Evaluation of Phosphorus Efficiency in Cultivated and Wild Potato Genotypes
Abstract
1. Introduction
2. Results
2.1. Morphological and Physiological Response of Potato Genotypes to Low P Conditions at the Early Vegetative Stage
2.2. Hierarchical Clustering of the Genotypes and Traits
2.3. Correlation Among the Various Phenotypic Traits Under HP and LP
3. Discussion
3.1. Phenotypic Variation of Potato Genotypes in Response to P Deficiency Within and Across Different Species
3.2. Identification of P Tolerant Genotypes
3.3. Correlation Among Various Traits Varies Under High and Low P Availability
4. Materials and Methods
4.1. Plant Material and Experimental Design
4.2. Evaluation of Plant Parameters
4.3. Determination of Leaf Chlorophyll Content Index (CCI) and Soil–Plant Analysis Development (SPAD)
4.4. Determination of Plant P Content
4.5. Statistical Analysis
| Trait | Abbreviation | Unit | Description |
|---|---|---|---|
| Shoot fresh weight | SFW | g | Fresh weight of the harvested shoot biomass |
| Root fresh weight | RFW | g | Fresh weight of the harvested root biomass (after washing to remove the sand particles and dry patting) |
| Shoot dry weight | SDW | g | Weight of the dried shoot biomass (60 °C) |
| Root dry weight | RDW | g | Weight of the dried root biomass (60 °C) |
| Tuber fresh weight | TuberFW | g | Fresh weight of the harvested tubers |
| Tuber dry weight | TuberDW | g | Weight of the dried tubers (60 °C) |
| Stolon fresh weight | StolonFW | g | Fresh weight of the harvested stolons |
| Stolon dry weight | StolonDW | g | Weight of dried stolons (60 °C) |
| Total fresh weight | TotalFW | g | Total weight of the fresh plant biomass as a sum of SFW, RFW, TuberFW, and stolonFW |
| Total dry weight | TotalDW | g | Total weight of the dried plant biomass as a sum of SDW, RDW, TuberDW, and TuberDW |
| Root length | RL | cm | Length of the longest root from the base of the shoot |
| Root–shoot ratio | R:S | - | Root dry weight divided by shoot dry weight |
| Root length per shoot biomass | RL: SDW | cm g−1 | Root length divided by shoot dry weight |
| Plant height after 1 week of planting | PH1 | cm | Height of the plant measured up to the top of the newest leaf |
| Plant height after 2 weeks of planting | PH2 | cm | Height of the plant measured up to the top of the newest leaf |
| Plant height after 3 weeks of planting | PH3 | cm | Height of the plant measured up to the top of the newest leaf |
| Plant height at harvesting, i.e., 4 weeks after planting | cm | Height of the plant measured up to the top of the newest leaf | |
| Difference in plant heights at the beginning and end of the experiment | Diff_PH | cm | Difference between PH1 and PH4 |
| Chlorophyll content index | CCI | - | Chlorophyll content measured at the youngest leaf |
| Soil–Plant Analysis Development | SPAD | - | Chlorophyll content measured at the youngest leaf |
| Phosphorus concentration | P_conc | mg (100 g) −1 | Amount of P present in the shoot biomass |
| P uptake | Pupt | mg plant−1 | Amount of P taken up by the plant |
| P utilization efficiency | PutE | mg mg−1 | Amount of biomass produced per unit of P taken up |
| P uptake efficiency | PuE | mg mg−1 | Amount of P taken up per unit of P added |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Trait a | HP | LP | ||||||
|---|---|---|---|---|---|---|---|---|
| Min | Max | Mean | SD | Min | Max | Mean | SD | |
| SFW | 2.111 | 35.411 | 21.119 | 6.745 | 0.301 | 15.461 | 6.480 | 2.747 |
| SDW | 0.253 | 4.251 | 2.131 | 0.804 | 0.017 | 1.435 | 0.685 | 0.277 |
| RFW | 0.247 | 13.337 | 4.448 | 2.918 | 0.057 | 6.137 | 1.709 | 1.122 |
| RDW | 0.019 | 1.685 | 0.480 | 0.308 | 0.006 | 0.362 | 0.158 | 0.077 |
| R:S | 0.039 | 1.648 | 0.231 | 0.194 | 0.061 | 0.684 | 0.244 | 0.110 |
| RL | 6.000 | 56.000 | 33.825 | 7.432 | 1.000 | 57.000 | 30.875 | 9.889 |
| RL: SDW | 7.10 | 89.02 | 19.200 | 11.543 | 4.367 | 411.765 | 54.750 | 29.412 |
| TuberFW | 0.397 | 6.027 | 2.691 | 1.782 | 0.277 | 2.687 | 0.937 | 0.737 |
| TuberDW | 0.076 | 2.215 | 0.621 | 0.582 | 0.154 | 0.312 | 0.228 | 0.060 |
| StolonFW | 0.070 | 6.700 | 1.410 | 1.478 | 0.100 | 1.660 | 0.581 | 0.422 |
| StolonDW | 0.009 | 1.143 | 0.209 | 0.212 | 0.014 | 0.231 | 0.096 | 0.061 |
| TotalFW | 2.478 | 47.458 | 26.352 | 9.430 | 0.695 | 18.198 | 8.401 | 3.421 |
| TotalDW | 0.272 | 5.253 | 2.739 | 1.127 | 0.095 | 1.816 | 0.876 | 0.343 |
| Pupt_shoots | 0.590 | 8.000 | 5.190 | 1.629 | 0.048 | 2.760 | 1.239 | 0.492 |
| Pupt_roots | 0.090 | 1.785 | 0.785 | 0.344 | 0.011 | 0.532 | 0.249 | 0.109 |
| Pupt_total | 0.680 | 9.571 | 5.974 | 1.853 | 0.063 | 3.099 | 1.479 | 0.568 |
| PutE | 0.195 | 1.477 | 0.467 | 0.176 | 0.362 | 7.652 | 0.677 | 0.657 |
| PuE | 0.026 | 0.364 | 0.227 | 0.070 | 0.012 | 0.608 | 0.290 | 0.111 |
| PH1 | 2.000 | 8.000 | 4.604 | 1.299 | 0.500 | 9.500 | 4.248 | 1.415 |
| PH2 | 4.000 | 15.000 | 8.813 | 2.220 | 1.500 | 13.000 | 7.796 | 2.003 |
| PH3 | 9.000 | 36.500 | 20.228 | 5.102 | 2.000 | 22.500 | 14.389 | 3.646 |
| PH4 | 14.500 | 48.500 | 30.034 | 7.391 | 2.000 | 36.800 | 21.085 | 5.669 |
| Diff_PH | 11.500 | 45.000 | 25.430 | 7.102 | 1.500 | 31.000 | 16.837 | 5.218 |
| CCI | 19.000 | 61.000 | 34.504 | 8.991 | 9.000 | 50.500 | 29.786 | 9.751 |
| SPAD | 34.900 | 58.400 | 46.670 | 5.021 | 32.000 | 55.600 | 44.016 | 6.111 |
References
- Hojsgaard, D.; Nagel, M.; Feingold, S.E.; Massa, G.A.; Bradshaw, J.E. New Frontiers in Potato Breeding: Tinkering with reproductive genes and apomixis. Biomolecules 2024, 14, 614. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, Y.; Cai, G.; Qing, Y.; Song, J.; Wang, H.; Tan, X.; Liu, C.; Yang, M.; Fang, Z.; et al. Genome assembly of primitive cultivated potato Solanum stenotomum provides insights into potato evolution. G3 Genes|Genomes|Genet. 2021, 11, jkab262. [Google Scholar] [CrossRef]
- Dong, J.; Li, J.; Deng, G.; Chen, C.; Jing, S.; Song, B.; Cai, X. QTL analysis for low temperature tolerance of wild potato species Solanum commersonii in Natural Field Trials. Sci. Hortic. 2023, 310, 111689. [Google Scholar] [CrossRef]
- FAO. New Light on Hidden Treasure; International Year of the Potato: Rome, Italy, 2008. [Google Scholar]
- Dupuis, J.H.; Liu, Q. Potato Starch: A review of physicochemical, functional and nutritional properties. Am. J. Potato Res. 2019, 96, 127–138. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Zhou, X.; Du, C.; Fang, J.; Li, X.; Zhao, J.; Ding, F.; Wang, Y.; Zhang, Q.; et al. Bacillus amyloliquefaciens promotes cluster root formation of white lupin under low phosphorus by mediating auxin levels. Plant Physiol. 2025, 197, kiae676. [Google Scholar] [CrossRef] [PubMed]
- Chea, L.; Alhussein, M.; Karlovsky, P.; Pawelzik, E.; Naumann, M. Adaptation of potato cultivars to phosphorus variability and enhancement of phosphorus efficiency by Bacillus subtilis. BMC Plant Biol. 2024, 24, 1176. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.G.; Horneck, D.A.; MacGuidwin, A.E. Improving phosphorus use efficiency through potato rhizosphere modification and extension. Am. J. Potato Res. 2014, 91, 161–174. [Google Scholar] [CrossRef]
- Chea, L.; Meijide, A.; Meinen, C.; Pawelzik, E.; Naumann, M. Cultivar-dependent responses in plant growth, leaf physiology, phosphorus use efficiency, and tuber quality of potatoes under limited phosphorus availability conditions. Front. Plant Sci. 2021, 12, 723862. [Google Scholar] [CrossRef]
- Qiu, Y.; Fall, T.; Su, Z.; Bortolozo, F.; Mussoline, W.; England, G.; Dinkins, D.; Morgan, K.; Clark, M.; Liu, G. Effect of phosphorus fertilization on yield of chipping potato grown on high legacy phosphorus soil. Agronomy 2022, 12, 812. [Google Scholar] [CrossRef]
- Amare, T.; Bazie, Z.; Alemu, E.; Alemayehu, B.; Tenagne, A.; Kerebh, B.; Taye, Y.; Awoke, A.; Feyisa, T.; Kidanu, S. Yield of potato (Solanum tuberosum L.) increased by more than two-folds through nitrogen and phosphorus fertilizers in the highlands of north-western ethiopia. Heliyon 2022, 8, e11111. [Google Scholar] [CrossRef] [PubMed]
- MAFF. Good Practice Guide for Handling Soils, version 04/00; FRCA: Cambridge, UK, 2000.
- White, P.J.; Bradshaw, J.E.; Brown, L.K.; Dale, M.F.B.; Dupuy, L.X.; George, T.S.; Hammond, J.P.; Subramanian, N.K.; Thompson, J.A.; Wishart, J.; et al. Juvenile root vigour improves phosphorus use efficiency of potato. Plant Soil 2018, 432, 45–63. [Google Scholar] [CrossRef]
- Huo, W.; Crants, J.E.; Miao, Y.; Rosen, C.J. Phosphorus placement and microbial inoculation effects on potato yield and phosphorus recovery. Agron. J. 2025, 117, e70073. [Google Scholar] [CrossRef]
- Naumann, M.; Koch, M.; Thiel, H.; Gransee, A.; Pawelzik, E. The importance of nutrient management for potato production Part II: Plant nutrition and tuber quality. Potato Res. 2020, 63, 121–137. [Google Scholar] [CrossRef]
- Rosen, C.J.; Kelling, K.A.; Stark, J.C.; Porter, G.A. Optimizing phosphorus fertilizer management in potato production. Am. J. Potato Res. 2014, 91, 145–160. [Google Scholar] [CrossRef]
- Jindo, K.; Audette, Y.; Olivares, F.L.; Canellas, L.P.; Smith, D.S.; Paul Voroney, R. Biotic and abiotic effects of soil organic matter on the phytoavailable phosphorus in soils: A review. Chem. Biol. Technol. Agric. 2023, 10, 29. [Google Scholar] [CrossRef]
- Tian, J.; Ge, F.; Zhang, D.; Deng, S.; Liu, X. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical p cycle. Biology 2021, 10, 158. [Google Scholar] [CrossRef]
- Ibrahim, M.; Iqbal, M.; Tang, Y.-T.; Khan, S.; Guan, D.-X.; Li, G. Phosphorus mobilization in plant–soil environments and inspired strategies for managing phosphorus: A review. Agronomy 2022, 12, 2539. [Google Scholar] [CrossRef]
- Duarte, C.M.F.; Santos, S.C.; Cruz, L.B.D.; Acchar, W.; Santos, E.A.D. Surface energy changes involved in apatite formation in copper-containing bioactive glasses. Mater. Res. 2022, 25, e20210436. [Google Scholar] [CrossRef]
- López-Arredondo, D.L.; Leyva-González, M.A.; González-Morales, S.I.; López-Bucio, J.; Herrera-Estrella, L. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annu. Rev. Plant Biol. 2014, 65, 95–123. [Google Scholar] [CrossRef]
- Tian, Y.; Spohn, M. A method to isolate soil organic phosphorus from other soil organic matter to determine its carbon isotope ratio. Soil Biol. Biochem. 2025, 210, 109911. [Google Scholar] [CrossRef]
- Hasan, M.M.; Hasan, M.M.; Teixeira Da Silva, J.A.; Li, X. Regulation of phosphorus uptake and utilization: Transitioning from current knowledge to practical strategies. Cell. Mol. Biol. Lett. 2016, 21, 7. [Google Scholar] [CrossRef]
- Richardson, A.E.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.; Smith, S.E.; Harvey, P.R.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 2011, 349, 121–156. [Google Scholar] [CrossRef]
- Paz-Ares, J.; Puga, M.I.; Rojas-Triana, M.; Martinez-Hevia, I.; Diaz, S.; Poza-Carrión, C.; Miñambres, M.; Leyva, A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. Mol. Plant 2022, 15, 104–124. [Google Scholar] [CrossRef]
- Rajamanickam, V.; Vinod, K.K.; Vengavasi, K.; Kumar, T.; Chinnusamy, V.; Pandey, R. Root architectural adaptations to phosphorus deficiency: Unraveling genotypic variability in wheat seedlings. Agriculture 2024, 14, 447. [Google Scholar] [CrossRef]
- Wasaki, J. Low phosphorus tolerance of plants forming root clusters: Can the specialized functions be used to resolve the phosphorus crisis? Soil Sci. Plant Nutr. 2025, 71, 643–658. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Q.; Yuan, W.; Xu, F.; Muhammad Aslam, M.; Miao, R.; Li, Y.; Wang, Q.; Li, X.; Zhang, X.; et al. The genome evolution and low-phosphorus adaptation in white lupin. Nat. Commun. 2020, 11, 1069. [Google Scholar] [CrossRef] [PubMed]
- Kavka, M.; Korn, K.; Hazarika, M.; Bachmann-Pfabe, S.; Uptmoor, R. Potato root and leaf phosphatase activity in response to p deprivation. J. Plant Nutr. Soil Sci. 2021, 184, 668–677. [Google Scholar] [CrossRef]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Guo, Y.; Du, Y.; Luo, Z.; Guo, Y.; Würschum, T.; Liu, W. Genome-wide identification and expression analysis of the phosphate transporter gene family in Zea mays under phosphorus stress. Int. J. Mol. Sci. 2025, 26, 1445. [Google Scholar] [CrossRef]
- Bethke, P.C.; Halterman, D.A.; Jansky, S.H. Potato Germplasm enhancement enters the genomics era. Agronomy 2019, 9, 575. [Google Scholar] [CrossRef]
- Blossei, J.; Gäbelein, R.; Hammann, T.; Uptmoor, R. Late blight resistance in wild potato species—Resources for future potato (Solanum tuberosum) breeding. Plant Breed. 2022, 141, 314–331. [Google Scholar] [CrossRef]
- D’Arcy, W.G. Solanaceae studies II: Typification of subdivisions of Solanum. Ann. Mo. Bot. Gard. 1972, 59, 262. [Google Scholar] [CrossRef]
- Naeem, M.; Demirel, U.; Yousaf, M.F.; Caliskan, S.; Caliskan, M.E. Overview on domestication, breeding, genetic gain and improvement of tuber quality traits of potato using fast forwarding technique (GWAS): A review. Plant Breed. 2021, 140, 519–542. [Google Scholar] [CrossRef]
- Pantigoso, H.A.; He, Y.; Manter, D.K.; Fonte, S.J.; Vivanco, J.M. Phosphorus-solubilizing bacteria isolated from the rhizosphere of wild potato Solanum bulbocastanum enhance growth of modern potato varieties. Bull. Natl. Res. Cent. 2022, 46, 224. [Google Scholar] [CrossRef]
- Dixon, M.M.; Vivanco, J.M. Assessing the divergent soil phosphorus recovery strategies in domesticated and wild crops. Plants 2025, 14, 2296. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.S.; Sachs, J.L. Agriculture and the disruption of plant–microbial symbiosis. Trends Ecol. Evol. 2020, 35, 426–439. [Google Scholar] [CrossRef]
- Pantigoso, H.A.; Manter, D.K.; Vivanco, J.M. Differential effects of phosphorus fertilization on plant uptake and rhizosphere microbiome of cultivated and non-cultivated potatoes. Microb. Ecol. 2020, 80, 169–180. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Poret-Peterson, A.; Lowry, C.J.; Gaudin, A.C.M. Has agricultural intensification impacted maize root traits and rhizosphere interactions related to organic N acquisition? AoB PLANTS 2020, 12, plaa026. [Google Scholar] [CrossRef]
- Bohra, A.; Kilian, B.; Sivasankar, S.; Caccamo, M.; Mba, C.; McCouch, S.R.; Varshney, R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2022, 40, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, D.; Xu, Y.; Zhao, H.; Wang, L.; Cao, X.; Chen, Y.; Chen, Q. A new resistance gene against potato late blight originating from Solanum pinnatisectum located on potato chromosome 7. Front. Plant Sci. 2017, 8, 1729. [Google Scholar] [CrossRef]
- Lian, Q.; Zhang, Y.; Zhang, J.; Peng, Z.; Wang, W.; Du, M.; Li, H.; Zhang, X.; Cheng, L.; Du, R.; et al. A genomic variation map provides insights into potato evolution and key agronomic traits. Mol. Plant 2025, 18, 570–589. [Google Scholar] [CrossRef]
- Adithya, A.; Indu Rani, C.; Savitha, B.K.; Murugan, M.; Sudha, M.; Prabhu, M. Harnessing the crop wild relatives in genetic improvement of eggplant, potato and tomato. Genet. Resour. Crop. Evol. 2025, 72, 2613–2629. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Buckseth, T.; Zinta, R.; Bhatia, N.; Dalamu, D.; Naik, S.; Poonia, A.K.; Kardile, H.B.; Challam, C.; Singh, R.K.; et al. Germplasm, breeding, and genomics in potato improvement of biotic and abiotic stresses tolerance. Front. Plant Sci. 2022, 13, 805671. [Google Scholar] [CrossRef]
- Sandaña, P. Phosphorus uptake and utilization efficiency in response to potato genotype and phosphorus availability. Eur. J. Agron. 2016, 76, 95–106. [Google Scholar] [CrossRef]
- Wacker-Fester, K.; Uptmoor, R.; Pfahler, V.; Dehmer, K.J.; Bachmann-Pfabe, S.; Kavka, M. Genotype-specific differences in phosphorus efficiency of potato (Solanum tuberosum L.). Front. Plant Sci. 2019, 10, 1029. [Google Scholar] [CrossRef]
- Kirchgesser, J.; Hazarika, M.; Bachmann-Pfabe, S.; Dehmer, K.J.; Kavka, M.; Uptmoor, R. Phenotypic variation of root-system architecture under high P and low P conditions in potato (Solanum tuberosum L.). BMC Plant Biol. 2023, 23, 68. [Google Scholar] [CrossRef] [PubMed]
- Balemi, T. Screening for genotypic variation in potato for phosphorus efficiency. Int. Res. J. Plant Sci. 2011, 2, 233–243. [Google Scholar]
- Bradshaw, J.E.; Ramsay, G. Utilisation of the commonwealth potato collection in potato breeding. Euphytica 2005, 146, 9–19. [Google Scholar] [CrossRef]
- Luo, B.; Zhang, G.; Yu, T.; Zhang, C.; Yang, G.; Luo, X.; Zhang, S.; Guo, J.; Zhang, H.; Zheng, H.; et al. Genome-wide association studies dissect low-phosphorus stress response genes underling field and seedling traits in maize. Theor. Appl. Genet. 2024, 137, 172. [Google Scholar] [CrossRef]
- Leiser, W.L.; Rattunde, H.F.W.; Weltzien, E.; Haussmann, B.I.G. Phosphorus uptake and use efficiency of diverse West and Central African sorghum genotypes under field conditions in Mali. Plant Soil 2014, 377, 383–394. [Google Scholar] [CrossRef]
- Soratto, R.P.; Fernandes, A.M. Phosphorus effects on biomass accumulation and nutrient uptake and removal in two potato cultivars. Agron. J. 2016, 108, 1225–1236. [Google Scholar] [CrossRef]
- Errebhi, M.; Rosen, C.J.; Lauer, F.I.; Martin, M.W.; Bamberg, J.B. Evaluation of tuber-bearing Solanum species for nitrogen use efficiency and biomass partitioning. Am. J. Potato Res. 1999, 76, 143–151. [Google Scholar] [CrossRef]
- Li, D.; Chen, Z.; Wang, M.; Leiser, W.L.; Weiß, T.M.; Zhao, Z.; Cheng, S.; Chen, S.; Chen, F.; Yuan, L.; et al. Dissecting the phenotypic response of maize to low phosphorus soils by field screening of a large diversity panel. Euphytica 2021, 217, 12. [Google Scholar] [CrossRef]
- Sebnie, W.; Esubalew, T.; Mengesha, M. Response of potato (Solanum tuberosum L.) to nitrogen and phosphorus fertilizers at Sekota and Lasta districts of Eastern Amhara, Ethiopia. Environ. Syst. Res. 2021, 10, 11. [Google Scholar] [CrossRef]
- Lu, C.; Wang, X.; Zhao, Y.; Zou, R.; Xiao, F. Screening and identification of evaluation indicators of low phosphorus tolerant germplasm in Gleditsia sinensis Lam. Sci. Rep. 2024, 14, 31716. [Google Scholar] [CrossRef]
- Chen, Q.; Nie, T.; Li, Y.; Li, H.; Sun, Y.; Wu, Y.; Zhang, Y.; Wang, M. Optimized phosphorus application under water stress enhances photosynthesis, physiological traits, and yield in soybean during flowering stage. Agronomy 2025, 15, 444. [Google Scholar] [CrossRef]
- El-Desouki, Z.; Xia, H.; Abouseif, Y.; Cong, M.; Zhang, M.; Riaz, M.; Moustafa-Farag, M.; Jiang, C. Improved chlorophyll fluorescence, photosynthetic rate, and plant growth of Brassica napus L. after co-application of biochar and phosphorus fertilizer in acidic soil. J. Plant Nutr. Soil Sci. 2024, 187, 260–273. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, L.R.; et al. Advanced methods of plant disease detection: A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Bozzolo, A.; Wilkins, J.L.; Kwasniewski, M.T. Early detection of plant physiological responses to different levels of water stress using reflectance spectroscopy. Remote Sens. 2017, 9, 745. [Google Scholar] [CrossRef]
- Farooq, A.; Chattha, W.S.; Azhar, M.T.; Khan, A.I.; Shakeel, A. Phenotyping for assessing genotypic variation in phosphorus use efficiency. In Sustainable Agriculture Reviews 58; Iqbal, A., Iqbal, M., Alamzeb, M., Meizhen, S., Xiling, Z., Arif, M., Du, X., Lichtfouse, E., Eds.; Sustainable Agriculture Reviews; Springer International Publishing: Cham, Switzerland, 2023; Volume 58, pp. 115–136. [Google Scholar] [CrossRef]
- Kingori, G.G.; Nyamori, A.J.; Dorcas Khasungu, I. Improving seed potato leaf area index, stomatal conductance and chlorophyll accumulation efficiency through irrigation water, nitrogen and phosphorus nutrient management. J. Agric. Stud. 2016, 4, 127. [Google Scholar] [CrossRef]
- Alipanah, L.; Winge, P.; Rohloff, J.; Najafi, J.; Brembu, T.; Bones, A.M. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLoS ONE 2018, 13, e0193335. [Google Scholar] [CrossRef]
- Naciri, R.; Chtouki, M.; Oukarroum, A. Mechanisms of cadmium mitigation in tomato plants under orthophosphate and polyphosphate fertilization regimes. Ecotoxicol. Environ. Saf. 2024, 274, 116219. [Google Scholar] [CrossRef]
- Singh, T.; Bisht, N.; Ansari, M.M.; Chauhan, P.S. From Soil to Cell: Systemic Signalling and regulatory networks in Zea mays under phosphorus deprivation. Plant Cell Environ. 2025, pce.70262. [Google Scholar] [CrossRef]
- Lynch, J.P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytol. 2019, 223, 548–564. [Google Scholar] [CrossRef]
- Zhu, S.; Luo, L.; Zhang, X.; Zhao, M.; Wang, X.; Zhang, J.; Wan, Q.; Li, X.; Wan, Y.; Zhang, K.; et al. Study on the relationship of root morphology and phosphorus absorption efficiency with phosphorus uptake capacity in 235 peanut (Arachis hypogaea L.) germplasms. Front. Environ. Sci. 2022, 10, 855815. [Google Scholar] [CrossRef]
- Kuppe, C.W.; Kirk, G.J.D.; Wissuwa, M.; Postma, J.A. Rice increases phosphorus uptake in strongly sorbing soils by intra-root facilitation. Plant Cell Environ. 2022, 45, 884–899. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P.; Strock, C.F.; Schneider, H.M.; Sidhu, J.S.; Ajmera, I.; Galindo-Castañeda, T.; Klein, S.P.; Hanlon, M.T. Root anatomy and soil resource capture. Plant Soil 2021, 466, 21–63. [Google Scholar] [CrossRef]
- Wishart, J.; George, T.S.; Brown, L.K.; Ramsay, G.; Bradshaw, J.E.; White, P.J.; Gregory, P.J. Measuring variation in potato roots in both field and glasshouse: The search for useful yield predictors and a simple screen for root traits. Plant Soil 2013, 368, 231–249. [Google Scholar] [CrossRef]
- Duque, L.O.; Villordon, A. Root branching and nutrient efficiency: Status and way forward in root and tuber crops. Front. Plant Sci. 2019, 10, 237. [Google Scholar] [CrossRef]
- Xiao, Z.-D.; Chen, Z.-Y.; Lin, Y.-H.; Liang, X.-G.; Wang, X.; Huang, S.-B.; Munz, S.; Graeff-Hönninger, S.; Shen, S.; Zhou, S.-L. Phosphorus Deficiency promotes root:shoot ratio and carbon accumulation via modulating sucrose utilization in maize. J. Plant Physiol. 2024, 303, 154349. [Google Scholar] [CrossRef] [PubMed]
- Lopez, G.; Ahmadi, S.H.; Amelung, W.; Athmann, M.; Ewert, F.; Gaiser, T.; Gocke, M.I.; Kautz, T.; Postma, J.; Rachmilevitch, S.; et al. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Front. Plant Sci. 2023, 13, 1067498. [Google Scholar] [CrossRef] [PubMed]
- Louvieaux, J.; De Gernier, H.; Hermans, C. Exploiting genetic variability of root morphology as a lever to improve nitrogen use efficiency in oilseed rape. In Engineering Nitrogen Utilization in Crop Plants; Shrawat, A., Zayed, A., Lightfoot, D.A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 237–260. [Google Scholar] [CrossRef]
- Wang, C.; Pollet, S.; Howell, K.; Cornelis, J.-T. Placing cropping systems under suboptimal phosphorus conditions promotes plant nutrient acquisition and microbial carbon supply without compromising biomass. Soil Biol. Biochem. 2025, 204, 109753. [Google Scholar] [CrossRef]
- Christensen, C.T.; Zotarelli, L.; Haynes, K.G.; Colee, J. Rooting characteristics of Solanum chacoense and Solanum tuberosum In Vitro. Am. J. Potato Res. 2017, 94, 588–598. [Google Scholar] [CrossRef]
- Bachmann-Pfabe, S.; Dehmer, K.J. Evaluation of Wild potato germplasm for tuber starch content and nitrogen utilization efficiency. Plants 2020, 9, 833. [Google Scholar] [CrossRef]
- Pontigo, S.; Parra-Almuna, L.; Luengo-Escobar, A.; Poblete-Grant, P.; Nunes-Nesi, A.; Mora, M.D.L.L.; Cartes, P. Biochemical and molecular responses underlying the contrasting phosphorus use efficiency in ryegrass cultivars. Plants 2023, 12, 1224. [Google Scholar] [CrossRef]
- Martinengo, S.; Santoro, V.; Schiavon, M.; Celi, L.; Martin, M.; Said-Pullicino, D. The influence of phosphorus availability on rice root traits driving iron plaque formation and dissolution, and implications for phosphorus uptake. Plant Soil 2024, 494, 603–616. [Google Scholar] [CrossRef]
- Rose, T.J.; Rose, M.T.; Pariasca-Tanaka, J.; Heuer, S.; Wissuwa, M. The frustration with utilization: Why have improvements in internal phosphorus utilization efficiency in crops remained so elusive? Front. Plant Sci. 2011, 2, 73. [Google Scholar] [CrossRef]
- Mikwa, E.O.; Wittkop, B.; Windpassinger, S.M.; Weber, S.E.; Ehrhardt, D.; Snowdon, R.J. Early exposure to phosphorus starvation induces genetically determined responses in Sorghum bicolor roots. Theor. Appl. Genet. 2024, 137, 220. [Google Scholar] [CrossRef]
- White, P.J.; George, T.S.; Gregory, P.J.; Bengough, A.G.; Hallett, P.D.; McKenzie, B.M. Matching roots to their environment. Ann. Bot. 2013, 112, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Soumya, P.R.; Singh, D.; Sharma, S.; Singh, A.M.; Pandey, R. Evaluation of diverse wheat (Triticum aestivum) and Triticale (× Triticosecale) genotypes for low phosphorus stress tolerance in soil and hydroponic conditions. J. Soil Sci. Plant Nutr. 2021, 21, 1236–1251. [Google Scholar] [CrossRef]
- Fang, Y.; Lu, L.; Chen, K.; Wang, X. Tradeoffs among root functional traits for phosphorus acquisition in 13 soybean genotypes contrasting in mycorrhizal colonization. Ann. Bot. 2024, 134, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Veneklaas, E.J.; Lambers, H.; Bragg, J.; Finnegan, P.M.; Lovelock, C.E.; Plaxton, W.C.; Price, C.A.; Scheible, W.; Shane, M.W.; White, P.J.; et al. opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 2012, 195, 306–320. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D. The Water-Culture Method for Growing Plants without Soil; Circular 347; University of California, College of Agriculture, Agricultural Experiment Station: Berkeley, CA, USA, 1938; p. 39. Available online: https://www.nutricaodeplantas.agr.br/site/downloads/hoagland_arnon.pdf (accessed on 24 September 2025).
- Page, A.L.; Miller, R.H.; Keeney, D.R. (Eds.) Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org (accessed on 24 September 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.V.; Piaskowski, J.; Banfai, B.; Bolker, B.; Buerkner, P.; Giné-Vázquez, I.; Hervé, M.; Jung, M.; Love, J.; Miguez, F.; et al. R Package, emmeans: Estimated Marginal Means, Aka Least-Squares Means, version 1.8.7; Paperpile LLC: Cambridge, MA, USA, 2023. Available online: https://CRAN.R-project.org/package=emmeans/ (accessed on 24 September 2025).
- Lozano-Isla, F.; Belén Kistner, M.; QuipoLab; Inkaverse. R Package, Inti: Tools and Statistical Procedures in Plant Science, version 0.6.1; Paperpile LLC: Cambridge, MA, USA, 2023. Available online: https://CRAN.R-project.org/package=inti/ (accessed on 24 September 2025).
- Harrell, F.E., Jr.; Beck, C.; Dupont, C. R Package, Hmisc: Harrell Miscellaneous, version 5.1-0; Paperpile LLC: Cambridge, MA, USA, 2023. Available online: https://cran.r-project.org/web/packages/Hmisc/index.html (accessed on 24 September 2025).
- Kolde, R. R Package, Pheatmap: Pretty Heatmaps, version 1.0.12; Paperpile LLC: Cambridge, MA, USA, 2019. Available online: https://CRAN.R-project.org/package=pheatmap/ (accessed on 24 September 2025).





| Trait a | ANOVA b | Hbs2 (%) | ||||
|---|---|---|---|---|---|---|
| G | T | G x T | Type | Type x T | ||
| SFW | *** | *** | *** | *** | N.S. | 76.2 |
| SDW | *** | *** | *** | *** | N.S. | 74.2 |
| RFW | *** | *** | *** | *** | N.S. | 73.0 |
| RDW | *** | *** | *** | * | N.S. | 57.9 |
| R:S | *** | N.S. | N.S. | * | N.S. | 61.2 |
| RL | *** | *** | ** | N.S. | ns | 74.4 |
| RL: SDW | *** | *** | ** | *** | * | 84.6 |
| TotalFW | *** | *** | *** | *** | N.S. | 74.8 |
| TotalDW | *** | *** | *** | *** | * | 71.2 |
| Pupt_shoots | *** | *** | *** | *** | * | 62.4 |
| Pupt_roots | *** | *** | *** | *** | N.S. | 61.5 |
| Pupt_total | *** | *** | *** | *** | * | 62.6 |
| PutE | *** | *** | N.S. | *** | N.S. | 95.5 |
| PuE | *** | *** | ** | *** | N.S. | 88.9 |
| PH1 | *** | ** | N.S. | ** | N.S. | 86.2 |
| PH2 | *** | *** | N.S. | * | N.S. | 89.2 |
| PH3 | *** | *** | N.S. | NS | N.S. | 89.3 |
| PH4 | *** | *** | N.S. | *** | N.S. | 92.6 |
| Diff_PH | *** | *** | N.S. | *** | N.S. | 90.7 |
| CCI | *** | *** | *** | *** | *** | 82.3 |
| SPAD | *** | *** | *** | *** | *** | 78.5 |
| Genotype | Species | R:S | Pupt_Shoots [mg/plant] | Pupt_Roots [mg/plant] | Pupt_Total [mg/plant] | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| HP | LP | HP | LP | p | HP | LP | p | HP | LP | p | ||
| Eszenyi Nemes Rozsa | S. tuberosum | 0.210 | 0.193 | 6.375 | 1.653 | *** | 0.883 | 0.265 | *** | 7.258 | 1.918 | *** |
| Limba | S. tuberosum | 0.368 | 0.236 | 5.275 | 1.425 | *** | 1.235 | 0.310 | *** | 6.510 | 1.735 | *** |
| Amanda (1986) | S. tuberosum | 0.230 | 0.252 | 6.878 | 1.568 | *** | 0.888 | 0.333 | *** | 7.765 | 1.900 | *** |
| Fransen | S. tuberosum | 0.261 | 0.279 | 6.383 | 1.718 | *** | 1.108 | 0.355 | *** | 7.490 | 2.073 | *** |
| Belorusskiy krakhmalistyi | S. tuberosum | 0.262 | 0.263 | 7.248 | 1.645 | *** | 1.260 | 0.345 | *** | 8.508 | 1.990 | *** |
| Chijiwa | S. tuberosum | 0.183 | 0.201 | 3.963 | 1.135 | *** | 0.540 | 0.203 | ** | 4.503 | 1.338 | *** |
| Paterson’s Victoria | S. tuberosum | 0.494 *** | 0.238 *** | 4.460 | 1.435 | *** | 1.133 | 0.300 | *** | 5.593 | 1.735 | *** |
| Russet Burbank | S. tuberosum | 0.277 | 0.280 | 5.285 | 1.478 | *** | 0.930 | 0.358 | *** | 6.215 | 1.835 | *** |
| Snowdrop | S. tuberosum | 0.247 | 0.273 | 6.538 | 1.470 | *** | 1.038 | 0.350 | *** | 7.575 | 1.820 | *** |
| Kuba | S. tuberosum | 0.138 | 0.232 | 5.375 | 1.523 | *** | 0.598 | 0.243 | ** | 5.973 | 1.765 | *** |
| Tarzan | S. tuberosum | 0.171 | 0.226 | 6.500 | 1.598 | *** | 0.908 | 0.320 | *** | 7.408 | 1.918 | *** |
| Ikar | S. tuberosum | 0.217 | 0.286 | 6.745 | 1.885 | *** | 0.925 | 0.370 | *** | 7.670 | 2.255 | *** |
| Tiger | S. tuberosum | 0.147 | 0.186 | 6.363 | 1.600 | *** | 0.735 | 0.323 | *** | 7.098 | 1.923 | *** |
| Trogs Lichtblick | S. tuberosum | 0.200 | 0.215 | 5.215 | 1.158 | *** | 0.765 | 0.235 | *** | 5.980 | 1.393 | *** |
| Gesa | S. tuberosum | 0.191 | 0.244 | 6.933 | 1.710 | *** | 0.875 | 0.293 | *** | 7.808 | 2.003 | *** |
| Sadko | S. tuberosum | 0.252 | 0.212 | 6.315 | 1.523 | *** | 1.128 | 0.295 | *** | 7.443 | 1.818 | *** |
| Borka | S. tuberosum | 0.186 | 0.175 | 7.363 | 1.910 | *** | 0.893 | 0.248 | *** | 8.255 | 2.158 | *** |
| Torva | S. tuberosum | 0.208 | 0.235 | 6.625 | 1.175 | *** | 0.980 | 0.260 | *** | 7.605 | 1.435 | *** |
| Charles Downing | S. tuberosum | 0.388 | 0.345 | 3.983 | 1.135 | *** | 0.850 | 0.300 | *** | 4.833 | 1.435 | *** |
| Matjaz | S. tuberosum | 0.186 | 0.228 | 3.830 | 0.945 | *** | 0.498 | 0.180 | * | 4.328 | 1.125 | *** |
| Lati kollane | S. tuberosum | 0.212 | 0.285 | 5.915 | 1.165 | *** | 0.828 | 0.203 | *** | 6.743 | 1.368 | *** |
| Prince Edward Island Blue | S. tuberosum | 0.249 | 0.290 | 5.195 | 1.305 | *** | 0.900 | 0.308 | *** | 6.095 | 1.613 | *** |
| Cardoso | S. tuberosum | 0.154 | 0.216 | 6.320 | 1.663 | *** | 0.630 | 0.315 | * | 6.950 | 1.978 | *** |
| Ragna | S. tuberosum | 0.278 | 0.446 | 1.155 | 0.260 | ns | 0.333 | 0.088 | * | 1.488 | 0.348 | * |
| Kero | S. tuberosum | 0.130 | 0.110 | 5.725 | 1.020 | *** | 0.573 | 0.110 | *** | 6.298 | 1.130 | *** |
| Assuan Market | S. tuberosum | 0.139 | 0.227 | 5.560 | 0.858 | *** | 0.543 | 0.178 | ** | 6.103 | 1.035 | *** |
| Kristall | S. tuberosum | 0.758 *** | 0.471 *** | 1.015 | 0.375 | ns | 0.265 | 0.125 | ns | 1.280 | 0.500 | * |
| Prikarpatskiy | S. tuberosum | 0.172 | 0.159 | 6.685 | 1.533 | *** | 1.135 | 0.265 | *** | 7.820 | 1.798 | *** |
| Poprad | S. tuberosum | 0.229 | 0.304 | 4.658 | 1.333 | *** | 0.848 | 0.378 | *** | 5.505 | 1.710 | *** |
| Caribe | S. tuberosum | 0.175 | 0.145 | 3.288 | 0.243 | *** | 0.463 | 0.043 | *** | 3.750 | 0.285 | *** |
| GLKS 38153 | S. chacoense Bitter | 0.304 | 0.323 | 4.808 | 1.155 | *** | 0.865 | 0.248 | *** | 5.673 | 1.403 | *** |
| GLKS 38157 | S. chacoense Bitter | 0.201 | 0.227 | 5.183 | 1.273 | *** | 0.820 | 0.223 | *** | 6.003 | 1.495 | *** |
| GLKS 38159 | S. chacoense Bitter | 0.221 | 0.164 | 4.178 | 0.765 | *** | 0.858 | 0.208 | *** | 5.035 | 0.973 | *** |
| GLKS 38161 | S. chacoense Bitter | 0.267 | 0.158 | 4.988 | 1.373 | *** | 1.013 | 0.218 | *** | 6.000 | 1.590 | *** |
| GLKS 38162 | S. chacoense Bitter | 0.071 | 0.144 | 4.000 | 0.933 | *** | 0.303 | 0.143 | ns | 4.303 | 1.075 | *** |
| GLKS 38163 | S. chacoense Bitter | 0.251 | 0.227 | 3.685 | 0.943 | *** | 0.653 | 0.290 | ** | 4.338 | 1.233 | *** |
| GLKS 38166 | S. chacoense Bitter | 0.104 | 0.170 | 4.533 | 1.055 | *** | 0.400 | 0.193 | ns | 4.933 | 1.248 | *** |
| GLKS 38172 | S. microdontum Bitter | 0.177 | 0.157 | 4.930 | 0.833 | *** | 0.658 | 0.123 | *** | 5.588 | 0.955 | *** |
| GLKS 24129 | S. stenotomum ssp. stenotomum Juz. & Bukasov | 0.286 | 0.311 | 2.963 | 0.778 | *** | 0.365 | 0.198 | ns | 3.328 | 0.975 | *** |
| GLKS 24130 | S. stenotomum ssp. stenotomum Juz. & Bukasov | 0.167 | 0.277 | 4.265 | 0.715 | *** | 0.583 | 0.160 | *** | 4.848 | 0.875 | *** |
| Average percent reduction in P uptake under LP | 76.0 | 67.1 | 75.0 | |||||||||
| Chemical | Unit | Total Nutrients Applied (mg 1.7L−1) | High P | Low P |
|---|---|---|---|---|
| KHNO3 | gL−1 | N | 356.90 | 356.90 |
| K2SO4 | gL−1 | P | 26.31 | 5.10 |
| KH2PO4 | gL−1 | K | 365.21 | 365.21 |
| MgSO4·7H2O | gL−1 | Mg | 82.22 | 82.22 |
| ZnSO4·7H20 | gL−1 | S | 109.58 | 109.58 |
| Ca (NO3)2·4H2O | gL−1 | Ca | 340.45 | 340.45 |
| H3BO3 | gL−1 | B | 0.85 | 0.85 |
| MnSO4·2H2O | gL−1 | Mn | 0.85 | 0.85 |
| ZnSO4·7H2O | gL−1 | Zn | 0.085 | 0.085 |
| CuSO4·5H2O | gL−1 | Cu | 0.02 | 0.02 |
| Na2MoO4·2H20 | gL−1 | Mo | 0.08 | 0.08 |
| Na2MoO4·2H20 | gL−1 | Na | 0.02 | 0.02 |
| FeSO4·7H2O | gL−1 | Fe | 4.93 | 4.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hazarika, M.; Ashfaq, T.; Dehmer, K.J.; Bachmann-Pfabe, S. Evaluation of Phosphorus Efficiency in Cultivated and Wild Potato Genotypes. Plants 2025, 14, 3776. https://doi.org/10.3390/plants14243776
Hazarika M, Ashfaq T, Dehmer KJ, Bachmann-Pfabe S. Evaluation of Phosphorus Efficiency in Cultivated and Wild Potato Genotypes. Plants. 2025; 14(24):3776. https://doi.org/10.3390/plants14243776
Chicago/Turabian StyleHazarika, Mousumi, Tahar Ashfaq, Klaus J. Dehmer, and Silvia Bachmann-Pfabe. 2025. "Evaluation of Phosphorus Efficiency in Cultivated and Wild Potato Genotypes" Plants 14, no. 24: 3776. https://doi.org/10.3390/plants14243776
APA StyleHazarika, M., Ashfaq, T., Dehmer, K. J., & Bachmann-Pfabe, S. (2025). Evaluation of Phosphorus Efficiency in Cultivated and Wild Potato Genotypes. Plants, 14(24), 3776. https://doi.org/10.3390/plants14243776

