Function of WAKs in Regulating Cell Wall Development and Responses to Abiotic Stress
Abstract
1. Introduction
2. WAK Domain Features
3. WAKs Regulating Primary Wall Expansion
4. WAKs Regulating Secondary Wall Development
5. WAKs Regulating Abiotic Stress Responses
Genes | Species | Types | Functions | References |
---|---|---|---|---|
Salt stress | ||||
AtWAKL10 | Arabidopsis thaliana L. | WAKL | Positively regulated the salt tolerance of Arabidopsis | [4] |
GhWAKL26 | Gossypium hirsutum | WAKL | Enhanced plant resistance to salt stress in cotton by regulating the balance of Na+ and K+ ions | [72] |
GhWAK9 GhWAK12 | Gossypium hirsutum | WAK | Significantly upregulated in response to salt stress | [19] |
GhWAKL46 GhWAKL47 | Gossypium hirsutum | WAKL | ||
GbWAK5 | Gossypium barbadense | WAK | Regulated the balance of Na+ and K+ ions by affecting the expression of ion transport genes, thereby enhancing the salt tolerance of cotton seedlings | [73] |
OsWAK112 | Oryza sativa | WAK | Negatively regulated the salt tolerance of rice | [33] |
SlWAK1 | Solanum lycopersicum L. | WAK | Controls osmotic and metabolic homeostasis in tomato under high salt stress, negatively regulating salt sensitivity | [71] |
NsWAK4 | Nitraria sphaerocarpa | WAK | Significant increase in expression levels following long exposure to salt | [74] |
BdWAK2 BdWAK10 | Brachypodium distachyon | WAK | Significant increase in expression levels in response to sodium salicylate and salt treatments | [42] |
BdWAK72 | Brachypodium distachyon | WAK | Sensitivity to salt stress | [42] |
Heavy metal stress | ||||
AtWAK1 | Arabidopsis thaliana L. | WAK | Overexpression lines restored root growth inhibition by Al stress | [75] |
AtWAKL4 | Arabidopsis thaliana L. | WAKL | Vital role in root mineral nutrient responses, such as Na+, K+, Cu2+, and Zn2+ | [76] |
OsWAK124 | Oryza sativa | WAK | Functions in (heavy) metal stress responses, such as Cd2+, Cu2+, and Al3+ | [82] |
OsWAK11 | Oryza sativa | WAK | Regulated plant response to heavy metal stress and wounding | [6] |
PsWAK5 PsWAK9 PsWAK14 | Pisum sativum | WAK | Significant increase in expression levels in Al-sensitive cultivar Hyogo | [64] |
Cold stress | ||||
OsWAK112d | Oryza sativa | WAK | Enhanced rice resistance to cold stress | [80] |
CsWAK12 | Camellia sinensis | WAK | Negatively regulated cold tolerance | [81] |
GhWAK9 GhWAK12 | Gossypium hirsutum | WAK | Significantly upregulated in response to cold stress | [19] |
GhWAKL46 GhWAKL47 | Gossypium hirsutum | WAKL | ||
GhWAKL17 | Gossypium hirsutum | WAKL | Expression upregulated at the beginning of cold treatment | [19] |
Heat stress | ||||
CaWAKL20 | Capsicum annuum L. | WAKL | Negatively regulated thermotolerance in pepper | [79] |
GhWAK9 GhWAK12 | Gossypium hirsutum | WAK | Significantly upregulated in response to heat stress | [19] |
GhWAKL46 GhWAKL47 | Gossypium hirsutum | WAKL | ||
Drought stress | ||||
GhWAK9 GhWAK12 | Gossypium hirsutum | WAK | Significantly upregulated in response to drought stress | [19] |
GhWAKL46 GhWAKL47 | Gossypium hirsutum | WAKL |
6. Materials and Methods
6.1. Strategy for the Literature Search
6.2. Data Analysis
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Agustí, J.; Blázquez, M.A. Plant vascular development: Mechanisms and environmental regulation. Cell. Mol. Life Sci. 2020, 77, 3711–3728. [Google Scholar] [CrossRef] [PubMed]
- Doblin, M.S.; Ma, Y. Plant Cell Walls: Research Milestones and Conceptual Insights, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023; pp. 1–28. [Google Scholar]
- Li, L.; Li, K.; Ali, A.; Guo, Y. AtWAKL10, a Cell Wall Associated Receptor-Like Kinase, Negatively Regulates Leaf Senescence in Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 4885. [Google Scholar] [CrossRef]
- Bot, P.; Mun, B.-G.; Imran, Q.M.; Hussain, A.; Lee, S.-U.; Loake, G.; Yun, B.-W. Differential expression of AtWAKL10 in response to nitric oxide suggests a putative role in biotic and abiotic stress responses. PeerJ 2019, 7, e7383. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.F.V.; Christoff, A.P.; de Lima, J.C.; de Ross, B.C.F.; Sachetto-Martins, G.; Margis-Pinheiro, M.; Margis, R. The Wall-associated Kinase gene family in rice genomes. Plant Sci. 2014, 229, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Lv, Y.; Lei, W.; Li, X.; Chen, Y.; Zheng, L.; Xia, Y.; Shen, Z. Cloning and characterization of the Oryza sativa wall-associated kinase gene OsWAK11 and its transcriptional response to abiotic stresses. Plant Soil 2014, 384, 335–346. [Google Scholar] [CrossRef]
- Hurni, S.; Scheuermann, D.; Krattinger, S.G.; Kessel, B.; Wicker, T.; Herren, G.; Fitze, M.N.; Breen, J.; Presterl, T.; Ouzunova, M.; et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc. Natl. Acad. Sci. USA 2015, 112, 8780–8785. [Google Scholar] [CrossRef]
- Zhang, L.; Geng, X.; Zhang, H.; Zhou, C.; Zhao, A.; Wang, F.; Zhao, Y.; Tian, X.; Hu, Z.; Xin, M.; et al. Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.). J. Plant Biol. 2017, 60, 57–65. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, X.; Zhang, Y.; Wang, L.; An, Q.; Tu, Q.; Wu, L.; Jiang, P.; Zhang, P.; Yu, L.; et al. Characterization of the WAK Gene Family Reveals Genes for FHB Resistance in Bread Wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2022, 23, 7157. [Google Scholar] [CrossRef]
- Wolf, S. Cell Wall Signaling in Plant Development and Defense. Annu. Rev. Plant Biol. 2022, 73, 323–353. [Google Scholar] [CrossRef]
- Smokvarska, M.; Bayle, V.; Maneta-Peyret, L.; Fouillen, L.; Poitout, A.; Dongois, A.; Fiche, J.-B.; Gronnier, J.; Garcia, J.; Höfte, H.; et al. The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. Sci. Adv. 2023, 9, eadd4791. [Google Scholar] [CrossRef]
- He, Z.-H.; Fujiki, M.; Kohorn, B.D. A cell wall-associated, receptor-like protein kinase. J. Biol. Chem. 1996, 271, 19789–19793. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Pi, Q.; Liu, Y.; Hu, L.; Li, B.; Zhang, B.; Wang, Y.; Jiang, M.; Qi, X.; Li, W.; et al. ZmWAK02 encoding an RD-WAK protein confers maize resistance against gray leaf spot. New Phytol. 2023, 241, 1780–1793. [Google Scholar] [CrossRef]
- Yang, K.; Qi, L.; Zhang, Z. Isolation and characterization of a novel wall-associated kinase gene TaWAK5 in wheat (Triticum aestivum). Crop. J. 2014, 2, 255–266. [Google Scholar] [CrossRef]
- Tripathi, R.K.; Aguirre, J.A.; Singh, J. Genome-wide analysis of wall associated kinase (WAK) gene family in barley. Genomics 2020, 113, 523–530. [Google Scholar] [CrossRef]
- Sun, Z.; Song, Y.; Chen, D.; Zang, Y.; Zhang, Q.; Yi, Y.; Qu, G. Genome-Wide Identification, Classification, Characterization, and Expression Analysis of the Wall-Associated Kinase Family during Fruit Development and under Wound Stress in Tomato (Solanum lycopersicum L.). Genes 2020, 11, 1186. [Google Scholar] [CrossRef]
- Kurt, F.; Kurt, B.; Filiz, E. Wall associated kinases (WAKs) gene family in tomato (Solanum lycopersicum): Insights into plant immunity. Gene Rep. 2020, 21, 100828. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, W.; Kang, Y.; Fan, Y.; Yang, X.; Shi, M.; Zhang, R.; Wang, Y.; Qin, S. Genome-wide identification and expression analysis of wall-associated kinase (WAK) gene family in potato (Solanum tuberosum L.). Plant Biotechnol. Rep. 2022, 16, 317–331. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, W.; Ren, Z.; Wang, X.; Zhao, J.; Pei, X.; Liu, Y.; He, K.; Zhang, F.; Huo, W.; et al. Characterization and expression analysis of wall-associated kinase (WAK) and WAK-like family in cotton. Int. J. Biol. Macromol. 2021, 187, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Z.; Tian, Y.; Zhang, S.; Li, D.; Dong, W.; Zhang, C.; Zhang, Z. Characterization of wall-associated kinase/wall-associated kinase-like (WAK/WAKL) family in rose (Rosa chinensis) reveals the role of RcWAK4 in Botrytis resistance. BMC Plant Biol. 2021, 21, 526. [Google Scholar] [CrossRef]
- Zhong, X.; Li, J.; Yang, L.; Wu, X.; Xu, H.; Hu, T.; Wang, Y.; Wang, Y.; Wang, Z. Genome-wide identification and expression analysis of wall-associated kinase (WAK) and WAK-like kinase gene family in response to tomato yellow leaf curl virus infection in Nicotiana benthamiana. BMC Plant Biol. 2023, 23, 146. [Google Scholar] [CrossRef]
- Zuo, C.; Liu, Y.; Guo, Z.; Mao, J.; Chu, M.; Chen, B. Genome-wide annotation and expression responses to biotic stresses of the WALL-ASSOCIATED KINASE-RECEPTOR-LIKE KINASE (WAK-RLK) gene family in Apple (Malus domestica). Eur. J. Plant Pathol. 2018, 153, 771–785. [Google Scholar] [CrossRef]
- Zhang, Z.; Huo, W.; Wang, X.; Ren, Z.; Zhao, J.; Liu, Y.; He, K.; Zhang, F.; Li, W.; Jin, S.; et al. Origin, evolution, and diversification of the wall-associated kinase gene family in plants. Plant Cell Rep. 2023, 42, 1891–1906. [Google Scholar] [CrossRef] [PubMed]
- Stephens, C.; Hammond-Kosack, K.E.; Kanyuka, K. WAKsing plant immunity, waning diseases. J. Exp. Bot. 2021, 73, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Amsbury, S. Sensing Attack: The Role of Wall-Associated Kinases in Plant Pathogen Responses. Plant Physiol. 2020, 183, 1420–1421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Su, T.; Xin, X.; Li, P.; Wang, J.; Wang, W.; Yu, Y.; Zhao, X.; Zhang, D.; Li, D.; et al. Wall-associated kinase BrWAK1 confers resistance to downy mildew in Brassica rapa. Plant Biotechnol. J. 2023, 21, 2125–2139. [Google Scholar] [CrossRef] [PubMed]
- Dmochowska-Boguta, M.; Kloc, Y.; Zielezinski, A.; Werecki, P.; Nadolska-Orczyk, A.; Karlowski, W.M.; Orczyk, W. TaWAK6 encoding wall-associated kinase is involved in wheat resistance to leaf rust similar to adult plant resistance. PLoS ONE 2020, 15, e0227713. [Google Scholar] [CrossRef]
- Zhao, M.; Li, N.; Chen, S.; Wu, J.; He, S.; Zhao, Y.; Wang, X.; Chen, X.; Zhang, C.; Fang, X.; et al. GmWAK1, Novel Wall-Associated Protein Kinase, Positively Regulates Response of Soybean to Phytophthora sojae Infection. Int. J. Mol. Sci. 2023, 24, 798. [Google Scholar] [CrossRef]
- Hamdi, J.; Kmeli, N.; Bettaieb, I.; Bouktila, D. Wall-Associated Kinase (WAK) and WAK-like Kinase Gene Family in Sugar Beet: Genome-Wide Characterization and In Silico Expression Analysis in Response to Beet Cyst Nematode (Heterodera schachtii Schmidt) Infection. J. Plant Growth Regul. 2024. [Google Scholar] [CrossRef]
- Li, H.; Zhou, S.-Y.; Zhao, W.-S.; Su, S.-C.; Peng, Y.-L. A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Mol. Biol. 2008, 69, 337–346. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Chen, M.; Da, L.; Su, Z.; Zhang, Z.; Liu, X. Comparative genomics analysis of WAK/WAKL family in Rosaceae identify candidate WAKs involved in the resistance to Botrytis cinerea. BMC Genom. 2023, 24, 337. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Humphries, J.; Ratcliffe, J.; Bacic, A.; Johnson, K.L.; Qu, G. WALL-ASSOCIATED KINASE Like 14 regulates vascular tissue development in Arabidopsis and tomato. Plant Sci. 2024, 341, 112013. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Wang, Y.; Liu, X.; Shang, J.-X.; Zhao, L. OsWAK112, A Wall-Associated Kinase, Negatively Regulates Salt Stress Responses by Inhibiting Ethylene Production. Front. Plant Sci. 2021, 12, 751965. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.-L.; Liu, N.; Deng, Z.-P.; Zhang, Y.; Wu, Z.-M.; Zhao, J.-L.; Sun, Y.; Wang, Z.-Y.; Zhang, S.-W. The receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune brassinosteroid signaling and regulate cell elongation in rice. Curr. Biol. 2022, 32, 2454–2466.e7. [Google Scholar] [CrossRef] [PubMed]
- Kohorn, B.D. WAKs; cell wall associated kinases. Curr. Opin. Cell Biol. 2001, 13, 529–533. [Google Scholar] [CrossRef]
- Bork, P.; Downing, A.K.; Kieffer, B.; Campbell, I.D. Structure and distribution of modules in extracellular proteins. Q. Rev. Biophys. 1996, 29, 119–167. [Google Scholar] [CrossRef]
- Decreux, A.; Messiaen, J. Wall-associated Kinase WAK1 Interacts with Cell Wall Pectins in a Calcium-induced Conformation. Plant Cell Physiol. 2005, 46, 268–278. [Google Scholar] [CrossRef]
- Verica, J.A.; He, Z.-H. The cell wall-associated kinase (WAK) and WAK-like kinase gene family. Plant Physiol. 2002, 129, 455–459. [Google Scholar] [CrossRef]
- Harvey, A.; van den Berg, N.; Swart, V. Describing and characterizing the WAK/WAKL gene family across plant species: A systematic review. Front. Plant Sci. 2024, 15, 1467148. [Google Scholar] [CrossRef]
- Dou, L.; Li, Z.; Shen, Q.; Shi, H.; Li, H.; Wang, W.; Zou, C.; Shang, H.; Li, H.; Xiao, G. Genome-wide characterization of the WAK gene family and expression analysis under plant hormone treatment in cotton. BMC Genom. 2021, 22, 85. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.; Li, L.; Meng, L.; Singh, J.; Jiang, N.; Deng, X.-W.; He, Z.-H.; Lemaux, P.G. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol. 2005, 139, 1107–1124. [Google Scholar] [CrossRef]
- Wu, X.; Bacic, A.; Johnson, K.L.; Humphries, J. The Role of Brachypodium distachyon Wall-Associated Kinases (WAKs) in Cell Expansion and Stress Responses. Cells 2020, 9, 2478. [Google Scholar] [CrossRef] [PubMed]
- Shiu, S.-H.; Karlowski, W.M.; Pan, R.; Tzeng, Y.-H.; Mayer, K.F.X.; Li, W.-H. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 2004, 16, 1220–1234. [Google Scholar] [CrossRef] [PubMed]
- Brutus, A.; Sicilia, F.; Macone, A.; Cervone, F.; De Lorenzo, G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl. Acad. Sci. USA 2010, 107, 9452–9457. [Google Scholar] [CrossRef]
- Dodd, A.N.; Kudla, J.; Sanders, D. The Language of Calcium Signaling. Annu. Rev. Plant Biol. 2010, 61, 593–620. [Google Scholar] [CrossRef]
- Wagner, T.A.; Kohorn, B.D. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 2001, 13, 303–318. [Google Scholar] [CrossRef]
- Kohorn, B.D.; Johansen, S.; Shishido, A.; Todorova, T.; Martinez, R.; Defeo, E.; Obregon, P. Pectin activation of MAP kinase and gene expression is WAK2 dependent. Plant J. 2009, 60, 974–982. [Google Scholar] [CrossRef]
- Kohorn, B.D. Cell wall-associated kinases and pectin perception. J. Exp. Bot. 2015, 67, 489–494. [Google Scholar] [CrossRef]
- Decreux, A.; Thomas, A.; Spies, B.; Brasseur, R.; Van Cutsem, P.; Messiaen, J. In vitro characterization of the homogalacturonan-binding domain of the wall-associated kinase WAK1 using site-directed mutagenesis. Phytochemistry 2006, 67, 1068–1079. [Google Scholar] [CrossRef]
- Kohorn, B.D.; Kobayashi, M.; Johansen, S.; Riese, J.; Huang, L.-F.; Koch, K.; Fu, S.; Dotson, A.; Byers, N. An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J. 2006, 46, 307–316. [Google Scholar] [CrossRef]
- Kohorn, B.D.; Greed, B.E.; Mouille, G.; Verger, S.; Kohorn, S.L. Effects of Arabidopsis wall associated kinase mutations on ESMERALDA1 and elicitor induced ROS. PLoS ONE 2021, 16, e0251922. [Google Scholar] [CrossRef]
- Lally, D.; Ingmire, P.; Tong, H.-Y.; He, Z.-H. Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology. Plant Cell 2001, 13, 1317–1332. [Google Scholar] [CrossRef]
- Ferrari, S.; Savatin, D.V.; Sicilia, F.; Gramegna, G.; Cervone, F.; De Lorenzo, G. Oligogalacturonides: Plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 2013, 4, 49. [Google Scholar] [CrossRef] [PubMed]
- Herold, L.; Ordon, J.; Hua, C.; Kohorn, B.D.; Nürnberger, T.; DeFalco, T.A.; Zipfel, C. Arabidopsis WALL-ASSOCIATED KINASES are not required for oligogalacturonide-induced signaling and immunity. Plant Cell 2024, 37, koae317. [Google Scholar] [CrossRef] [PubMed]
- Park, A.R.; Cho, S.K.; Yun, U.J.; Jin, M.Y.; Lee, S.H.; Sachetto-Martins, G.; Park, O.K. Interaction of the Arabidopsis Receptor Protein Kinase Wak1 with a Glycine-rich Protein, AtGRP-3. J. Biol. Chem. 2001, 276, 26688–26693. [Google Scholar] [CrossRef]
- Enders, T.A.; Frick, E.M.; Strader, L.C. An Arabidopsis kinase cascade influences auxin-responsive cell expansion. Plant J. 2017, 92, 68–81. [Google Scholar] [CrossRef]
- Kohorn, B.D.; Kohorn, S.L. The cell wall-associated kinases, WAKs, as pectin receptors. Front. Plant Sci. 2012, 3, 88. [Google Scholar] [CrossRef]
- Kanneganti, V.; Gupta, A.K. RNAi mediated silencing of a wall associated kinase, OsiWAK1 in Oryza sativa results in impaired root development and sterility due to anther indehiscence: Wall Associated Kinases from Oryza sativa. Physiol. Mol. Biol. Plants 2011, 17, 65–77. [Google Scholar] [CrossRef]
- Ma, Z.; Miao, J.; Yu, J.; Pan, Y.; Li, D.; Xu, P.; Sun, X.; Li, J.; Zhang, H.; Li, Z.; et al. The wall-associated kinase GWN1 controls grain weight and grain number in rice. Theor. Appl. Genet. 2024, 137, 150. [Google Scholar] [CrossRef]
- Wang, N.; Huang, H.-J.; Ren, S.-T.; Li, J.-J.; Sun, Y.; Sun, D.-Y.; Zhang, S.-Q. The Rice wall-associated receptor-like kinase gene OsDEES1 plays a role in female gametophyte development. Plant Physiol. 2012, 160, 696–707. [Google Scholar] [CrossRef]
- Yang, Z. Plant growth: A matter of WAK seeing the wall and talking to BRI1. Curr. Biol. 2022, 32, R564–R566. [Google Scholar] [CrossRef]
- Du, D.; Li, Z.; Yuan, J.; He, F.; Li, X.; Wang, N.; Li, R.; Ke, W.; Zhang, D.; Chen, Z.; et al. The TaWAK2-TaNAL1-TaDST pathway regulates leaf width via cytokinin signaling in wheat. Sci. Adv. 2024, 10, eadp5541. [Google Scholar] [CrossRef] [PubMed]
- Vaahtera, L.; Schulz, J.; Hamann, T. Cell wall integrity maintenance during plant development and interaction with the environment. Nat. Plants 2019, 5, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ou, M.; Li, L.; Li, Y.; Feng, Y.; Huang, X.; Baluška, F.; Shabala, S.; Yu, M.; Shi, W.; et al. The wall-associated kinase gene family in pea (Pisum sativum) and its function in response to B deficiency and Al toxicity. J. Plant Physiol. 2023, 287, 154045. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Stafford, L.; Ratcliffe, J.; Bacic, A.; Johnson, K.L. WAKL8 Regulates Arabidopsis Stem Secondary Wall Development. Plants 2022, 11, 2297. [Google Scholar] [CrossRef]
- Cai, W.; Hong, J.; Liu, Z.; Wang, W.; Zhang, J.; An, G.; Liang, W.; Persson, S.; Zhang, D. A receptor-like kinase controls the amplitude of secondary cell wall synthesis in rice. Curr. Biol. 2023, 33, 498–506.e6. [Google Scholar] [CrossRef]
- Xu, Q.; Yin, S.; Ma, Y.; Song, M.; Song, Y.; Mu, S.; Li, Y.; Liu, X.; Ren, Y.; Gao, C.; et al. Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2. Proc. Natl. Acad. Sci. USA 2020, 117, 6223–6230. [Google Scholar] [CrossRef]
- Hu, K.; Cao, J.; Zhang, J.; Xia, F.; Ke, Y.; Zhang, H.; Xie, W.; Liu, H.; Cui, Y.; Cao, Y.; et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants 2017, 3, 17009. [Google Scholar] [CrossRef]
- Gui, J.; Luo, L.; Zhong, Y.; Sun, J.; Umezawa, T.; Li, L. Phosphorylation of LTF1, an MYB Transcription Factor in Populus, Acts as a Sensory Switch Regulating Lignin Biosynthesis in Wood Cells. Mol. Plant 2019, 12, 1325–1337. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, P.; Dai, Y.; Liu, X.; Lu, S.; Guo, L.; Gou, H.; Mao, J. Evolution of the 14–3–3 gene family in monocotyledons and dicotyledons and validation of MdGRF13 function in transgenic Arabidopsis thaliana. Plant Cell Rep. 2023, 42, 1345–1364. [Google Scholar] [CrossRef]
- Meco, V.; Egea, I.; Ortíz-Atienza, A.; Drevensek, S.; Esch, E.; Yuste-Lisbona, F.J.; Barneche, F.; Vriezen, W.; Bolarin, M.C.; Lozano, R.; et al. The Salt Sensitivity Induced by Disruption of Cell Wall-Associated Kinase 1 (SlWAK1) Tomato Gene Is Linked to Altered Osmotic and Metabolic Homeostasis. Int. J. Mol. Sci. 2020, 21, 6308. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Z.; Zhao, Y.; Li, X.; Wu, Y.; Huo, W.; Li, J.; Zhu, W.; Ma, Z.; Liu, W. Cell wall-associated receptor kinase GhWAKL26 positively regulates salt tolerance by maintaining Na+ and K+ homeostasis in cotton. Environ. Exp. Bot. 2024, 226, 105926. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, W.; Wang, H.; Ren, Z.; Liu, Y.; He, K.; Zhang, F.; Ye, W.; Huo, W.; Li, W.; et al. Characterization of the wall-associated kinase (WAK) gene family in Gossypium barbadense reveals the positive role of GbWAK5 in salt tolerance. Plant Cell Rep. 2024, 44, 18. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cheng, T.; Wang, P.; Liu, W.; Xiao, J.; Yang, Y.; Hu, X.; Jiang, Z.; Zhang, S.; Shi, J. Salinity-induced changes in protein expression in the halophytic plant Nitraria sphaerocarpa. J. Proteom. 2012, 75, 5226–5243. [Google Scholar] [CrossRef]
- Sivaguru, M.; Ezaki, B.; He, Z.-H.; Tong, H.; Osawa, H.; Baluška, F.; Volkmann, D.; Matsumoto, H. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol. 2003, 132, 2256–2266. [Google Scholar] [CrossRef]
- Hou, X.; Tong, H.; Selby, J.; DeWitt, J.; Peng, X.; He, Z.-H. Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses. Plant Physiol. 2005, 139, 1704–1716. [Google Scholar] [CrossRef]
- Yuan, J.J.; Zhao, Y.N.; Yu, S.H.; Sun, Y.; Li, G.X.; Yan, J.Y.; Xu, J.M.; Na Ding, W.; Benhamed, M.; Qiu, R.L.; et al. The Arabidopsis receptor-like kinase WAKL4 limits cadmium uptake via phosphorylation and degradation of NRAMP1 transporter. Nat. Commun. 2024, 15, 9537. [Google Scholar] [CrossRef]
- Xia, Y.; Yin, S.; Zhang, K.; Shi, X.; Lian, C.; Zhang, H.; Hu, Z.; Shen, Z. OsWAK11, a rice wall-associated kinase, regulates Cu detoxification by alteration the immobilization of Cu in cell walls. Environ. Exp. Bot. 2018, 150, 99–105. [Google Scholar] [CrossRef]
- Wang, H.; Niu, H.; Liang, M.; Zhai, Y.; Huang, W.; Ding, Q.; Du, Y.; Lu, M. A Wall-Associated Kinase Gene CaWAKL20 from Pepper Negatively Modulates Plant Thermotolerance by Reducing the Expression of ABA-Responsive Genes. Front. Plant Sci. 2019, 10, 591. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, L.; Wang, W.; Zhao, X.; Zhu, L.; Fu, B.; Li, Z. Genome-wide gene expression profiling of introgressed indica rice alleles associated with seedling cold tolerance improvement in a japonica rice background. BMC Genom. 2012, 13, 461. [Google Scholar] [CrossRef]
- Wu, Q.; Jiao, X.; Liu, D.; Sun, M.; Tong, W.; Ruan, X.; Wang, L.; Ding, Y.; Zhang, Z.; Wang, W.; et al. CsWAK12, a novel cell wall-associated receptor kinase gene from Camellia sinensis, promotes growth but reduces cold tolerance in Arabidopsis. Front. Plant Sci. 2024, 15, 1420431. [Google Scholar] [CrossRef]
- Hou, X.; Yin, X. Role of OsWAK124, a rice wall-associated kinase, in response to environmental heavy metal stresses. Pak. J. Bot. 2017, 49, 1255–1261. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Humphries, J.; Johnson, K.L.; Chen, J.; Ma, Y. Function of WAKs in Regulating Cell Wall Development and Responses to Abiotic Stress. Plants 2025, 14, 343. https://doi.org/10.3390/plants14030343
Yao X, Humphries J, Johnson KL, Chen J, Ma Y. Function of WAKs in Regulating Cell Wall Development and Responses to Abiotic Stress. Plants. 2025; 14(3):343. https://doi.org/10.3390/plants14030343
Chicago/Turabian StyleYao, Xiaocui, John Humphries, Kim L. Johnson, Jinhui Chen, and Yingxuan Ma. 2025. "Function of WAKs in Regulating Cell Wall Development and Responses to Abiotic Stress" Plants 14, no. 3: 343. https://doi.org/10.3390/plants14030343
APA StyleYao, X., Humphries, J., Johnson, K. L., Chen, J., & Ma, Y. (2025). Function of WAKs in Regulating Cell Wall Development and Responses to Abiotic Stress. Plants, 14(3), 343. https://doi.org/10.3390/plants14030343