Black Rice Performance Under Water Deficit Conditions and Genotype X Environment Interactions
Abstract
1. Introduction
2. Results
2.1. Effect of Genotype and Environment on Agronomic, Productive, and Quality Traits
2.2. Correlation Analysis
2.3. Principal Component Analysis (PCA)
2.4. Genotypic and Phenotypic Correlations Among Traits
2.5. Variance Components and Heritability of Traits
3. Discussion
3.1. Genotypic and Environmental Influences on Agronomic Performance and Grain Quality
3.2. Correlation Among Agronomic, Productive, and Quality Traits
3.3. Principal Component Analysis of Trait Variation
3.4. Genotypic and Phenotypic Correlations Among Traits
3.5. Variance Components and Heritability
4. Materials and Methods
4.1. Plant Material, Experimental Design, and Crop Management
4.2. Assessment of Agronomic, Productive, and Quality Traits
4.3. Linear Mixed Models and Genotype X Environment Interaction
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAOSTAT). Statistic Division. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 9 March 2025).
- Kusano, M.; Yang, Z.; Okazaki, Y.; Nakabayashi, R.; Fukushima, A.; Saito, K. Using metabolomic approaches to explore chemical diversity in rice. Mol. Plant 2015, 8, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Xinkang, L.; Chunmin, G.; Lin, W.; Liting, J.; Xiangjin, F.; Qinlu, L.; Zhengyu, H.; Chun, L. Rice storage proteins: Focus on composition, distribution, genetic improvement and effects on rice quality. Rice Sci. 2023, 30, 207–221. [Google Scholar] [CrossRef]
- Mbanjo, E.G.N.; Kretzschmar, T.; Jones, H.; Ereful, N.; Blanchard, C.; Boyd, L.A.; Sreenivasulu, N. The genetic basis and nutritional benefits of pigmented rice grain. Front. Genet. 2020, 11, 229. [Google Scholar] [CrossRef] [PubMed]
- Petroni, K.; Landoni, M.; Tomay, F.; Calvenzani, V. Proximate composition, polyphenol content and anti-inflammatory properties of white and pigmented Italian rice varieties. Univers. J. Agric. Res. 2017, 5, 312–321. [Google Scholar] [CrossRef]
- Kushwaha, U.K.S. Black Rice: Research, History and Development; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-30152-5. [Google Scholar]
- Umadevi, M.; Pushpa, R.; Sampathkumar, K.P.; Bhowmik, D. Rice traditional medicinal plant in India. J. Pharmacogn. Phytochem. 2012, 1, 6–12. [Google Scholar]
- Friedman, M. Rice brans, rice bran oils, and rice hulls: Composition, food and industrial uses, and bioactivities in humans, animals, and cells. J. Agric. Food Chem. 2013, 61, 10626–10641. [Google Scholar] [CrossRef]
- Krishnan, V.; Singh, A.; Sharma, S.; Bollinedi, H.; Mabalirajan, U.; Kota, S.; Raja, S.; Singh, A.K.; Praveen, S. Nutrient dense pigmented rice: A diet for healthier people. In ICAR-Indian Agricultural Research Institute New Delhi; TB-ICN: 236/2019; ICAR: New Delhi, India, 2020. [Google Scholar]
- Kumar, R.; Berwal, M.K.; Saroj, P.L. Morphological, physiological, biochemical and molecular facet of drought stress in horticultural crops. Int. J. Bio-Resour. Stress Manag. 2019, 10, 545–560. [Google Scholar] [CrossRef]
- Usmani, M.M.; Nawaz, F.; Majeed, S.; Shehzad, M.A.; Ahmad, K.S.; Akhtar, G.; Aqib, M.; Shabbir, R.N. Sulfate-mediated drought tolerance in maize involves regulation at physiological and biochemical levels. Sci. Rep. 2020, 10, 1147. [Google Scholar] [CrossRef]
- Yadav, B.; Jogawat, A.; Rahman, M.S.; Narayan, O.P. Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Rep. 2021, 23, 101040. [Google Scholar] [CrossRef]
- Abd-El-Aty, M.S.; Abo-Youssef, M.I.; Bahgt, M.M.; Ibrahim, O.M.; Faltakh, H.; Nouri, H.; Korany, S.M.; Alsherif, E.A.; AbdElgawad, H.; El-Tahan, A. In normal and drought conditions, there is a mode of gene action and heterosis for physiological, biochemical, and agronomic traits in some diverse rice genotypes. Front. Plant Sci. 2023, 14, 1108977. [Google Scholar] [CrossRef]
- Paredes, M.; Becerra, V.; Donoso, G. 100 Years of Rice Cultivation in Chile in an International Context 1920–2020; Institute of Agricultural Research-INIA: Chillan, Chile, 2021; ISBN 978-956-7016-51-8. [Google Scholar]
- Mallareddy, M.; Thirumalaikumar, R.; Balasubramanian, P.; Naseeruddin, R.; Nithya, N.; Mariadoss, A.; Eazhilkrishna, N.; Choudhary, A.K.; Deiveegan, M.; Subramanian, E.; et al. Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies. Water 2023, 15, 1802. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Blum, A. Osmotic adjustment is a prime drought stress adaptative engine in support of plant production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Faruque, M.; Islam, M.R. Rice grain quality parameters and determination tools: A review on the recurrent developments and future prospects. Int. J. Food Prop. 2022, 25, 1063–1078. [Google Scholar] [CrossRef]
- Fofana, M.; Chérif, M.; Kone, B.; Futakuchi, K.; Audebert, A. Effect of water deficit at grain repining stage on rice grain quality. Agric. Biotech. Sustain. Dev. 2010, 2, 100–107. [Google Scholar]
- Khan, F.; Upreti, P.; Singh, R.; Shukla, P.K.; Shirke, P.A. Physiological performance of two contrasting rice varieties under water stress. Physiol. Mol. Biol. Plants 2017, 23, 85–97. [Google Scholar] [CrossRef]
- Rayee, R.; Xuan, T.D.; Khanh, T.D.; Tran, H.-D.; Kakar, K. Efficacy of irrigation interval after anthesis on grain quality, alkali digestion, and gel consistency of rice. Agriculture 2021, 11, 325. [Google Scholar] [CrossRef]
- Orasen, G.; De Nisi, P.; Lucchini, G.; Abruzzese, A.; Pesenti, M.; Maghrebi, M.; Kumar, A.; Nocito, F.F.; Baldoni, E.; Morgutti, S.; et al. Continuous flooding or alternate wetting and drying differently affect the accumulation of health-promoting phytochemicals and minerals in rice brown grain. Agronomy 2019, 9, 628. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wei, Y.Y.; Dong, L.X.; Lu, L.L.; Feng, Y.; Zhang, J.; Pan, F.; Yang, X. Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management. J. Zhejiang Univ. Sci. B 2014, 15, 365–374. [Google Scholar] [CrossRef]
- Xu, Y.J.; Gu, D.J.; Li, K.; Zhang, W.Y.; Zhang, H.; Wang, Z.Q.; Yang, J. Response of grain quality to alternate wetting and moderate soil drying irrigation in rice. Crop Sci. 2019, 59, 1261–1272. [Google Scholar] [CrossRef]
- Jaksomsak, P.; Rerkasem, B.; Prom-U-Thai, C. Variation in nutritional quality of pigmented rice varieties under different water regimes. Plant Prod. Sci. 2021, 24, 244–255. [Google Scholar] [CrossRef]
- Luan, Y.; Xu, J.; Lv, Y.; Liu, X.; Wang, H.; Liu, S. Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging. Agric. Water Manag. 2021, 246, 106699. [Google Scholar] [CrossRef]
- Akbar, M.R.; Purwoko, B.S.; Dewi, I.S.; Suwarno, W.B.; Sugiyanta; Anshori, M.F. Agronomic and yield selection of doubled haploid lines of rainfed lowland rice in advanced yield trials. Biodiversitas 2021, 22, 3006–3012. [Google Scholar] [CrossRef]
- Mousa, A.; Ali, M.A.-G.; Omar, A.E.A.; Alharbi, K.; Abd El-Moneim, D.; Mansour, E.; Elmorsy, R.S.A. Physiological, agronomic, and grain quality responses of diverse rice genotypes to various irrigation regimes under aerobic cultivation conditions. Life 2024, 14, 370. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The central Chile mega drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Viana, V.E.; Pegorano, C.; Busanello, C.; Costa de Oliveira, A. Mutagenesis in rice: The basis for breeding a new super plant. Front. Plant Sci. 2019, 10, 1326. [Google Scholar] [CrossRef]
- Wang, J.; Crossa, J.; Gai, J. Quantitative genetic studies with applications in plant breeding in the omics era. Crop J. 2020, 8, 683–687. [Google Scholar] [CrossRef]
- Varshney, R.K.; Singh, V.K.; Kumar, A.; Powell, W.; Sorrells, M.E. Can genomics deliver climate-change ready crops? Curr. Opin. Plant Biol. 2018, 45, 205–211. [Google Scholar] [CrossRef]
- Qiu, X.; Pang, Y.; Yuan, Z.; Xing, D.; Xu, J.; Dingkuhn, M.; Li, Z.; Ye, G. Genome-Wide association study of grain appearance and milling quality in a worldwide collection of Indica Rice germplasm. PLoS ONE 2015, 10, e0145577. [Google Scholar] [CrossRef]
- Nirmaladevi, G.; Padmavathi, G.; Kota, S.; Babu, V.R. Genetic variability, heritability and correlation coefficients of grain quality characters in rice (Oryza sativa L.). SABRAO J. Breed. Genet. 2015, 47, 424–433. [Google Scholar]
- Babu, R.C.; Nguyen, B.D.; Chamarerk, V.; Shanmugasundaram, P.; Chezhian, P.; Jeyaprakash, P.; Ganesh, S.K.; Palchamy, A.; Sadasivam, S.; Sarkarung, S.; et al. Genetic analysis of drought resistance in rice by molecular markers. Crop Sci. 2003, 43, 1457–1469. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Mohammadi, R.; Etminan, A.; Shooshtari, L.; Maleki-Tabrizi, N.; Poczai, P. Effects of drought stress on some agronomic and morpho-physiological traits in durum wheat genotypes. Sustainability 2020, 12, 5610. [Google Scholar] [CrossRef]
- Huang, R.; Jiang, L.; Zheng, J.; Wang, T.; Wang, H.; Huang, Y.; Hong, Z. Genetic bases of rice grain shape: So many genes, so little known. Trends Plant Sci. 2013, 18, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, G.; Rodríguez, F.M.; Pacheco, A.; Burgueño, J.; Crossa, J.; Vargas, M.; Pérez-Rodríguez, P.; Lopez-Cruz, M.A. META-R: A software to analyze data from multi-environment plant breeding trials. Crop J. 2020, 8, 745–756. [Google Scholar] [CrossRef]
- Ortiz, R.; Reslow, F.; Crossa, J.; Cuevas, J. Heritable variation, genetic and phenotypic correlations for tuber traits and host plant resistance to late blight for potato breeding in Scandinavian testing sites. Agriculture 2021, 11, 1287. [Google Scholar] [CrossRef]
- Adjah, K.L.; Abe, A.; Adetimirin, V.O.; Asante, M.D. Genetic variability, heritability and correlations for milling and grain appearance qualities in some accessions of rice (Oryza sativa L.). Physiol. Mol. Biol. Plants 2020, 26, 1309–1317. [Google Scholar] [CrossRef]
- Hallajian, M.T.; Ebadi, A.A.; Kordrostami, M. Advancing rice breeding for drought tolerance: A comprehensive study of traditional and mutant lines through agronomic performance and drought tolerance indices. BMC Plant Biol. 2024, 24, 1087. [Google Scholar] [CrossRef]
- Sadras, V.O.; Slafer, G.A. Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities. Field Crops Res. 2012, 127, 215–224. [Google Scholar] [CrossRef]
- Wang, C.; Han, B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. Mol. Plant. 2022, 15, 593–619. [Google Scholar] [CrossRef]
- Ji, Z.-J.; Wang, X.-G.; Zeng, Y.-X.; Ma, L.-Y.; Li, X.-M.; Liu, B.-X.; Yang, C.-D. Comparison of physiological and yield traits between purple-and white-pericarp rice using SLs. Breed. Sci. 2012, 62, 71–77. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lee, K.E.; Kang, S.G. Studies on the effects of pericarp pigmentation on grain development and yield of black rice. Indian J. Genet. 2015, 75, 426–433. [Google Scholar] [CrossRef]
- Zhang, M.W. Effects of different sowing date on yield traits and pigment contents in purple pericarp rice. J. Hubei Agric. Sci. 1994, 1, 1–4. [Google Scholar]
- Shankar, T.; Banerjee, M.; Malik, G.C.; Dutta, S.; Maiti, D.; Maitra, S.; Alharby, H.; Bamagoos, A.; Hossain, A.; Ismail, I.A.; et al. The productivity and nutrient use efficiency of rice–rice–black gram cropping sequence are influenced by location specific nutrient management. Sustainability 2021, 13, 3222. [Google Scholar] [CrossRef]
- Aswidinnoor, H.; Listiyanto, R.; Rahim, S.; Holidin; Setiyowati, H.; Nindita, A.; Ritonga, A.W.; Marwiyah, S.; Suwarno, W.B. Stability analysis, agronomic performance, and grain quality of elite new plant type rice lines (Oryza sativa L.) developed for tropical lowland ecosystem. Front. Sustain. Food Syst. 2023, 7, 1147611. [Google Scholar] [CrossRef]
- Limbongan, Y.; Sjahril, R.; Pata’dungan, A.M.; Parari, T.Y. Genetic performance, heritability, and correlation of traits in the new plant type of rice lines for highland ecosystem. Reprod. Breed. 2024, 4, 203–211. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, M.; Dell’Amico-Rodríguez, J.M.; Cabrera-Rodríguez, J.A.; Muñoz-Hernández, Y.; Almeida, F.M.; Aroca, R.; Ruiz-Lozano, J.M. Respuesta de la planta de arroz a la suspensión de la lámina de agua Parte III. Cultiv. Trop. 2020, 41, e07. [Google Scholar]
- Singh, N.; Kaur, L.; Sodhi, N.S.; Sekhon, K.S. Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivars. Food Chem. 2005, 89, 253–259. [Google Scholar] [CrossRef]
- Juliano, B.O. Polysaccharides, proteins, and lipids of rice. In Rice Chemistry and Technology; Juliano, B.O., Ed.; American Association of Cereal Chemists: Saint Paul, MN, USA, 1985; pp. 59–174. [Google Scholar]
- Frei, M.; Siddhuraju, P.; Becker, K. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chem. 2003, 83, 395–402. [Google Scholar] [CrossRef]
- Mukamuhirwa, A.; Hovmalm, H.P.; Bolinsson, H.; Ortiz, R.; Nyamangyoku, O.; Johansson, E. Concurrent drought and temperature stress in rice-a possible result of the predicted climate change: Effects on yield attributes, eating characteristics, and health promoting compounds. Int. J. Environ. Res. Public Health 2019, 16, 1043. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Jiang, Y.; Zhang, H.; Wang, S.; Wang, F.; Zhu, Y. Genetic control and high temperature effects on starch biosynthesis and grain quality in rice. Front. Plant Sci. 2021, 12, 757997. [Google Scholar] [CrossRef]
- Asaoka, M.; Okuno, K.; Fuwa, H. Effect of environmental temperature at the milky stage on the amylose content and fine structure of amylopectin of waxy and nonwaxy endosperm starches of rice (Oryza sativa L.). Agric. Biol. Chem. 1985, 49, 373–379. [Google Scholar] [CrossRef]
- Liu, B.; Mo, W.-J.; Zhang, D.; Storme, N.; Geelen, D. Cold influences male reproductive development in plants: A hazard to fertility, but a window for evolution. Plant Cell Physiol. 2019, 60, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.M.; Chattha, W.S.; Khan, A.I.; Zafar, S.; Subhan, M.; Saleem, H.; Ali, A.; Ijaz, A.; Anwar, Z.; Qiao, F.; et al. Drought and heat stress on cotton genotypes suggested agro-physiological and biochemical features for climate resilience. Front. Plant Sci. 2023, 14, 1265700. [Google Scholar] [CrossRef] [PubMed]
- Soto, S. Rice: 2021/22 Season and Prospects, Office of Agricultural Studies and Policies, Ministry of Agriculture: Chile 2022. Available online: https://bibliotecadigital.odepa.gob.cl/bitstream/handle/20.500.12650/71873/Art_Arroz_TemporadayPerspectivas.pdf (accessed on 15 February 2025).
- Sadras, V.O.; Lake, L.; Li, Y.; Fanquharson, E.A.; Sutton, T. Phenotypic plasticity and its genetic regulation for yield, nitrogen fixation and δ13C in chickpea crops under varying water regimes. J. Exp. Bot. 2016, 67, 4339–4351. [Google Scholar] [CrossRef]
- Hossain, S.; Haque, M.; Rahman, J. Genetic variability, correlation and path coefficient analysis of morphological traits in some extinct local Aman rice (Oryza sativa L). J. Rice Res. 2015, 4, 1000158. [Google Scholar] [CrossRef]
- Sravan, T.; Rangare, N.; Suresh, B.; Kumar, S. Genetic variability and character association in rainfed upland rice (Oryza sativa L.). J. Rice Res. 2012, 5, 24–29. [Google Scholar]
- Zhang, Y.; Yu, C.; Lin, J.; Liu, J.; Liu, B.; Wang, J.; Huang, A.; Li, H.; Zhao, T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS ONE 2017, 12, e0180825. [Google Scholar] [CrossRef]
- Álvarez, S.; Rodríguez, P.; Broetto, F.; Sánchez-Blanco, M.J. Long term responses and adaptive strategies of Pistacia lentiscus under moderate and severe deficit irrigation and salinity: Osmotic and elastic adjustment, growth, ion uptake and photosynthetic activity. Agric. Water Manag. 2018, 202, 253–262. [Google Scholar] [CrossRef]
- Rungrat, T.; Poothab, C. Short-term water deficit stress induces anthocyanin accumulation and changes in grain yield and yield component in colored rice grain. Agric. Nat. Resour. 2019, 53, 292–297. [Google Scholar] [CrossRef]
- Sujariya, S.; Jongdee, B.; Fukai, S. Estimation of flowering time and its effect on grain yield of photoperiod sensitive varieties in rainfed lowland rice in Northeast Thailand. Field Crops Res. 2023, 302, 109075–109086. [Google Scholar] [CrossRef]
- Wang, F.; Li, S.; Kong, F.; Lin, X.; Lu, S. Altered regulation of flowering expands growth ranges and maximizes yields in major crops. Front. Plant Sci. 2023, 14, 1094411. [Google Scholar] [CrossRef]
- Zhou, L.; Liang, S.; Ponce, K.; Marundon, S.; Ye, G.; Zhao, X. Factors affecting head rice yield and chalkiness in indica rice. Field Crop Res. 2015, 172, 1–10. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Sharifi, P.; Aminpanah, H.; Erfani, R.; Mohaddesi, A.; Abbasian, A. Evaluation of genotype x environment interaction in rice based on AMMI model in Iran. Rice Sci. 2017, 24, 173–180. [Google Scholar] [CrossRef]
- Teng, Z.; Chen, Y.; Meng, S.; Duan, M.; Zhang, J.; Ye, N. Environmental stimuli: A major challenge during grain filling in cereals. Int. J. Mol. Sci. 2023, 24, 2255. [Google Scholar] [CrossRef]
- Lafitte, H.R.; Li, Z.K.; Vijayakumar, C.H.M.; Gao, Y.M.; Shi, Y.; Xu, J.L.; Fu, B.Y.; Yu, S.B.; Ali, A.J.; Domingo, J.; et al. Improvement of rice drought tolerance through backcross breeding: Evaluation of donors and selection in drought nurseries. Field Crops Res. 2006, 97, 77–86. [Google Scholar] [CrossRef]
- Kato, Y.; Okami, M.; Katsura, K. Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan. Field Crops Res. 2009, 113, 328–334. [Google Scholar] [CrossRef]
- Wang, C.; Fu, J.; Min, Z.; Zou, D.; Liu, H.; Wang, J.; Zheng, H.; Jia, Y.; Yang, L.; Xin, W.; et al. Response of rice with overlapping growth stages to water stress by assimilates accumulation and transport and starch synthesis of superior and inferior grains. Int. J. Mol. Sci. 2022, 23, 11157. [Google Scholar] [CrossRef]
- Patindol, J.; Siebenmorgen, T.J.; Wang, Y.-J. Impact of environmental factors on rice starch structure: A review. Starch/Stärke 2015, 67, 42–54. [Google Scholar] [CrossRef]
- Tiwari, D.N.; Tripathi, S.R.; Tripathi, M.P.; Khatri, N.; Bastola, B.R. Genetic variability and correlation coefficients of major traits in early maturing rice under rainfed lowland environments of Nepal. Adv. Agric. 2019, 2019, 5975901. [Google Scholar] [CrossRef]
- Etterson, J.R. Climate change, quantitative genetics and. In Encyclopedia of Evolutionary Biology; Elsevier Inc.: Cambridge, MA, USA, 2016; pp. 277–286. [Google Scholar] [CrossRef]
- Baye, A.; Berihun, B.; Bantayehu, M.; Derebe, B. Genotypic and phenotypic correlation and path coefficient analysis for yield and yield-related traits in advanced bread wheat (Triticum aestivum L.) lines. Cogent Food Agric. 2020, 6, 1752603. [Google Scholar] [CrossRef]
- Li, R.; Li, M.; Ashraf, U.; Liu, S.; Zhang, J. Exploring the relationships between yield and yield-related traits for rice varieties released in China from 1978 to 2017. Front. Plant Sci. 2019, 10, 543. [Google Scholar] [CrossRef]
- Oyedele, O.A.; Adeoti, O. Investigation into optimum moisture content and parboiling time for milling Igbemo rice. J. Rice Res. 2013, 1, 101. [Google Scholar] [CrossRef]
- Noori, Z.; Qarluq, A.G.; Kakar, K.; Abdiani, S.; Nawakht, N.A. Structural features of white-belly and white-core rice endosperm under scanning electron microscopic observation. Agric. Res. 2022, 11, 615–620. [Google Scholar] [CrossRef]
- Yadesa, L. Overview on heritability concept, application and its importance in quantitative genetics. Int. J. Res. Agron. 2022, 5, 12–17. [Google Scholar] [CrossRef]
- Bitew, J.M. Estimation of genetic parameters, heritability and genetic advance for yield related traits in upland rice (Oryza sativa L. and Oryza glaberrima Steud) genotypes in northwestern Ethiopia. World Sci. News 2016, 47, 340–350. [Google Scholar]
- Costa, C.S.R.; de Lima, M.A.C.; Neto, F.P.L.; Costa, A.E.S.; Vilvert, J.C.; Martins, L.S.S.; Musser, R.S. Genetic parameters and selection of mango genotypes using the FAI-BLUP multitrait index. Sci. Hortic. 2023, 317, 112049. [Google Scholar] [CrossRef]
- Asante, M.D.; Adjah, K.L.; Annan-Afful, E. Assessment of genetic diversity for grain yield and yield component traits in some genotypes of rice (Oryza sativa L.). J. Crop Sci. Biotech. 2019, 22, 123–130. [Google Scholar] [CrossRef]
- Demeke, B.; Dejene, T.; Abebe, D. Genetic variability, heritability, and genetic advance of morphological, yield related and quality traits in upland rice (Oryza sativa L.) genotypes at pawe, northwestern Ethiopia. Cogent Food Agric. 2023, 9, 2157099. [Google Scholar] [CrossRef]
- Khan, M.A.; Mahmud, A.; Islam, M.N.; Ghosh, U.K.; Hossain, M.S. Genetic variability and agronomic performances of rice genotypes in different growing seasons in Bangladesh. J. Agric. Food Res. 2023, 14, 100750. [Google Scholar] [CrossRef]
- Breseghello, F.; de Mello, R.N.; Pinheiro, P.V.; Soares, D.M.; Júnior, S.L.; Nakano, P.H.; Guimarães, E.P.; Pereira, A.; Colombari, J.M.; de Magalhães, A.M.; et al. Building the Embrapa rice breeding dataset for efficient data reuse. Crop Sci. 2021, 61, 3445–3457. [Google Scholar] [CrossRef]
- Cordero-Lara, K.; Santibáñez, M.P.; Uribe, H.; Rodríguez, G.; Saavedra, F.; Retamal, R.; Ramírez, C.; Witkowski, K.; Barrera, F. Confronting climate risks: A novel climate Smart rice production system based on SRI and new varieties in Chile. In Proceedings of the International Rice Congress, Manila, Philippines, 16–19 October 2023. [Google Scholar] [CrossRef]
- Stolpe, N.B. Descripciones de los Principales Suelos de la VIII Región de Chile; Universidad de Concepción: Concepción, Chile, 2006; Volume 1. [Google Scholar]
- Alvarado, G.; López, M.; Vargas, M.; Pacheco, A.; Rodríguez, F.; Burgueño, J.; Crossa, J. META-R (Multi Environment Trial Analysis with R for Windows); Version 6.0; CIMMYT Research Data Software Repository Network: El Batán, Mexico, 2016. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing. 2021. Available online: https://www.r-project.org/ (accessed on 12 January 2024).





| DSA (Days) | PH (cm) | GY (t ha−1) | FGP | TGP | ST (%) | PL (cm) | |
|---|---|---|---|---|---|---|---|
| Genotype (G) | |||||||
| FLQuila 93 | 123.56 ± 3.17 bcde | 91.72 ± 2.36 ab | 3.82 ± 4.11 cde | 48.76 ± 2.24 abc | 79.80 ± 3.39 cde | 37.67 ± 2.98 de | 17.57 ± 0.30 fgh |
| Quila 279101 | 125.33 ± 2.87 b | 85.17 ± 2.30 ab | 4.57 ± 5.14 abc | 49.50 ± 4.72 abc | 91.64 ± 4.39 ab | 45.82 ± 4.69 b | 18.98 ± 0.28 bc |
| Quila 291602 | 123.56 ± 3.13 bcd | 90.19 ± 2.79 ab | 4.60 ± 7.20 bcd | 47.60 ± 3.20 bc | 82.12 ± 4.99 bcde | 40.71 ± 3.27 bcde | 16.27 ± 0.37 i |
| Quila 292001 | 122.72 ± 2.95 bcde | 80.61 ± 2.33 a | 4.73 ± 6.28 abc | 49.98 ± 3.98 abc | 77.63 ± 4.79 def | 35.44 ± 3.64 ef | 17.57 ± 0.28 fgh |
| Quila 292003 | 120.83 ± 3.39 bcde | 76.42 ± 3.22 ab | 4.01 ± 5.90 cde | 51.41 ± 3.69 abc | 86.58 ± 5.13 abcd | 38.94 ± 3.92 cde | 18.32 ± 0.98 fgh |
| Quila 292008 | 123.50 ± 3.01 bcd | 74.39 ± 2.03 ab | 3.14 ± 4.46 e | 44.92 ± 2.33 cd | 78.72 ± 2.03 cdef | 42.18 ± 3.45 abcd | 17.17 ± 0.32 hi |
| Quila 292009 | 123.28 ± 2.80 bcd | 73.64 ± 2.74 ab | 4.74 ± 6.25 ab | 38.89 ± 3.19 de | 69.52 ± 4.42 f | 44.60 ± 2.89 abc | 17.25 ± 0.29 hi |
| Quila 292010 | 121.83 ± 2.93 bcdef | 81.94 ± 2.11 ab | 4.27 ± 5.75 bcd | 49.70 ± 4.52 abc | 87.76 ± 3.35 abc | 42.78 ± 4.84 abcd | 17.82 ± 0.24 efgh |
| Quila 292011 | 124.33 ± 3.25 bc | 89.89 ± 2.59 b | 4.29 ± 6.17 bcd | 45.54 ± 3.50 cd | 82.65 ± 3.05 bcde | 44.94 ± 3.70 abc | 18.55 ± 0.25 bcd |
| Quila 292012 | 121.78 ± 2.75 cdef | 80.08 ± 2.20 a | 3.25 ± 4.94 e | 35.36 ± 3.13 de | 68.93 ± 3.32 f | 48.15 ± 4.02 a | 19.89 ± 2.27 efg |
| Quila 292013 | 121.11 ± 3.11 bcedf | 79.81 ± 2.63 ab | 4.14 ± 5.88 bcd | 51.00 ± 3.66 abc | 83.52 ± 3.42 abcde | 39.25 ± 3.20 bcde | 17.35 ± 0.25 gh |
| Quila 292014 | 123.44 ± 2.98 bcd | 84.44 ± 2.56 ab | 4.20 ± 5.68 bcd | 46.24 ± 3.15 cd | 85.93 ± 3.04 abcd | 45.15 ± 4.20 abc | 18.01 ± 0.28 def |
| Quila 292015 | 122.06 ± 3.24 bcde | 81.81 ± 1.97 ab | 4.41 ± 6.03 abcd | 44.19 ± 3.76 cd | 75.56 ± 4.77 ef | 41.71 ± 3.14 abcde | 17.88 ± 0.22 efg |
| Quila 292017 | 118.94 ± 3.10 ef | 76.47 ± 2.41 ab | 4.18 ± 4.80 bcd | 56.06 ± 5.16 a | 93.50 ± 4.50 a | 40.71 ± 4.46 bcde | 17.19 ± 0.41 fgh |
| Quila 292018 | 120.67 ± 3.11 def | 81.06 ± 2.34 ab | 3.53 ± 4.96 de | 48.11 ± 3.91 abc | 82.99 ± 3.03 bcde | 42.39 ± 3.68 abcd | 18.07 ± 0.27 def |
| Quila 297901 | 110.00 ± 3.02 g | 83.89 ± 2.53 ab | 3.81 ± 5.82 cde | 48.52 ± 3.91 abc | 87.12 ± 2.98 abcd | 45.08 ± 3.51 abc | 17.54 ± 0.36 fgh |
| Quila 299801 | 116.33 ± 2.59 f | 100.61 ± 2.33 b | 4.17 ± 3.76 abcd | 45.03 ± 3.12 cd | 77.23 ± 3.86 def | 41.11 ± 3.35 bcde | 18.34 ± 0.66 defg |
| Quila 299802 | 123.44 ± 2.96 bcd | 84.36 ± 2.53 a | 4.94 ± 5.73 ab | 50.16 ± 4.16 abc | 82.21 ± 3.40 bcde | 39.51 ± 4.18 bcde | 19.65 ± 0.26 a |
| Quila 299803 | 121.78 ± 3.22 bcde | 88.08 ± 2.03 ab | 4.46 ± 4.62 abc | 52.17 ± 4.78 abc | 87.18 ± 4.67 abcd | 40.90 ± 3.65 bcde | 19.11 ± 0.24 ab |
| Zafiro | 129.11 ± 3.02 a | 88.78 ± 2.65 ab | 6.04 ± 8.90 a | 54.47 ± 3.44 ab | 77.76 ± 1.76 cdef | 30.28 ± 3.73 f | 18.39 ± 0.24 cde |
| Environment (E) | |||||||
| F2021 | 120.13 ± 0.77 d | 95.25 ± 1.50 a | 7.12 ± 2.38 a | 54.49 ± 1.40 b | 80.63 ± 1.19 bc | 32.46 ± 1.40 e | 16.92 ± 0.19 e |
| F2022 | 116.15 ± 0.60 e | 90.78 ± 0.96 a | 3.62 ± 1.57 b | 41.26 ± 2.02 cd | 96.03 ± 2.26 a | 57.73 ± 1.62 a | 19.97 ± 0.67 a |
| F2023 | 98.85 ± 0.50 f | 87.86 ± 1.01 a | 7.37 ± 1.93 a | 67.72 ± 1.58 a | 85.74 ± 1.57 b | 20.94 ± 1.21 f | 17.48 ± 0.24 d |
| NFI2021 | 135.75 ± 0.71 a | 74.54 ± 1.46 a | 2.03 ± 1.24 c | 42.08 ± 1.22 cd | 78.93 ± 1.24 c | 46.28 ± 1.53 c | 17.06 ± 0.15 de |
| NFI2022 | 133.72 ± 0.64 b | 73.69 ± 0.89 a | 2.21 ± 0.75 c | 38.39 ± 1.23 d | 77.77 ± 1.76 cd | 50.45 ± 1.31 b | 18.12 ± 0.15 c |
| NFI2023 | 126.68 ± 0.67 c | 79.89 ± 1.08 a | 3.25 ± 1.26 b | 43.32 ± 2.36 c | 72.41 ± 3.35 d | 40.33 ± 1.55 d | 18.71 ± 0.31 b |
| p-value | |||||||
| G | 0.0000 | 0.6718 | 0.0002 | 0.0002 | 0.0000 | 0.0001 | 0.0000 |
| E | 0.0000 | 0.9996 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| G x E | 0.9653 | 1.0000 | 0.9969 | 0.1641 | 0.8199 | 0.0035 | 0.0023 |
| WG (%) | TGWPa (g) | TGWPo (g) | CHA | TRAN | ADD | |
|---|---|---|---|---|---|---|
| Genotype (G) | ||||||
| FLQuila 93 | 63.36 ± 0.52 ab | 30.44 ± 0.51 bcd | 22.26 ± 0.32 c | 22.89 ± 0.92 g | 1.55 ± 0.10 ghi | 5.88 ± 0.15 |
| Quila 279101 | 52.53 ± 3.11 abc | 27.13 ± 0.65 ghi | 18.21 ± 0.37 jk | 13.30 ± 0.89 j | 0.57 ± 0.06 k | 6.04 ± 0.18 |
| Quila 291602 | 63.19 ± 1.53 a | 31.48 ± 0.45 b | 22.88 ± 0.37 b | 33.43 ± 0.44 b | 2.59 ± 0.06 b | 4.61 ± 0.21 |
| Quila 292001 | 58.29 ± 2.26 abc | 29.02 ± 0.60 de | 20.34 ± 0.31 efg | 27.00 ± 0.70 cd | 1.84 ± 0.09 def | 6.01 ± 0.14 |
| Quila 292003 | 59.10 ± 2.42 ab | 28.66 ± 0.71 ef | 20.52 ± 0.33 ef | 26.98 ± 0.74 cd | 1.87 ± 0.08 de | 5.92 ± 0.15 |
| Quila 292008 | 58.90 ± 1.92 c | 25.79 ± 0.56 ij | 18.32 ± 0.41 jk | 18.09 ± 0.74 i | 0.96 ± 0.06 j | 5.71 ± 0.17 |
| Quila 292009 | 63.72 ± 1.01 abc | 25.25 ± 0.49 j | 17.91 ± 0.30 k | 18.39 ± 0.79 i | 1.13 ± 0.11 hi | 5.97 ± 0.17 |
| Quila 292010 | 58.94 ± 2.58 bc | 29.26 ± 1.48 cde | 19.94 ± 0.37 gh | 27.29 ± 0.67 cd | 1.84 ± 0.08 d | 5.91 ± 0.14 |
| Quila 292011 | 60.88 ± 1.20 bc | 30.54 ± 0.52 bc | 21.98 ± 0.31 cd | 26.39 ± 0.75 cde | 1.89 ± 0.09 de | 5.87 ± 0.18 |
| Quila 292012 | 62.64 ± 1.03 ab | 28.89 ± 0.58 e | 21.67 ± 0.40 d | 23.71 ± 0.96 fg | 1.54 ± 0.10 fgh | 5.76 ± 0.17 |
| Quila 292013 | 57.90 ± 1.74 bc | 26.25 ± 0.39 hij | 18.63 ± 0.37 ij | 20.33 ± 0.84 h | 1.13 ± 0.07 ij | 5.54 ± 0.18 |
| Quila 292014 | 60.29 ± 1.51 bc | 26.96 ± 0.51 ghi | 19.82 ± 0.33 gh | 25.90 ± 0.77 cde | 1.73 ± 0.08 de | 6.09 ± 0.17 |
| Quila 292015 | 57.46 ± 2.09 bc | 27.08 ± 0.66 ghi | 19.98 ± 0.34 fgh | 25.64 ± 0.54 de | 1.67 ± 0.06 def | 5.82 ± 0.16 |
| Quila 292017 | 54.46 ± 2.19 bc | 25.34 ± 0.74 j | 18.46 ± 0.31 jk | 22.74 ± 0.97 g | 1.26 ± 0.08 hi | 5.22 ± 0.24 |
| Quila 292018 | 56.98 ± 1.81 bc | 25.89 ± 0.40 hij | 18.17 ± 0.32 jk | 20.88 ± 1.02 h | 1.13 ± 0.10 hij | 5.68 ± 0.18 |
| Quila 297901 | 59.97 ± 1.45 ab | 28.35 ± 0.55 efg | 19.91 ± 0.35 gh | 32.16 ± 0.69 b | 2.26 ± 0.10 c | 2.93 ± 0.26 |
| Quila 299801 | 57.38 ± 1.33 c | 27.27 ± 0.60 fgh | 19.67 ± 0.35 h | 26.43 ± 0.91 cde | 1.76 ± 0.11 efg | 5.73 ± 0.17 |
| Quila 299802 | 62.37 ± 1.33 ab | 28.91 ± 0.38 e | 20.67 ± 0.30 e | 25.00 ± 1.01 ef | 1.61 ± 0.11 efg | 6.14 ± 0.17 |
| Quila 299803 | 52.37 ± 2.21 c | 26.26 ± 0.48 hij | 19.09 ± 0.36 i | 27.38 ± 0.75 c | 1.96 ± 0.10 d | 5.69 ± 0.17 |
| Zafiro | 60.32 ± 2.08 abc | 33.93 ± 0.31 a | 24.25 ± 0.28 a | 37.15 ± 0.48 a | 3.34 ± 0.07 a | 5.52 ± 0.17 |
| Environment (E) | ||||||
| F2021 | 48.88 ± 1.41 c | 28.63 ± 0.34 b | 20.61 ± 0.26 bc | 24.72 ± 0.82 bc | 1.71 ± 0.09 bc | 6.13 ± 0.11 |
| F2022 | 62.28 ± 0.54 b | 29.21 ± 0.55 b | 20.79 ± 0.26 b | 25.38 ± 0.71 b | 1.76 ± 0.08 b | 6.02 ± 0.14 |
| F2023 | 53.77 ± 0.94 c | 30.27 ± 0.34 a | 21.55 ± 0.23 a | 24.20 ± 0.79 cd | 1.46 ± 0.08 d | 4.97 ± 0.08 |
| NFI2021 | 62.67 ± 0.50 b | 26.35 ± 0.41 d | 19.25 ± 0.26 d | 23.11 ± 0.83 ef | 1.45 ± 0.09 d | 5.91 ± 0.13 |
| NFI2022 | 62.87 ± 0.60 ab | 26.68 ± 0.40 d | 18.23 ± 0.23 e | 29.22 ± 0.72 a | 2.15 ± 0.07 a | 5.31 ± 0.14 |
| NFI2023 | 63.84 ± 0.57 a | 27.67 ± 0.37 c | 20.38 ± 0.26 c | 23.70 ± 0.77 de | 1.55 ± 0.08 cd | 5.28 ± 0.10 |
| p-value | ||||||
| G | 0.0299 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5263 |
| E | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9996 |
| G x E | 0.0298 | 0.0023 | 0.0000 | 0.0002 | 0.9980 | 1.0000 |
| Trait | GY | WG | DSA | PH | CHA | TRAN | PL | ST | FGP | TGP | TGWPa | TGWPo | ADD |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| GY | 0.02 | 0.56 | 0.23 | 0.48 | 0.59 | 0.04 | −0.84 | 0.46 | −0.05 | 0.57 | 0.43 | 0.16 | |
| ns | * | ns | * | ** | ns | *** | * | ns | ** | ns | ns | ||
| WG | 0.07 | 0.15 | 0.01 | 0.38 | 0.40 | −0.20 | −0.12 | −0.63 | −0.76 | 0.61 | 0.71 | −0.09 | |
| ns | ns | ns | ns | ns | ns | ns | ** | *** | ** | *** | ns | ||
| DSA | 0.50 | 0.11 | −0.02 | −0.09 | 0.07 | 0.21 | −0.53 | 0.05 | −0.25 | 0.40 | 0.37 | 0.72 | |
| * | ns | ns | ns | ns | ns | * | ns | ns | ns | ns | *** | ||
| PH | 0.32 | −0.08 | −0.05 | 0.43 | 0.45 | 0.20 | −0.21 | 0.09 | 0.02 | 0.50 | 0.50 | −0.06 | |
| ns | ns | ns | ns | * | ns | ns | ns | ns | * | * | ns | ||
| CHA | 0.43 | 0.32 | −0.08 | 0.46 | 0.98 | −0.14 | −0.64 | 0.32 | −0.04 | 0.74 | 0.74 | −0.46 | |
| ns | ns | ns | * | *** | ns | ** | ns | ns | *** | *** | * | ||
| TRAN | 0.54 | 0.34 | 0.07 | 0.47 | 0.98 | −0.09 | −0.73 | 0.30 | −0.12 | 0.82 | 0.80 | −0.37 | |
| * | ns | ns | * | *** | ns | *** | ns | ns | *** | *** | ns | ||
| PL | 0.04 | −0.12 | 0.16 | 0.23 | −0.09 | −0.05 | 0.40 | −0.36 | −0.21 | 0.10 | 0.14 | 0.53 | |
| ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | * | ||
| ST | −0.65 | 0.06 | −0.33 | −0.12 | −0.49 | −0.54 | 0.16 | −0.51 | 0.07 | −0.67 | −0.61 | −0.13 | |
| ** | ns | ns | ns | * | ns | ns | * | ns | ** | ** | ns | ||
| FGP | 0.43 | −0.52 | 0.03 | 0.09 | 0.28 | 0.26 | −0.15 | −0.64 | 0.85 | 0.21 | 0.04 | −0.18 | |
| ns | * | ns | ns | ns | ns | ns | ** | *** | ns | ns | ns | ||
| TGP | −0.01 | −0.60 | −0.20 | 0.05 | −0.03 | −0.10 | −0.09 | 0.01 | 0.75 | −0.13 | −0.30 | −0.25 | |
| ns | ** | ns | ns | ns | ns | ns | ns | *** | ns | ns | ns | ||
| TGWPa | 0.54 | 0.43 | 0.36 | 0.44 | 0.75 | 0.82 | 0.12 | −0.45 | 0.16 | −0.12 | 1.00 | −0.11 | |
| * | ns | ns | ns | *** | *** | ns | * | ns | ns | *** | ns | ||
| TGWPo | 0.47 | 0.50 | 0.33 | 0.44 | 0.8 | 0.85 | 0.15 | −0.40 | 0.04 | −0.24 | 0.95 | −0.09 | |
| * | * | ns | ns | *** | *** | ns | ns | ns | ns | *** | ns | ||
| ADD | 0.15 | −0.10 | 0.67 | −0.10 | −0.44 | −0.36 | 0.39 | −0.08 | −0.13 | −0.21 | −0.14 | −0.13 | |
| ns | ns | ** | ns | ns | ns | ns | ns | ns | ns | ns | ns |
| σ2g | σ2env | σ2ge | σ2ε | H2 | ||||
|---|---|---|---|---|---|---|---|---|
| GY | 30.74 | *** | 562.65 | *** | 24.60 | *** | 97.82 | 0.76 |
| WG | 7.22 | *** | 35.71 | *** | 17.80 | *** | 14.30 | 0.66 |
| DSA | 13.38 | *** | 183.51 | *** | 1.39 | ns | 10.62 | 0.94 |
| PH | 39.62 | *** | 76.18 | *** | 12.99 | *** | 28.10 | 0.91 |
| CHA | 29.48 | *** | 3.36 | ns | 2.94 | *** | 2.83 | 0.98 |
| TRAN | 0.36 | *** | 0.06 | ** | 0.03 | *** | 0.04 | 0.98 |
| PL | 0.41 | * | 1.22 | *** | 0.21 | ns | 6.32 | 0.51 |
| ST | 7.42 | ns | 171.65 | *** | 19.06 | ** | 100.99 | 0.46 |
| FGP | 13.4 | ** | 120.67 | *** | 10.4 | ns | 148.25 | 0.57 |
| TGP | 29.98 | *** | 57.61 | ** | 0.00 | ns | 213.23 | 0.72 |
| TGWPa | 4.70 | *** | 2.11 | *** | 0.99 | ** | 4.52 | 0.92 |
| TGWPo | 2.95 | *** | 1.38 | *** | 0.31 | *** | 0.66 | 0.97 |
| ADD | 0.48 | *** | 0.22 | *** | 0.05 | * | 0.36 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunet-Loredo, A.; Elazab, A.; Cordero-Lara, K.; Careaga, P.; Garriga, M. Black Rice Performance Under Water Deficit Conditions and Genotype X Environment Interactions. Plants 2025, 14, 3459. https://doi.org/10.3390/plants14223459
Brunet-Loredo A, Elazab A, Cordero-Lara K, Careaga P, Garriga M. Black Rice Performance Under Water Deficit Conditions and Genotype X Environment Interactions. Plants. 2025; 14(22):3459. https://doi.org/10.3390/plants14223459
Chicago/Turabian StyleBrunet-Loredo, Aloysha, Abdelhalim Elazab, Karla Cordero-Lara, Paula Careaga, and Miguel Garriga. 2025. "Black Rice Performance Under Water Deficit Conditions and Genotype X Environment Interactions" Plants 14, no. 22: 3459. https://doi.org/10.3390/plants14223459
APA StyleBrunet-Loredo, A., Elazab, A., Cordero-Lara, K., Careaga, P., & Garriga, M. (2025). Black Rice Performance Under Water Deficit Conditions and Genotype X Environment Interactions. Plants, 14(22), 3459. https://doi.org/10.3390/plants14223459

