Calcium Reduces Fruit Abscission in Persimmon by Targeting Cell Wall Integrity
Abstract
1. Introduction
2. Results
2.1. Fruit Drop
2.2. Molecular Signature of Fruit Abscission in Persimmon
2.3. Calcium Effect on Second Drop Abscission
3. Discussion
4. Materials and Methods
4.1. Plant Material and Experimental Layout
4.2. Field Measurements
4.3. Gene Expression Analysis
4.4. Sequence Analysis
4.5. Ethylene Determinations
4.6. Carbohydrate Analyses
4.7. Calcium Analysis
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wager, V.A. The November-drop and navel-end-rot problems of Navel Oranges. Farming South Afr. 1941, 16, 143–144. [Google Scholar]
- Berüter, J.; Droz, P. Studies on locating the signal for fruit abscission in the apple tree. Sci. Hortic. 1991, 46, 201–214. [Google Scholar] [CrossRef]
- Lovatt, C.J. Factors affecting fruit set/early fruit drop in avocado. Calif. Avocado Soc. Yearb. 1990, 74, 193–199. [Google Scholar]
- Instituto Valenciano de Investigaciones Agrarias (IVIA); Anecoop S. Coop. Research Contract: Evaluación de la Fisiología del Cuajado y Abscisión del Caqui Rojo Brillante; Unpublished Internal Document; Anecoop S. Coop: Valencia, Spain, 2023. [Google Scholar]
- Roberts, J.A.; Elliott, K.A.; Gonzalez-Carranza, Z.H. Abscission, dehiscence, and other cell separation processes. Annu. Rev. Plant Biol. 2002, 53, 131–158. [Google Scholar] [CrossRef]
- Estornell, L.H.; Agustí, J.; Merelo, P.; Talón, M.; Tadeo, F.R. Elucidating mechanisms underlying organ abscission. Plant Sci. 2013, 199, 48–60. [Google Scholar] [CrossRef]
- Shi, Y.; Song, B.; Liang, Q.; Su, D.; Lu, W.; Liu, Y.; Li, Z. Molecular regulatory events of flower and fruit abscission in horticultural plants. Hortic. Plant J. 2023, 9, 867–883. [Google Scholar] [CrossRef]
- Ferrándiz, C. Regulation of fruit dehiscence in Arabidopsis. J. Exp. Bot. 2002, 53, 2031–2038. [Google Scholar] [CrossRef]
- Patterson, S.E. Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiol. 2001, 126, 494–500. [Google Scholar] [CrossRef]
- Taylor, J.E.; Whitelaw, C.A. Signals in abscission. New Phytol. 2001, 151, 323–340. [Google Scholar] [CrossRef]
- Basu, M.M.; González-Carranza, Z.H.; Azam-Ali, S.; Tang, S.; Shahid, A.A.; Roberts, J.A. The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding. Plant Physiol. 2013, 162, 96–106. [Google Scholar] [CrossRef]
- Meir, S.; Sundaresan, S.; Riov, J.; Agarwal, I.; Philosoph-Hadas, S. Role of auxin depletion in abscission control. Stewart Postharvest Rev. 2015, 11, 1–15. [Google Scholar] [CrossRef]
- Zhao, M.; Shi, C.L.; Li, J. Abscission cues generated within the abscising organ and perceived by the abscission zone in woody fruit crops. Fruit Res. 2024, 4, e014. [Google Scholar] [CrossRef]
- Addicott, F.T. Abscission; University of California Press: Oakland, CA, USA, 1982. [Google Scholar]
- Patterson, S.E.; Bolivar-Medina, J.L.; Falbel, T.G.; Hedtcke, J.L.; Nevarez-McBride, D.; Maule, A.F.; Zalapa, J.E. Are we on the right track: Can our understanding of abscission in model systems promote or derail making improvements in less studied crops? Front. Plant Sci. 2016, 6, 1268. [Google Scholar] [CrossRef]
- Merelo, P.; Agustí, J.; Arbona, V.; Costa, M.L.; Estornell, L.H.; Gómez-Cadenas, A.; Coimbra, S.; Gómez, M.D.; Pérez-Amador, M.A.; Domingo, C.; et al. Cell wall re-modeling in abscission zone cells during ethylene-promoted fruit abscission in citrus. Front. Plant Sci. 2017, 8, 126. [Google Scholar] [CrossRef]
- El-Otmani, M.; Coggins, C.W., Jr.; Agusti, M.; Lovatt, C.J. Plant growth regulators in citriculture: World current uses. Crit. Rev. Plant Sci. 2000, 19, 395–447. [Google Scholar] [CrossRef]
- Agustí, M.; Juan, M.; Martínez-Fuentes, A.; Mesejo, C.; Reig, C.; Almela, V. Application of 2, 4-dichlorophenoxypropionic acid 2-ethylhexyl ester reduces mature fruit abscission in Citrus navel cultivars. J. Hortic. Sci. Biotechnol. 2006, 81, 532–536. [Google Scholar] [CrossRef]
- Reig, C.; Martínez-Fuentes, A.; Mesejo, C.; Agustí, M. Hormonal control of parthenocarpic fruit set in ‘Rojo Brillante’ persimmon (Diospyros kaki Thunb.). J. Plant Physiol. 2018, 231, 96–104. [Google Scholar] [CrossRef]
- Shaya, F.; David, I.; Yitzhak, Y.; Izhaki, A. Hormonal interactions during early physiological partenocarpic fruitlet abscission in persimmon (Diospyros Kaki Thunb.) ‘Triumph’ and ‘Shinshu’ cultivars. Sci. Hortic. 2019, 243, 575–582. [Google Scholar] [CrossRef]
- Chino, N.; Kobayashi, T.; Tabuchi, T. Anatomical and histochemical studies of separation process on the juncture between calyx and fruit tissues on Japanese persimmon fruits. In VII International Symposium on Persimmon; ISHS: Leuven, Belgium, 2021; Volume 1338, pp. 231–236. [Google Scholar] [CrossRef]
- Kobayashi, T.; Chino, N.; Tabuchi, T. Anatomical and histochemical study of abscission process in Japanese persimmon fruit at young fruit stage. In Proceedings of the 7th International Symposium on Persimmon, Online, 20–26 September 2021; Volume 1338, pp. 215–222. [Google Scholar] [CrossRef]
- Edgerton, L.J.; Hoffman, M.B. The effect of some growth substances on leaf petiole abscission and preharvest fruit drop of several apple varieties. Am. Soc. Hortic. Sci. 1953, 62, 159–166. [Google Scholar]
- Jarvis, M.C. Structure and properties of pectin gels in plant cell walls. Plant Cell Environ. 1984, 7, 153–164. [Google Scholar] [CrossRef]
- Wehr, J.B.; Menzies, N.W.; Blamey, F.P.C. Inhibition of cell-wall autolysis and pectin degradation by cations. Plant Physiol. Biochem. 2004, 42, 485–492. [Google Scholar] [CrossRef]
- Cabanne, C.; Donèche, B. Changes in polygalacturonase activity and calcium content during ripening of grape berries. Am. J. Enol. Vitic. 2001, 52, 331–335. [Google Scholar] [CrossRef]
- Buescher, R.W.; Hobson, G.E. Role of calcium and chelating agents in regulating the degradation of tomato fruit tissue by polygalacturonase. J. Food Biochem. 1982, 6, 147–160. [Google Scholar] [CrossRef]
- Batistič, O.; Kudla, J. Analysis of calcium signaling pathways in plants. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2012, 1820, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Kudla, J. Calcium decoding mechanisms in plants. Biochimie 2011, 93, 2054–2059. [Google Scholar] [CrossRef]
- Fu, X.; Niemann, V.A.; Zhou, Y.; Li, S.; Zhang, K.; Pedersen, J.B.; Saccoccio, M.; Andersen, S.Z.; Enemark-Rasmussen, K.; Benedek, P.; et al. Calcium-mediated nitrogen reduction for electrochemical ammonia synthesis. Nat. Mater. 2024, 23, 101–107. [Google Scholar] [CrossRef]
- Lee, Y.; Yoon, T.H.; Lee, J.; Jeon, S.Y.; Lee, J.H.; Lee, M.K.; Chen, H.; Yun, J.; Oh, S.Y.; Wen, X.; et al. A lignin molecular brace controls precision processing of cell walls critical for surface integrity in Arabidopsis. Cell 2018, 173, 1468–1480. [Google Scholar] [CrossRef]
- Morales, J.; Martínez-Alcántara, B.; Bermejo, A.; Millos, J.; Legaz, F.; Quiñones, A. Effect of calcium fertilization on calcium uptake and its partitioning in citrus trees. Agronomy 2023, 13, 2971. [Google Scholar] [CrossRef]
- Poovaiah, B.W.; Leopold, A.C. Inhibition of abscission by calcium. Plant Physiol. 1973, 51, 848–851. [Google Scholar] [CrossRef]
- Southwick, S.M.; Davies, F.S. Growth Regulator Effects on Fruit Set and Fruit Size in Navel Orange. J. Am. Soc. Hortic. Sci. 1982, 107, 395–397. [Google Scholar] [CrossRef]
- Iwahori, S. Acceleration of abscission of citrus leaf explants by calmodulin antagonists. Sci. Hortic. 1989, 37, 325–330. [Google Scholar] [CrossRef]
- Xu, T.; Li, T.; Qi, M. Calcium effects on mediating polygalacturonan activity by mRNA expression and protein accumulation during tomato pedicel explant abscission. Plant Growth Regul. 2010, 60, 255–263. [Google Scholar] [CrossRef]
- Marini, R.P.; Byers, R.E.; Sowers, D.L. Growth regulators and herbicides for delaying apple fruit abscission. HortScience 1989, 24, 957–959. [Google Scholar] [CrossRef]
- Dorta, T.; Onoue, N.; Hsiang, T.F.; Nishiyama, S.; Ríos, G.; Tao, R.; Blasco, M. Phenotypic and gene expression analysis of fruit development of ‘rojo brillante’ and ‘fuyu’ persimmon (Diospyros kaki L.) cultivars in two different locations. Agronomy 2024, 14, 1555. [Google Scholar] [CrossRef]
- Li, J.; Su, S. Abscission in plants: From mechanisms to applications. Adv. Biotechnol. 2024, 2, 27. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.C.; Halon, E.; Zemach, H.; Zviran, T.; Sisai, I.; Philosoph-Hadas, S.; Irihimovitch, V.; Cohen, Y. Characterization of two ethephon-induced IDA-like genes from mango, and elucidation of their involvement in regulating organ abscission. Genes 2021, 12, 439. [Google Scholar] [CrossRef]
- Patharkar, O.R.; Walker, J.C. Advances in abscission signaling. J. Exp. Bot. 2018, 69, 733–740. [Google Scholar] [CrossRef]
- Bangerth, F. Abscission and thinning of young fruit and their regulation by plant hormones and bioregulators. Plant Growth Regul. 2000, 31, 43–59. [Google Scholar] [CrossRef]
- Lakso, A.N.; Greene, D.W.; Palmer, J.W. Improvements on an apple carbon balance model. Acta Hortic. 2006, 707, 57–61. [Google Scholar] [CrossRef]
- Mehouachi, J.; Serna, D.; Zaragoza, S.; Agusti, M.; Talon, M.; Primo-Millo, E. Defoliation increases fruit abscission and reduces carbohydrate levels in developing fruits and woody tissues of Citrus unshiu. Plant Sci. 1995, 107, 189–197. [Google Scholar] [CrossRef]
- Gómez-Cadenas, A.; Mehouachi, J.; Tadeo, F.R.; Primo-Millo, E.; Talon, M. Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 2000, 210, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Iwanami, H.; Moriya-Tanaka, Y.; Honda, C.; Wada, M.; Moriya, S.; Okada, K.; Haji, T.; Abe, K. Relationships among apple fruit abscission, source strength, and cultivar. Sci. Hortic. 2012, 146, 39–44. [Google Scholar] [CrossRef]
- Ruiz, R.; Garcıa-Luis, A.; Monerri, C.; Guardiola, J.L. Carbohydrate availability in relation to fruitlet abscission in Citrus. Ann. Bot. 2001, 87, 805–812. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Zhang, F.; Liu, Y.; Wang, G. Comparative analysis of the transcriptomes of persisting and abscised fruitlets: Insights into plant hormone and carbohydrate metabolism regulated self-thinning of pecan fruitlets during the early stage. Curr. Issues Mol. Biol. 2021, 44, 13. [Google Scholar] [CrossRef]
- Yang, W.; Xiang, P. Changes of fruit abscission and carbohydrates, hormones, related gene expression in the fruit and pedicel of macadamia under starvation stress. Horticulturae 2022, 8, 398. [Google Scholar] [CrossRef]
- Wu, J.; Lu, L.; Meng, Z.; Qin, Y.; Guo, L.; Ran, M.; Peng, P.; Tang, Y.; Huang, G.; Li, W.; et al. Advancements on the Mechanism of Soluble Sugar Metabolism in Fruits. Horticulturae 2025, 11, 1001. [Google Scholar] [CrossRef]
- Stein, O.; Granot, D. Plant fructokinases: Evolutionary, developmental, and metabolic aspects in sink tissues. Front. Plant Sci. 2018, 9, 339. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.H.; Kim, E.; Hyun, T.K. HXK, SnRK1, and TOR signaling in plants: Unraveling mechanisms of stress response and secondary metabolism. Sci. Prog. 2024, 107, 00368504241301533. [Google Scholar] [CrossRef]
- Ruan, Y.L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef]
- Gerbrandt, E.M.; Mouritzen, C.; Sweeney, M. Foliar calcium corrects a deficiency causing green fruit drop in ‘Draper’ highbush blueberry (Vaccinium corymbosum L.). Agriculture 2019, 9, 63. [Google Scholar] [CrossRef]
- Eliwa, G.I.; Ashour, N.E.; Ali, M.M. Effect of girdling and foliar application with some sources of potassium and calcium on fruit drop, yield and fruit quality of persimmon trees. Egypt. J. Hortic. 2003, 30, 239. [Google Scholar]
- Jarrell, W.M.; Beverly, R.B. The dilution effect in plant nutrition studies. Adv. Agron. 1981, 34, 197–224. [Google Scholar] [CrossRef]
- Sun, Y.; Feng, J.; Zhang, Y.; Yang, H.; Chen, W.; Chen, J.; Dong, S. Factors influencing fruit abscission in Siberian apricot (Prunus sibirica L.). Sci. Hortic. 2025, 349, 114247. [Google Scholar] [CrossRef]
- Marles, R.J. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compos. Anal. 2017, 56, 93–103. [Google Scholar] [CrossRef]
- Rossi, F.; Manfrini, L.; Venturi, M.; Corelli Grappadelli, L.; Morandi, B. Fruit transpiration drives interspecific variability in fruit growth strategies. Hortic. Res. 2022, 9, 036. [Google Scholar] [CrossRef] [PubMed]
- Montanaro, G.; Dichio, B.; Lang, A.; Mininni, A.N.; Xiloyannis, C. Fruit calcium accumulation coupled and uncoupled from its transpiration in kiwifruit. J. Plant Physiol. 2015, 181, 67–74. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Poovaiah, B.W. Molecular and cellular aspects of calcium action in plants. HortScience 1988, 23, 267–271. [Google Scholar] [CrossRef]
- Zhu, M.; Li, J.; Liu, Y.; Wang, Q.; Fan, Z.; Zeng, J.; Yu, J. Preharvest nano-calcium reduces the table grape berry abscission by regulating ethylene production during storage. J. Plant Growth Regul. 2024, 43, 1400–1409. [Google Scholar] [CrossRef]
- Huai, B.; Wu, Y.; Liang, C.; Tu, P.; Mei, T.; Guan, A.; Yao, Q.; Li, J.; Chen, J. Effects of calcium on cell wall metabolism enzymes and expression of related genes associated with peel creasing in Citrus fruits. PeerJ 2022, 10, e14574. [Google Scholar] [CrossRef]
- Langer, S.E.; Marina, M.; Burgos, J.L.; Martínez, G.A.; Civello, P.M.; Villarreal, N.M. Calcium chloride treatment modifies cell wall metabolism and activates defense responses in strawberry fruit (Fragaria × ananassa, Duch). J. Sci. Food Agric. 2019, 99, 4003–4010. [Google Scholar] [CrossRef] [PubMed]
- Glenn, G.M.; Reddy, A.S.N.; Poovaiah, B.W. Effect of calcium on cell wall structure, protein phosphorylation and protein profile in senescing apples. Plant Cell Physiol. 1988, 29, 565–572. [Google Scholar] [CrossRef]
- Tao, X. Analysis of calcium content, hormones, and degrading enzymes in tomato pedicel explants during calcium-inhibited abscission. Agric. Sci. China 2009, 8, 556–563. [Google Scholar] [CrossRef]
- Feng, D.; Wang, X.; Gao, J.; Zhang, C.; Liu, H.; Liu, P.; Sun, X. Exogenous calcium: Its mechanisms and research advances involved in plant stress tolerance. Front. Plant Sci. 2023, 14, 1143963. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Tian, S.B.; Di, Q.; Duan, S.H.; Dai, K. Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. Photosynthetica 2018, 56, 1204–1211. [Google Scholar] [CrossRef]
- Li, Q.; Cao, J.; Yu, L.; Li, M.; Liao, J.; Gan, L. Effects on physiological characteristics of honeysuckle (Lonicera japonica thunb) and the role of exogenous calcium under drought stress. Plant Omics 2012, 5, 1–5. [Google Scholar]
- Liu, X.; Li, J.; Huang, M.; Chen, J. Mechanisms for the influence of citrus rootstocks on fruit size. J. Agric. Food Chem. 2015, 63, 2618–2627. [Google Scholar] [CrossRef]
- Smith, A.M.; Zeeman, S.C.; Smith, S.M. Starch degradation. Annu. Rev. Plant Biol. 2005, 56, 73–98. [Google Scholar] [CrossRef]
- O’Hara, L.E.; Paul, M.J.; Wingler, A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol. Plant 2013, 6, 261–274. [Google Scholar] [CrossRef]
- Agustí, M.; Martínez-Fuentes, A.; Mesejo, C.; Marzal, A.; Reig, C. Expression of carbohydrate-related genes underlying 3, 5, 6-TPA-induced fruitlet abscission in citrus. Sci. Rep. 2024, 14, 26482. [Google Scholar] [CrossRef]
- Celton, J.M.; Dheilly, E.; Guillou, M.C.; Simonneau, F.; Juchaux, M.; Costes, E.; Laurens, F.; Renou, J.P. Additional amphivasal bundles in pedicel pith exacerbate central fruit dominance and induce self-thinning of lateral fruitlets in apple. Plant Physiol. 2014, 164, 1930–1951. [Google Scholar] [CrossRef]
- Ying, P.; Li, C.; Liu, X.; Xia, R.; Zhao, M.; Li, J. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis. Sci. Rep. 2016, 6, 37135. [Google Scholar] [CrossRef]
- Fu, X.; Li, R.; Liu, X.; Cheng, L.; Ge, S.; Wang, S.; Cai, Y.; Zhang, T.; Shi, C.L.; Meng, S.; et al. CPK10 regulates low light–induced tomato flower drop downstream of IDL6 in a calcium-dependent manner. Plant Physiol. 2024, 196, 2014–2029. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Fuentes, A.; Mesejo, C.; Agustí, M.; Reig, C. Toward a more efficient isolation of total RNA from loquat (Eriobotrya japonica Lindl.) tissues. Fruits 2015, 70, 47–51. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Alquézar, B.; Zacarías, L.; Rodrigo, M.J. Molecular and functional characterization of a novel chromoplast-specific lycopene β-cyclase from Citrus and its relation to lycopene accumulation. J. Exp. Bot. 2009, 60, 1783–1797. [Google Scholar] [CrossRef]
- Mesejo, C.; Martínez-Fuentes, A.; Reig, C.; Agustí, M. The flower to fruit transition in Citrus is partially sustained by autonomous carbohydrate synthesis in the ovary. Plant Sci. 2019, 285, 224–229. [Google Scholar] [CrossRef]
- Jain, P. Navigating the shadows: SlCPK10 mediated flower abscission in tomatoes under low light. Plant Physiol. 2024, 196, 1724–1725. [Google Scholar] [CrossRef]
- Marzal, A. Study of the Fruit Inhibitory Mechanism on Citrus flowering. Nutritional, Hormonal and Genetic Factors. Ph.D. Thesis, Universitat Politècnica de València , València, Spain, 2025. [Google Scholar]
- Shi, H.; Wang, B.; Yang, P.; Li, Y.; Miao, F. Differences in sugar accumulation and mobilization between sequential and non-sequential senescence wheat cultivars under natural and drought conditions. PLoS ONE 2016, 11, e0166155. [Google Scholar] [CrossRef]
- Isaac, R.A.; Johnson, W.C., Jr. Elemental determination by inductively coupled plasma atomic emission spectrometry. In Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 2019; pp. 165–170. [Google Scholar]
- Campbell, C.R.; Plank, C.O. Preparation of plant tissue for laboratory analysis. In Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1998; Volume 3, pp. 37–49. [Google Scholar]




| Treatment | Weight (g) | Diameter (mm) | Height (mm) | Colour (1000 a/Lb) | Firmness (N) |
|---|---|---|---|---|---|
| Control | 216.76 b | 74.0 a | 72.7 b | 7.32 a | 39.5 b |
| Ca | 239.79 a | 74.4 a | 76.4 a | 6.26 b | 43.5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzal, A.; Morales, J.; Primo-Capella, A.; Bermejo, A.; Martínez-Fuentes, A.; Quiñones, A. Calcium Reduces Fruit Abscission in Persimmon by Targeting Cell Wall Integrity. Plants 2025, 14, 3482. https://doi.org/10.3390/plants14223482
Marzal A, Morales J, Primo-Capella A, Bermejo A, Martínez-Fuentes A, Quiñones A. Calcium Reduces Fruit Abscission in Persimmon by Targeting Cell Wall Integrity. Plants. 2025; 14(22):3482. https://doi.org/10.3390/plants14223482
Chicago/Turabian StyleMarzal, Andrés, Julia Morales, Amparo Primo-Capella, Almudena Bermejo, Amparo Martínez-Fuentes, and Ana Quiñones. 2025. "Calcium Reduces Fruit Abscission in Persimmon by Targeting Cell Wall Integrity" Plants 14, no. 22: 3482. https://doi.org/10.3390/plants14223482
APA StyleMarzal, A., Morales, J., Primo-Capella, A., Bermejo, A., Martínez-Fuentes, A., & Quiñones, A. (2025). Calcium Reduces Fruit Abscission in Persimmon by Targeting Cell Wall Integrity. Plants, 14(22), 3482. https://doi.org/10.3390/plants14223482

