticas-agrarias/ (accessed on 8 August 2023).
- FEPEX Export Sector Data. Available online: https://www.fepex.es/home.aspx (accessed on 18 August 2024).
- Gómez, J. APOEXPA Spanish Table Grapes: New Varieties, Markets Central to Success. Available online: https://www.freshfruitportal.com/news/2020/01/15/spanish-table-grapes-innovative-varieties-new-markets-central-to-success/ (accessed on 16 October 2024).
- El-Sayed, M.; Fayed, A. Characterization and Evaluation of Some New Sweet Grape Cultivars under Egyptian Conditions. Alex. J. Agric. Sci. 2023, 68, 383–392. [Google Scholar] [CrossRef]
- Santillán, D.; Garrote, L.; Iglesias, A.; Sotes, V. Climate Change Risks and Adaptation: New Indicators for Mediterranean Viticulture. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 881–899. [Google Scholar] [CrossRef]
- Basile, B.; Rouphael, Y.; Colla, G.; Soppelsa, S.; Andreotti, C. Appraisal of Emerging Crop Management Opportunities in Fruit Trees, Grapevines and Berry Crops Facilitated by the Application of Biostimulants. Sci. Hortic. 2020, 267, 109330. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit Irrigation for Reducing Agricultural Water Use. J. Exp. Bot. 2006, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Temnani, A.; Berríos, P.; Conesa, M.R.; Pérez-Pastor, A. Modelling the Impact of Water Stress during Post-Veraison on Berry Quality of Table Grapes. Agronomy 2022, 12, 1416. [Google Scholar] [CrossRef]
- Acevedo-Opazo, C.; Ortega-Farias, S.; Fuentes, S. Effects of Grapevine (Vitis vinifera L.) Water Status on Water Consumption, Vegetative Growth and Grape Quality: An Irrigation Scheduling Application to Achieve Regulated Deficit Irrigation. Agric. Water Manag. 2010, 97, 956–964. [Google Scholar] [CrossRef]
- Pinillos, V.; Chiamolera, F.M.; Ortiz, J.F.; Hueso, J.J.; Cuevas, J. Post-Veraison Regulated Deficit Irrigation in ‘Crimson Seedless’ Table Grape Saves Water and Improves Berry Skin Color. Agric. Water Manag. 2016, 165, 181–189. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.P.; Intrigliolo Molina, D.S.; Vivaldi, G.A.; García-Esparza, M.J.; Lizama, V.; Álvarez, I. Effects of the Irrigation Regimes on Grapevine Cv. Bobal in a Mediterranean Climate: I. Water Relations, Vine Performance and Grape Composition. Agric. Water Manag. 2021, 248, 106772. [Google Scholar] [CrossRef]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit Irrigation in Grapevine Improves Water-use Efficiency While Controlling Vigour and Production Quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Bellvert, J.; Mata, M.; Vallverdú, X.; Paris, C.; Marsal, J. Optimizing Precision Irrigation of a Vineyard to Improve Water Use Efficiency and Profitability by Using a Decision-Oriented Vine Water Consumption Model. Precis. Agric. 2020, 22, 319–341. [Google Scholar] [CrossRef]
- Conesa, M.R.; Berríos, P.; Temnani, A.; Pérez-Pastor, A. Assessment of the Type of Deficit Irrigation Applied during Berry Development in ‘Crimson Seedless’ Table Grapes. Water 2022, 14, 1311. [Google Scholar] [CrossRef]
- Conesa, M.R.; Falagán, N.; de la Rosa, J.M.; Aguayo, E.; Domingo, R.; Pérez-Pastor, A. Post-Veraison Deficit Irrigation Regimes Enhance Berry Coloration and Health-Promoting Bioactive Compounds in ‘Crimson Seedless’ Table Grapes. Agric. Water Manag. 2016, 163, 9–18. [Google Scholar] [CrossRef]
- Conesa, M.R.; de la Rosa, J.M.; Artés-Hernández, F.; Dodd, I.C.; Domingo, R.; Pérez-Pastor, A. Long-term Impact of Deficit Irrigation on the Physical Quality of Berries in ‘Crimson Seedless’ Table Grapes. J. Sci. Food Agric. 2015, 95, 2510–2520. [Google Scholar] [CrossRef] [PubMed]
- du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Vergara, A.E.; Díaz, K.; Carvajal, R.; Espinoza, L.; Alcalde, J.A.; Pérez-Donoso, A.G. Exogenous Applications of Brassinosteroids Improve Color of Red Table Grape (Vitis vinifera L. Cv. “Redglobe”) Berries. Front. Plant Sci. 2018, 9, 363. [Google Scholar] [CrossRef] [PubMed]
- Koyama, R.; Roberto, S.R.; de Souza, R.T.; Borges, W.F.S.; Anderson, M.; Waterhouse, A.L.; Cantu, D.; Fidelibus, M.W.; Blanco-Ulate, B. Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased Expression of Flavonoid Synthesis Genes in Vitis vinifera × Vitis labrusca Table Grapes in a Subtropical Region. Front. Plant Sci. 2018, 9, 344871. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.M.; Kirkpatrick, B.C. Exogenous Applications of Abscisic Acid Increase Curing of Pierce’s Disease-Affected Grapevines Growing in Pots. Plant Dis. 2011, 95, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Schmidt, R.E. Antioxidant Response to Hormone-Containing Product in Kentucky Bluegrass Subjected to Drought. Crop Sci. 1999, 39, 545–551. [Google Scholar] [CrossRef]
- Deng, Q.; Xia, H.; Lin, L.; Wang, J.; Yuan, L.; Li, K.; Zhang, J.; Lv, X.; Liang, D. SUNRED, a Natural Extract-Based Biostimulant, Application Stimulates Anthocyanin Production in the Skins of Grapes. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ziosi, V.; Giovannetti, G.; Vitali, F.; Di Nardo, A.; Porro, D. SUNRED®, A Botanical Extract-Based Biostimulant, Enhances Polyphenols Accumulation And Improves Quality Of Musts. Acta Hortic. 2013, 1009, 67–70. [Google Scholar] [CrossRef]
- Kok, D. Grape Growth, Anthocyanin and Phenolic Compounds Content of Early Ripening Cv. Cardinal Table Grape (V. vinifera L.) as Affected by Various Doses of Foliar Biostimulant Applications with Gibberellic Acid. Erwerbs-Obstbau 2018, 60, 253–259. [Google Scholar] [CrossRef]
- Kok, D.; Bal, E. Effects of Foliar Seaweed and Humic Acid Treatments on Monoterpene Profile and Biochemical Properties of Cv. Riesling Berry (V. vinifera L.) Throughout the Maturation Period. Tekirdağ Ziraat Fakültesi Dergisi J. Tekirdag Agric. Fac. Kok Bal. 2016, 13, 67–74. [Google Scholar]
- Monteiro, E.; Gonçalves, B.; Cortez, I.; Castro, I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. Plants 2022, 11, 396. [Google Scholar] [CrossRef] [PubMed]
- Zapata-García, S.; Temnani, A.; Berríos, P.; Marín-Durán, L.; Espinosa, P.J.; Monllor, C.; Pérez-Pastor, A. Combined Effects of Deficit Irrigation and Biostimulation on Water Productivity in Table Grapes. Plants 2024, 13, 3424. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020; ISBN 978-92-5-133441-6. [Google Scholar]
- Dahal, K.C.; Bhattarai, S.P.; Midmore, D.J.; Oag, D.R.; Walsh, K.B. Temporal Yield Variability in Subtropical Table Grape Production. Sci. Hortic. 2019, 246, 951–956. [Google Scholar] [CrossRef]
- Ferrara, G.; Brunetti, G. Influence of Foliar Applications of Humic Acids on Yield and Fruit Quality of Table Grape Cv. Italia. J. Int. Des Sci. de la Vigne et du Vin 2008, 42, 79–87. [Google Scholar] [CrossRef]
- Irani, H.; ValizadehKaji, B.; Naeini, M.R. Biostimulant-Induced Drought Tolerance in Grapevine Is Associated with Physiological and Biochemical Changes. Chem. Biol. Technol. Agric. 2021, 8, 5. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Biostimulation to Tempranillo Grapevines (Vitis vinifera L.) through a Brown Seaweed during Two Seasons: Effects on Grape Juice and Wine Nitrogen Compounds. Sci. Hortic. 2020, 264, 109177. [Google Scholar] [CrossRef]
- Cirillo, C.; Arena, C.; Rouphael, Y.; Caputo, R.; Amitrano, C.; Petracca, F.; De Francesco, S.; Vitale, E.; Erbaggio, A.; Bonfante, A.; et al. Counteracting the Negative Effects of Copper Limitations Through the Biostimulatory Action of a Tropical Plant Extract in Grapevine Under Pedo-Climatic Constraints. Front. Environ. Sci. 2021, 9, 587550. [Google Scholar] [CrossRef]
- Faci, J.M.; Blanco, O.; Medina, E.T.; Martínez-Cob, A. Effect of Post Veraison Regulated Deficit Irrigation in Production and Berry Quality of Autumn Royal and Crimson Table Grape Cultivars. Agric. Water Manag. 2014, 134, 73–83. [Google Scholar] [CrossRef]
- Ferrer, M.; Echeverría, G.; Carbonneau, A. Effect of Berry Weight and Its Components on the Contents of Sugars and Anthocyanins of Three Varieties of Vitis vinifera L. under Different Water Supply Conditions. South Afr. J. Enol. Vitic. 2014, 35, 103–113. [Google Scholar] [CrossRef]
- Frioni, T.; Tombesi, S.; Quaglia, M.; Calderini, O.; Moretti, C.; Poni, S.; Gatti, M.; Moncalvo, A.; Sabbatini, P.; Berrìos, J.G.; et al. Metabolic and Transcriptional Changes Associated with the Use of Ascophyllum Nodosum Extracts as Tools to Improve the Quality of Wine Grapes (Vitis vinifera Cv. Sangiovese) and Their Tolerance to Biotic Stress. J. Sci. Food Agric. 2019, 99, 6350–6363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Y.; Zhang, Y.; Qiao, H.; He, J.; Yuan, Q.; Chen, X.; Fan, J. High-Cell-Density Culture Enhances the Antimicrobial and Freshness Effects of Bacillus Subtilis S1702 on Table Grapes (Vitis vinifera Cv. Kyoho). Food Chem. 2019, 286, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Salomon, M.V.; Bottini, R.; de Souza Filho, G.A.; Cohen, A.C.; Moreno, D.; Gil, M.; Piccoli, P. Bacteria Isolated from Roots and Rhizosphere of Vitis Vinifera Retard Water Losses, Induce Abscisic Acid Accumulation and Synthesis of Defense-Related Terpenes in in Vitro Cultured Grapevine. Physiol. Plant 2014, 151, 359–374. [Google Scholar] [CrossRef]
- Aoki, T.; Aoki, Y.; Ishiai, S.; Otoguro, M.; Suzuki, S. Impact of Bacillus Cereus NRKT on Grape Ripe Rot Disease through Resveratrol Synthesis in Berry Skin. Pest. Manag. Sci. 2017, 73, 174–180. [Google Scholar] [CrossRef]
- Allen, R.G.; Smith, M.; Pereira, L.S.; Raes, D.; Wright, J.L. Revised FAO Procedures for Calculating Evapotranspiration: Irrigation and Drainage Paper No. 56 with Testing in Idaho. Watershed Manag. Oper. Manag. 2000 2004, 105, 1–10. [Google Scholar] [CrossRef]
- SIAM—Sistema de Información Agrario de Murcia Informe Agrometeorológico. Available online: http://siam.imida.es/apex/f?p=101:46:5335262445854377 (accessed on 7 November 2022).
- Köppen, W.; Geiger, R. World Maps of Köppen-Geiger Climate Classification. Available online: https://koeppen-geiger.vu-wien.ac.at/ (accessed on 16 November 2024).
- Taghavi, S.; Van Der Lelie, D.; Lee, J. Bacillus Licheniformis RTI184 Compositions and Methods of Use for Benefiting Plant Growth 2015. Patent WO2016108974A1, 30 June 2016. [Google Scholar]
- Richardson, E.A.; Seeley, S.D.; Walker, D.R.; Anderson, J.L.; Ashcroft, G.L. Pheno-Climatography of Spring Peach Bud Development. HortScience 1975, 10, 236–237. [Google Scholar] [CrossRef]
- Anastasiou, E.; Templalexis, C.; Lentzou, D.; Biniari, K.; Xanthopoulos, G.; Fountas, S. Do Soil and Climatic Parameters Affect Yield and Quality on Table Grapes? Smart Agric. Technol. 2023, 3, 100088. [Google Scholar] [CrossRef]
- Forcén-Muñoz, M.; Pavón-Pulido, N.; López-Riquelme, J.A.; Temnani-Rajjaf, A.; Berríos, P.; Morais, R.; Pérez-Pastor, A. Irriman Platform: Enhancing Farming Sustainability Through Cloud Computing Techniques for Irrigation Management. Sensors 2022, 22, 228. [Google Scholar] [CrossRef]
- Levene, H. Robust Tests for Equality of Variances. Contrib. Probab. Stat. 1961, 69, 279–292. [Google Scholar]
- Yitnosumarto, S.; O’Neill, M.E. On Levene’s Test of Variance Homogeneity. Aust. J. Stat. 1986, 28, 230–241. [Google Scholar] [CrossRef]
- O’Brien, R.G. A Simple Test for Variance Effects in Experimental Designs. Psychol. Bull. 1981, 89, 570–574. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat 2020. Available online: https://www.infostat.com.ar (accessed on 16 November 2024).
Year | Irrigation Program | Rainfall (mm) | ET0 (mm Day−1) | Irrigation (m3 ha−1) | Δθ20–40cm (%) | Ψs (MPa) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Total | Pre | Post | Max | Pre | Post | Total | Pre | Post | Post | ||
2021 | Farmer | 110 | 76 | 186 | 5.77 | 4.73 | 7.35 | 1218 | 3193 | 4411 | |||
2022 | Farmer | 39 | 57 | 96 | 6.35 | 4.66 | 7.43 | 1675 | 2728 | 4403 | 9.90 | 2.06 | −0.66 |
2022 | Precision | 1454 | 1613 | 3067 | −0.03 | −0.86 |
Year (Y) | Irrigation | Biostimulation | Treatment | Berry Size | Berry Weight | Hardness | |||
---|---|---|---|---|---|---|---|---|---|
(I) | (B) | (T) | mm | g | Shore A Scale | ||||
2021 | Farmer | Yes | T1 | 20.38 | 6.38 | 54.95 | |||
T2 | 20.49 | 6.54 | 51.12 | ||||||
T3 | 20.27 | 6.29 | 54.33 | ||||||
T4 | 20.36 | 6.48 | 57.65 | ||||||
No | T5 | 20.26 | 6.33 | 50.00 | |||||
ANOVA | 0.9897 ns | 0.9347 ns | 0.4425 ns | ||||||
2022 | Farmer | Yes | T1 | 18.76 | b | 5.27 | a | 61.29 | b |
T2 | 19.40 | a | 5.00 | a | 65.37 | b | |||
T3 | 18.66 | bc | 5.22 | a | 77.63 | a | |||
T4 | 18.39 | c | 4.98 | a | 60.64 | b | |||
No | T5 | 16.86 | d | 3.97 | b | 62.15 | b | ||
ANOVA | <0.0001 *** | <0.0001 *** | <0.0001 *** | ||||||
Precision | Yes | T1 | 18.20 | 4.81 | 62.61 | ||||
T2 | 17.94 | 5.01 | 65.78 | ||||||
T3 | 18.40 | 4.98 | 70.37 | ||||||
T4 | 18.70 | 5.03 | 63.11 | ||||||
No | T5 | 18.29 | 4.70 | 68.08 | |||||
ANOVA | 0.0506 ns | 0.1124 ns | 0.2208 ns | ||||||
Farmer | |||||||||
Y | <0.0001 *** | <0.0001 *** | <0.0001 *** | ||||||
T | <0.0001 *** | 0.0399 * | <0.0001 *** | ||||||
Y × T | <0.0001 *** | 0.0295 * | <0.0001 *** | ||||||
2022 | |||||||||
B | <0.0001 *** | <0.0001 *** | 0.6237 ns | ||||||
I | 0.0479 * | 0.8127 ns | 0.6313 ns | ||||||
B × I | <0.0001 *** | 0.0001 *** | 0.0257 * |
Year (Y) | Irrigation | Biostimulation | Treatment | TSS | TA | MI | |||
---|---|---|---|---|---|---|---|---|---|
(I) | (B) | (T) | Brix | g L−1 | |||||
2021 | Farmer | Yes | T1 | 18.35 | 5.28 | 34.75 | |||
T2 | 18.42 | 5.65 | 32.60 | ||||||
T3 | 18.69 | 6.05 | 30.89 | ||||||
T4 | 18.54 | 5.18 | 35.79 | ||||||
No | T5 | 18.24 | 6.15 | 29.66 | |||||
ANOVA | 0.7091 ns | 0.5084 ns | 0.6427 ns | ||||||
2022 | Farmer | Yes | T1 | 16.80 | 3.80 | 44.21 | |||
T2 | 17.65 | 3.80 | 46.45 | ||||||
T3 | 16.25 | 3.80 | 42.76 | ||||||
T4 | 16.75 | 3.80 | 44.08 | ||||||
No | T5 | 16.25 | 3.75 | 43.33 | |||||
ANOVA | 0.2876 ns | 0.0723 ns | 0.2621 ns | ||||||
Precision | Yes | T1 | 17.60 | a | 3.75 | a | 46.93 | a | |
T2 | 17.45 | a | 3.75 | a | 46.53 | a | |||
T3 | 17.35 | a | 3.60 | b | 48.19 | a | |||
T4 | 17.70 | a | 3.80 | a | 46.58 | a | |||
No | T5 | 16.55 | b | 3.75 | a | 44.13 | b | ||
ANOVA | 0.0125 * | 0.0009 *** | 0.0048 ** | ||||||
Farmer | |||||||||
Y | <0.0001 *** | <0.0001 *** | <0.0001 *** | ||||||
T | 0.3551 ns | 0.6807 ns | 0.6308 ns | ||||||
Y × T | 0.7941 ns | 0.6278 ns | 0.7754 ns | ||||||
2022 | |||||||||
B | 0.0133 * | 0.6408 ns | 0.0154 * | ||||||
I | 0.0205 * | 0.0088 ** | 0.0008 *** | ||||||
B × I | 0.5495 ns | 0.1686 ns | 0.2433 ns |
Treatment | Sprouting | Full Bloom | Fruit Set to Pea-Sized Berries |
---|---|---|---|
L ha−1 | |||
T1 A: Amalgerol® | 10 | 5 | 5 |
T2 A: Seamac Rhizo® | 5 | 5 | 5 |
T3 A: Accudo® | 1 | 1 | 1 |
T4: Seamac Rhizo® +Accudo® | 4 1 | 4 1 | 4 1 |
T5: Control | - | - | - |
Category I | Category II | Category III | Category IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata-García, S.; Berríos, P.; Temnani, A.; Espinosa, P.J.; Monllor, C.; Pérez-Pastor, A. Combined Use of Biostimulation and Deficit Irrigation Improved the Fruit Quality in Table Grape. Plants 2025, 14, 485. https://doi.org/10.3390/plants14030485
Zapata-García S, Berríos P, Temnani A, Espinosa PJ, Monllor C, Pérez-Pastor A. Combined Use of Biostimulation and Deficit Irrigation Improved the Fruit Quality in Table Grape. Plants. 2025; 14(3):485. https://doi.org/10.3390/plants14030485
Chicago/Turabian StyleZapata-García, Susana, Pablo Berríos, Abdelmalek Temnani, Pedro J. Espinosa, Claudia Monllor, and Alejandro Pérez-Pastor. 2025. "Combined Use of Biostimulation and Deficit Irrigation Improved the Fruit Quality in Table Grape" Plants 14, no. 3: 485. https://doi.org/10.3390/plants14030485
APA StyleZapata-García, S., Berríos, P., Temnani, A., Espinosa, P. J., Monllor, C., & Pérez-Pastor, A. (2025). Combined Use of Biostimulation and Deficit Irrigation Improved the Fruit Quality in Table Grape. Plants, 14(3), 485. https://doi.org/10.3390/plants14030485