Chemical Composition, Repellency, and Insecticidal Activity of Pinus halenpenssis Leaf Essential Oil from Morocco on Adults of Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae)
Abstract
1. Introduction
2. Results
2.1. Yield and Chemical Composition of the EO
2.2. Repellency of EO
2.3. Contact Toxicity of EO
3. Materials and Methods
3.1. Rearing of Insects
3.2. Plant Material and EO Extraction
3.3. Chemical Analysis by Gas Chromatography–Mass Spectrophotometry (GC-MS)
3.4. Repellency Assay of EO
- RI < 1—the substance is classified as a repellent, indicating that insects avoid the treated area;
- RI = 1—the substance is neutral, with no observable effect on insect distribution;
- RI > 1—the substance is attractive, indicating an insect preference for the treated area.
3.5. Contact Toxicity Assay of EO
3.6. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abrol, D.P.; Shankar, U. Pesticides, food safety and integrated pest management. In Integrated Pest Management; Springer: Dordrecht, The Netherlands, 2014; pp. 167–199. [Google Scholar]
- Canhilal, R. The use of entomopathogens in the controlling of insect pests of stored product. Sci. Pap. Ser. A Agron. 2016, 59, 235–240. [Google Scholar]
- Rees, D.P. Coleoptera. In Integrated Management of Insects in Stored Products; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–39. [Google Scholar]
- Yasir, M. Repellent potential of three medicinal plant extracts against Tribolium castaneum (Coleoptera: Tenebrionidae). Punjab Univ. J. Zool. 2018, 33, 121–126. [Google Scholar]
- Sileem, T.M.; Mehany, A.L.; Hassan, R.S. Fumigant toxicity of some essential oils against Red Flour Beetles, Tribolium castaneum (Herbst) and its safety to mammals. Braz. J. Biol. 2019, 80, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Mssillou, I.; Agour, A.; Allali, A.; Saghrouchni, H.; Bourhia, M.; El Moussaoui, A.; Salamatullah, A.M.; Alzahrani, A.; Aboul-Soud, M.A.; Giesy, J.P.; et al. Antioxidant, Antimicrobial, and Insecticidal Properties of a Chemically Characterized Essential Oil from the Leaves of Dittrichia viscosa L. Molecules 2022, 27, 2282. [Google Scholar] [CrossRef] [PubMed]
- Fianko, J.R.; Donkor, A.; Lowor, S.T.; Yeboah, P.O.; Glover, E.T.; Adom, T.; Faanu, A. Health risk associated with pesticide contamination of fish from the Densu River Basin in Ghana. J. Environ. Prot. 2011, 2, 115. [Google Scholar] [CrossRef]
- Pretty, J.; Hine, R. Pesticide use and the environment. In The Pesticide Detox; Routledge: London, UK, 2012; pp. 23–44. [Google Scholar]
- Aboelhadid, S.M.; Youssef, I.M. Control of red flour beetle (Tribolium castaneum) in feeds and commercial poultry diets via using a blend of clove and lemongrass extracts. ESPR 2021, 28, 30111–30120. [Google Scholar] [CrossRef]
- Rajashekar, Y.; Gunasekaran, N.; Shivanandappa, T. Insecticidal activity of the root extract of Decalepis hamiltonii against stored-product insect pests and its application in grain protection. JFST 2010, 47, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Hu, X.P. Repellent, antifeedant, and toxic activities of Lantana camara leaf extract against Reticulitermes flavipes (Isoptera: Rhinotermitidae). J. Econ. Entomol. 2012, 105, 2115–2121. [Google Scholar] [CrossRef]
- Abbas, M.G.; Haris, A.; Binyameen, M.; Nazir, A.; Mozūratis, R.; Azeem, M. Chemical composition, larvicidal and repellent activities of wild plant essential oils against Aedes aegypti. Biology 2022, 12, 8. [Google Scholar] [CrossRef]
- Reddy, D.N. Essential oils extracted from medicinal plants and their applications. In Natural Bio-Active Compounds; Volume 1: Production and Applications; Springer: Singapore, 2019; pp. 237–283. [Google Scholar]
- de Paiva Silva, G.T.; Figueiredo, K.G.; Alves, D.S.; de Oliveira, D.F.; Silva, G.H.; de Souza e Silva, G.T.; de Oliveira, M.S.; Biondi, A.; Carvalho, G.A. Survival and demography of the tomato borer (Tuta absoluta) exposed to citrus essential oils and major compounds. Agriculture 2023, 13, 538. [Google Scholar] [CrossRef]
- Antunes, M.D.C.; Cavaco, A.M. The use of essential oils for postharvest decay control. A review. Flavour Fragr. J. 2010, 25, 351–366. [Google Scholar] [CrossRef]
- Zaker, M. Natural Plant Products as Eco-Friendly Fungicides for Plant Diseases Control—A Review. Agriculturists 2016, 14, 134–141. [Google Scholar] [CrossRef]
- Matos, L.F.; da Cruz Lima, E.; de Andrade Dutra, K.; Navarro, D.M.D.A.F.; Alves, J.L.R.; Silva, G.N. Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Ind. Crop. Prod. 2020, 145, 112088. [Google Scholar] [CrossRef]
- Abdelali, S.K.; Souttou, K.; Kacimi-Elhassani, M.; Aissaoui, L.; Bendachou, H. Chemical composition of Artemesia herba-alba essential oil and its larvicidal and pupicidal effects against Culex pipiens (Diptera; Culicidae). Actual. Biol. 2023, 45, 12. [Google Scholar] [CrossRef]
- Djerrad, Z.; Kadik, L.; Djouahri, A. Chemical variability and antioxidant activities among Pinus halepensis Mill. essential oils provenances, depending on geographic variation and environmental conditions. Ind. Crop. Prod. 2015, 74, 440–449. [Google Scholar] [CrossRef]
- Bouyahya, A.; Belmehdi, O.; Abrini, J.; Dakka, N.; Bakri, Y. Chemical composition of Mentha suaveolens and Pinus halepensis essential oils and their antibacterial and antioxidant activities. Asian Pac. J. Trop. Med. 2019, 12, 117–122. [Google Scholar] [CrossRef]
- El Omari, N.; Guaouguaou, F.E.; El Menyiy, N.; Benali, T.; Aanniz, T.; Chamkhi, I.; Bouyahya, A. Phytochemical and biological activities of Pinus halepensis mill., and their ethnomedicinal use. J. Ethnopharmacol. 2021, 268, 113661. [Google Scholar] [CrossRef] [PubMed]
- Mohdeb, S.; Labdelli, F.; Bouriah, N.; Benouadah, S.; Ouarab, S. Chemical study and insecticidal activity of Pinus halepensis Mill essential oil against Bactrocera oleae Adults. Fresenius Environ. Bull. 2022, 31, 11125–11130. [Google Scholar]
- Fakayode, O.A.; Abobi, K.E. Optimization of oil and pectin extraction from orange (Citrus sinensis) peels: A response surface approach. J. Anal. Sci. Technol. 2018, 9, 20. [Google Scholar] [CrossRef]
- McDonald, L.L.; Guy, R.H.; Speirs, R.D. Preliminary Evaluation of New Candidate Materials as Toxicants, Repellents and Attractants against Stored Product Insects; Marketing Research Report No. 882; Agriculture Research Service, US Department of Agric: Washington, DC, USA, 1970; p. 8. [Google Scholar]
- Mazzonetto, F. Efeito de pós de origem vegetal sobre Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae) em feijão armazenado. Neotrop. Entomol. 2003, 32, 145–149. [Google Scholar] [CrossRef]
- Paulraj, M.G.; Sahayaraj, K. Efficacy of Eclipta alba (L.) Hassk and Ocimum sanctum (L.) leaves extracts and powders against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) in groundnut. In Vistas of Entomological Research for the New Millenium; Gill Research Institute: Chennai, India, 2002; p. 80. [Google Scholar]
- Ebadollahi, A.; Naseri, B.; Abedi, Z.; Setzer, W.N.; Changbunjong, T. Promising insecticidal efficiency of essential oils isolated from four cultivated Eucalyptus species in Iran against the lesser grain borer, Rhyzopertha dominica (F.). Insects 2022, 13, 517. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Mossa, A.T.H. Green pesticides: Essential oils as biopesticides in insect-pest management. IJEST 2016, 9, 354. [Google Scholar] [CrossRef]
- Ukoroije, R.B.; Otayor, R.A. Review on the bio-insecticidal properties of some plant secondary metabolites: Types, formulations, modes of action, advantages and limitations. Asian J. Res. Zool. 2020, 3, 27–60. [Google Scholar]
- Arab, R.; Lemeailbi, N.; Benhissen, S. Repellent Activity of Essential Oils from Artemisia herba alba Asso. and Teucrium polium L. Against Tow Stored Product Insects. NVEO 2022, 9, 1508–1515. [Google Scholar]
- Plata-Rueda, A.; Fiaz, M.; Brügger, B.P.; Cañas, V.; Coelho, R.P.; Zanuncio, J.C.; Martinez, L.C.; Serrão, J.E. Lemongrass essential oil and its components cause effects on survival, locomotion, ingestion, and histological changes of the midgut in Anticarsia gemmatalis caterpillars. Toxin Rev. 2022, 41, 208–217. [Google Scholar] [CrossRef]
- Saıfı, R.; Saıfı, H.; Akca, İ.; Benabadelkader, M.; Askın, A.K.; Belghoul, M. Insecticidal and repellent effects of Mentha longifolia L. essential oil against Aphis craccivora Koch (Hemiptera: Aphididae). Chem. Biol. Technol. Agric. 2023, 10, 18. [Google Scholar] [CrossRef]
- Bouzeraa, H.; Bessila-Bouzeraa, M.; Labed, N. Repellent and fumigant toxic potential of three essential oils against Ephestia kuehniella. Biosyst. Divers. 2019, 27, 349–353. [Google Scholar] [CrossRef]
- Torto, B. Chemical signals asattractants, repellents and aggregation stimulants. Chem. Ecol. 2009, 1, 186. [Google Scholar]
- Green, P.W. Insect-derived compounds affect the behaviour of Liposcelis bostrychophila: Effects of combination and structure. J. Stored Prod. Res. 2011, 47, 262–266. [Google Scholar] [CrossRef]
- Sritabutra, D.; Soonwera, M. Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.). Asian Pac. J. Trop. Dis. 2013, 3, 271–276. [Google Scholar] [CrossRef]
- Sathantriphop, S.; Achee, N.L.; Sanguanpong, U.; Chareonviriyaphap, T. effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus. J. Vector Ecol. 2015, 40, 318–326. [Google Scholar] [CrossRef]
- Martynov, V.O.; Titov, O.G.; Kolombar, T.M.; Brygadyrenko, V.V. Influence of essential oils of plants on the migration activity of Tribolium confusum (Coleoptera, Tenebrionidae). Biosyst. Divers. 2019, 27, 177–185. [Google Scholar] [CrossRef]
- Adebisi, O.; Dolma, S.K.; Verma, P.K.; Singh, B.; Reddy, S.G. Volatile, nonvolatile composition and biological activities of Ageratum houstonianum Mill. against diamondback moth, Plutella xylostella (L.) and aphid, Aphis craccivora Koch. Indian J. Exp. Biol. 2019, 57, 908–915. [Google Scholar]
- Farag, M.; Ahmed, M.H.; Yousef, H.; Abdel-Rahman, A.H. Repellent and insecticidal activities of Melia azedarach L. against cotton leafworm, Spodoptera littoralis (Boisd.). ZNC 2011, 66, 129–135. [Google Scholar]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Gad, H.A.; Ramadan, G.R.; El-Bakry, A.M.; El-Sabrout, A.M.; Abdelgaleil, S.A. Monoterpenes: Promising natural products for public health insect control-A review. Int. J. Trop. Insect Sci. 2022, 42, 1059–1075. [Google Scholar] [CrossRef]
- Zhang, W.J.; Yang, K.; You, C.X.; Wang, C.F.; Geng, Z.F.; Su, Y.; Wang, Y.; Du, S.S.; Deng, Z.W. Contact toxicity and repellency of the essential oil from Mentha haplocalyx Briq. against Lasioderma serricorne. Chem. Biodivers. 2015, 12, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Hieu, T.T.; Jung, J.; Kim, S.I.; Ahn, Y.J.; Kwon, H.W. Behavioural and electroantennogram responses of the stable fly (Stomoxys calcitrans L.) to plant essential oils and their mixtures with attractants. Pest Manag. Sci. 2014, 70, 163–172. [Google Scholar] [CrossRef]
- Mendoza-García, E.E.; Ortega-Arenas, L.D.; Serrato-Cruz, M.Á.; Villanueva-Jiménez, J.A.; López-Arroyo, J.I.; Pérez-Pacheco, R. Chemical composition, toxicity, and repellence of plant essential oils against Diaphorina citri (Hemiptera: Liviidae). Chil. J. Agric. Res. 2019, 79, 636–647. [Google Scholar] [CrossRef]
- Devi, M.A.; Sahoo, D.; Singh, T.B.; Rajashekar, Y. Toxicity, repellency and chemical composition of essential oils from Cymbopogon species against red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). JCF 2020, 15, 181–191. [Google Scholar] [CrossRef]
- Seada, M.A.; Hamza, A.M. Comparative morphology of sensilla of antennae, maxillary and labial palpi of adult Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), with specific reference to the typology and possible functions. JOBAZ 2023, 84, 14. [Google Scholar] [CrossRef]
- Sousa, D.L.; Xavier, E.O.; da Cruz, R.C.D.; de Souza, I.A.; de Oliveira, R.A.; da Silva, D.C.; Gualberto, S.A.; de Freitas, J.S. Chemical composition and repellent potential of essential oil from Croton tetradenius (Euphorbiaceae) leaves against Aedes aegypti (Diptera: Culicidae). Biocatal. Agric. Biotechnol. 2023, 47, 102549. [Google Scholar] [CrossRef]
- Venthur, H.; Zhou, J.J. Odorant receptors and odorant-binding proteins as insect pest control targets: A comparative analysis. Front. Physiol. 2018, 9, 1163. [Google Scholar] [CrossRef]
- Del Mármol, J.; Yedlin, M.A.; Ruta, V. The structural basis of odorant recognition in insect olfactory receptors. Nature 2021, 597, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Reinecke, A.; Hilker, M. Plant semiochemicals–perception and behavioural responses by insects. Annu. Plant Rev. Insect-Plant Interact. 2014, 47, 115–153. [Google Scholar]
- Conchou, L.; Lucas, P.; Meslin, C.; Proffit, M.; Staudt, M.; Renou, M. Insect odorscapes: From plant volatiles to natural olfactory scenes. Front. Physiol. 2019, 10, 972. [Google Scholar] [CrossRef]
- Merritt, D.M.A. Discriminating Memory: Learning and Chemosensation in C. elegans. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2022. [Google Scholar]
- Dambolena, J.S.; Zunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Areco, V.A.; Zygadlo, J.A. Terpenes: Natural products for controlling insects of importance to human health—A structure-activity relationship study. Psyche A J. Entomol. 2016, 2016, 4595823. [Google Scholar] [CrossRef]
- Eesiah, S.; Yu, J.; Dingha, B.; Amoah, B.; Mikiashvili, N. Preliminary assessment of repellency and toxicity of essential oils against Sitophilus zeamais motschulsky (Coleoptera: Curculionidae) on stored organic corn grains. Foods 2022, 11, 2907. [Google Scholar] [CrossRef]
- Alami, A.; El Ouali Lalami, A.; Annemer, S.; El-Akhal, F.; Ez Zoubi, Y.; Farah, A. Chemical Composition and Larvicidal Properties of Essential Oils from Wild and Cultivated Artemisia campestris L., an Endemic Plant in Morocco. Sci. World. 2023, 2023, 5748133. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Luo, J.; Zhang, N.; Yu, W.; Jiang, J.; Dai, G. Insecticidal activities of Salvia hispanica L. essential oil and combinations of their main compounds against the beet armyworm Spodoptera exigua. Ind. Crop. Prod. 2021, 162, 113271. [Google Scholar] [CrossRef]
- Bano, P.; Rather, M.A.; Mukhtar, M.; Sherwani, A.; Ganie, S. Fumigant Toxicity of Artemisia absinthium Essential Oil to Common Stored Product Pests. Indian J. Entomol. 2022, 84, 437–440. [Google Scholar] [CrossRef]
- Ejjabraoui, M.; Mohamed Abdoul-Latif, F.; Eddabbeh, F.E.; Ainane, A.; Shybat, Z.L.; Ainane, T. Chemical study and insecticidal activity of two species of Moroccan Pinus: Pinus halepensis Mill. and Pinus pinaster Sol. Pharmacol. Online 2021, 2, 508–517. [Google Scholar]
- Li, Q.; Song, Y. Studies on effect of several plant materials against stored grain insects. In Proceedings of the Seventh International Conference on Stored-Product Protection, Beijing, China, 14–19 October 1998; Sichuan Publishing House of Science and Technology: Chengdu, China, 1998. [Google Scholar]
- Wu, Y.; Zhang, W.J.; Huang, D.Y.; Wang, Y.; Wei, J.Y.; Li, Z.H.; Sun, J.S.; Bai, J.F.; Tian, Z.F.; Wang, P.J.; et al. Chemical compositions and insecticidal activities of Alpinia kwangsiensis essential oil against Lasioderma serricorne. Molecules 2015, 20, 21939–21945. [Google Scholar] [CrossRef]
- Zhang, J.W.; Li, B.Y.; Lu, X.X.; Zheng, Y.; Wang, D.; Zhang, Z.; Zeng, D.; Du, S.S. Chemical Diversity and Anti-Insect Activity Evaluation of Essential Oils Extracted from Five Artemisia Species. Plants 2022, 11, 1627. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for the management of storage insect pests: Prospects and retrospects. ESPR 2021, 28, 18918–18940. [Google Scholar] [CrossRef]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, M.K. Insecticidal activities of Cinnamomum tamala (Lauraceae) essential oil against Sitophilus oryzae L. (Coleoptera: Curculionidae). Int. J. Entomol. Res. 2016, 4, 91–98. [Google Scholar]
- Buss, E.A.; Park-Brown, S.G. Natural Products for Insect Pest Management; UF/IFAS Publication ENY-350; University of Florida: Gainesville, FL, USA, 2002. [Google Scholar]
- Abdelgaleil, S.A.M.; Gad, H.A.; Ramadan, G.R.; El-Bakry, A.M.; El-Sabrout, A.M. Monoterpenes: Chemistry, insecticidal activity against stored product insects and modes of action—A review. Int. J. Pest Manag. 2024, 70, 267–289. [Google Scholar] [CrossRef]
- Yousef, H.E.B.A.; El-Lakwah, S.F.; El Sayed, Y.A. Insecticidal activity of linoleic acid against Spodoptera littoralis (Boisd.). EJAR 2013, 91, 573–580. [Google Scholar] [CrossRef]
- Ren, Y.; Shi, J.; Mu, Y.; Tao, K.; Jin, H.; Hou, T. AW1 neuronal cell cytotoxicity: The mode of action of insecticidal fatty acids. J. Agric. Food Chem. 2019, 67, 12129–12136. [Google Scholar] [CrossRef]
- Ling, W.; Kaliaperumal, K.; Huang, M.; Liang, Y.; Ouyang, Z.; Zhou, Z.; Jiang, Y.; Zhang, J. Pomelo seed oil: Natural insecticide against cowpea aphid. Front. Plant Sci. 2022, 13, 1048814. [Google Scholar] [CrossRef]
- Toews, M.D.; Subramanyam, B. Contribution of contact toxicity and wheat condition to mortality of stored-product insects exposed to spinosad. Pest Manag. Sci. 2003, 59, 538–544. [Google Scholar] [CrossRef]
- Balabanidou, V.; Grigoraki, L.; Vontas, J. Insect cuticle: A critical determinant of insecticide resistance. Curr. Opin. Insect Sci. 2018, 27, 68–74. [Google Scholar] [CrossRef]
- Cao, J.Q.; Guo, S.S.; Wang, Y.; Pang, X.; Geng, Z.F.; Du, S.S. Toxicity and repellency of essential oil from Evodia lenticellata Huang fruits and its major monoterpenes against three stored-product insects. Ecotoxicol. Environ. Saf. 2018, 160, 342–348. [Google Scholar] [CrossRef]
- Elbrense, H.; Gheda, S. Evaluation of the insecticidal and antifeedant activities of some seaweed extracts against the Egyptian cotton leaf worm, Spodoptera littoralis, and the lesser grain borer Rhyzopertha dominica. Egypt. J. Exp. Biol. 2021, 17, 1–17. [Google Scholar] [CrossRef]
- Şengül Demirak, M.Ş.; Canpolat, E. Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission. Insects 2022, 13, 162. [Google Scholar] [CrossRef]
- Lucia, A.; Guzmán, E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Adv. Colloid Interface Sci. 2021, 287, 102330. [Google Scholar] [CrossRef]
- He, Y.; Du, G.; Xie, S.; Long, X.; Sun, G.; Zhu, S.; Chen, B. The Insecticidal Efficacy and Physiological Action Mechanism of a Novel Agent GC16 against Tetranychus pueraricola (Acari: Tetranychidae). Insects 2022, 13, 433. [Google Scholar] [CrossRef] [PubMed]
N° | RT a (min) | Compounds | Molecular Formula | Percentage (%) |
---|---|---|---|---|
1 | 5.59 | Eucalyptol | C10H18O | 0.9 |
2 | 6.66 | Camphor | C10H16O | 2.24 |
3 | 7.24 | Hexadecane | C40H82O2 | 2.01 |
4 | 7.71 | Linolenic acid | C18H30O2 | 2.73 |
5 | 8.00 | Palmitoleic acid | C16H30O2 | 0.88 |
6 | 9.16 | Geranyl-α-terpinene | C20H32 | 1.34 |
7 | 9.34 | 1-Heptatriacotanol | C37H76O | 1.72 |
8 | 9.69 | 1-Hexadecene | C16H32 | 20.79 |
9 | 10.02 | Lauric acid | C12H24O2 | 0.93 |
10 | 10.10 | α-epi-Cadinol | C15H26O | 2.24 |
11 | 10.80 | 1-Nonadecene | C19H38 | 25.51 |
12 | 11.10 | Myristic acid | C14H28O2 | 2.21 |
13 | 12.05 | Palmitic acid | C16H32O2 | 12.47 |
14 | 12.73 | 1-Docosene | C22H44 | 4.80 |
15 | 13.11 | Pimaric acid | C20H30O2 | 16.71 |
16 | 14.38 | 17-Pentatriacontene | C35H70 | 1.96 |
Total identified (%) | 99.44 |
Insects | Doses (μL/mL) | PR ± SE | Repellency Class | RI ± SE | Classification |
---|---|---|---|---|---|
T. castaneum | 1 | 54.00 ± 4.00 e | Class III | 0.46 ± 0.08 e | Repellent |
2 | 59.00 ± 3.82 d | Class III | 0.40 ± 0.03 d | Repellent | |
4 | 64.00 ± 5.00 c | Class IV | 0.37 ± 0.02 c | Repellent | |
8 | 66.50 ± 3.00 b | Class IV | 0.33 ± 0.05 b | Repellent | |
16 | 74.50 ± 3.91 a | Class IV | 0.26 ± 0.04 a | Repellent | |
Mean ± SD | 63.60 ± 2.89 b | Class IV | 0.36 ± 0.01 c | Repellent | |
R. dominica | 1 | 56.50 ± 8.00 e | Class III | 0.44 ± 0.02 e | Repellent |
2 | 63.00 ± 6.72 d | Class IV | 0.37 ± 0.05 d | Repellent | |
4 | 66.00 ± 5.00 c | Class IV | 0.35 ± 0.07 c | Repellent | |
8 | 70.50 ± 4.47 b | Class IV | 0.30 ± 0.05 b | Repellent | |
16 | 76.50 ± 3.49 a | Class IV | 0.23 ± 0.06 a | Repellent | |
Mean ± SD | 66.50 ± 1.70 c | Class IV | 0.34 ± 0.02 bc | Repellent |
Insects | Time (h) | Mortality Rate ± SE | LC50 (μL/mL) [CI 95%] | LC90 (μL/mL) [CI 95%] |
---|---|---|---|---|
T. castaneum | 24 | 42.00 ± 1.80 | 29.32 (18.63–33.33) | 49.04 (42.93–68.05) |
48 | 48.00 ± 1.20 | 26.46 (12.85–30.66) | 46.17 (40.07–55.14) | |
72 | 57.00 ± 1.49 | 23.02 (9.86–31.55) | 34.73 (31.61–37.08) | |
96 | 63.00 ± 0.87 | 20.92 (7.38–29.89) | 32.18 (27.28–34.79) | |
R. dominica | 24 | 54.00 ± 2.90 | 23.47 (15.77–26.08) | 38.35 (36.51–198.88) |
48 | 60.00 ± 1.68 | 21.62 (14.18–28.11) | 34.22 (31.74–81.73) | |
72 | 66.00 ± 2.00 | 19.97 (13.23–24.36) | 32.50 (27.48–66.40) | |
96 | 72.00 ± 1.76 | 17.11 (9.03–16.73) | 30.02 (23.98–57.24) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naimi, I.; Bouamama, H.; Ba M’hamed, T. Chemical Composition, Repellency, and Insecticidal Activity of Pinus halenpenssis Leaf Essential Oil from Morocco on Adults of Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Plants 2025, 14, 407. https://doi.org/10.3390/plants14030407
Naimi I, Bouamama H, Ba M’hamed T. Chemical Composition, Repellency, and Insecticidal Activity of Pinus halenpenssis Leaf Essential Oil from Morocco on Adults of Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Plants. 2025; 14(3):407. https://doi.org/10.3390/plants14030407
Chicago/Turabian StyleNaimi, Imane, Hafida Bouamama, and Touria Ba M’hamed. 2025. "Chemical Composition, Repellency, and Insecticidal Activity of Pinus halenpenssis Leaf Essential Oil from Morocco on Adults of Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae)" Plants 14, no. 3: 407. https://doi.org/10.3390/plants14030407
APA StyleNaimi, I., Bouamama, H., & Ba M’hamed, T. (2025). Chemical Composition, Repellency, and Insecticidal Activity of Pinus halenpenssis Leaf Essential Oil from Morocco on Adults of Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Plants, 14(3), 407. https://doi.org/10.3390/plants14030407