Protein Phosphatase OsPP2C55 Negatively Regulates Abscisic Acid Biosynthesis and Saline–Alkaline Tolerance in Rice
Abstract
1. Introduction
2. Results
2.1. OsPP2C55 Is a Novel Interacting Protein of OsABA2, Which Is Inhibited by Saline–Alkaline Stress
2.2. OsPP2C55 Is Involved in the Regulation of Abscission Acid Biosynthesis
2.3. OsPP2C55 Reduces ABA Sensitivity in Rice Seed Germination
2.4. Phenotype and Physiological Indexes of Rice ospp2c55-KO Plants Under Saline–Alkaline Stress Tolerance
2.5. OsPP2C55 Participates in the Regulation of Stress-Related Genes
3. Discussion and Conclusions
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Y2H Screening and Assay
4.3. LCI Assay
4.4. Quantitative Real-Time PCR (qRT-PCR) Analysis
4.5. SDS-PAGE and Immunoblot Analysis
4.6. Determination of ABA Content
4.7. Phenotype and Stress Tolerance Analysis
4.8. Statistical Analysis
4.9. Accession Numbers
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, X.Y.; Li, J.F.; Yang, Y.Q.; Jiang, C.F.; Guo, Y. Designing salt stress-resilient crops: Current progress and future challenges. J. Integr. Plant Biol. 2024, 66, 303–329. [Google Scholar] [CrossRef]
- Yuan, H.R.; Cheng, M.X.; Wang, R.H.; Wang, Z.K.; Fan, F.F.; Wang, W.; Si, F.F.; Gao, F.; Li, S.Q. MiR396b/GRF6 module contributesto salt tolerance in rice. Plant Biotechnol. J. 2024, 22, 2079–2092. [Google Scholar] [CrossRef]
- Zhang, H.L.; Yu, F.F.; Xie, P.; Sun, S.Y.; Qiao, X.H.; Tang, S.Y.; Chen, C.X.; Yang, S.; Mei, C.; Yang, D.K.; et al. A Gγ protein regulates alkaline sensitivity in crops. Science 2023, 379, eade8416. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.N.; Zhu, C.; Jiang, J.; Zhang, H.; Zhu, J.K.; Duan, C.G. Epigenetic regulation in plant abiotic stress responses. J. Integr. Plant Biol. 2020, 62, 563–580. [Google Scholar] [CrossRef]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, W.; Li, Y.L.; Nie, H.Z.; Cui, L.N.; Li, R.X.; Tan, L.; Peng, L.; Li, C.; Luo, J.Y.; et al. FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB. Nat. Plants 2023, 9, 645–660. [Google Scholar] [CrossRef]
- Zhu, J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef]
- Ma, Y.; Cao, J.; He, J.; Chen, Q.; Li, X.; Yang, Y. Molecular mechanism for the regulation of ABA homeostasis during plant development and stress responses. Int. J. Mol. Sci. 2018, 19, 3643. [Google Scholar] [CrossRef]
- Hsu, P.K.; Dubeaux, G.; Takahashi, Y.; Schroeder, J.I. Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J. 2021, 105, 307–321. [Google Scholar] [CrossRef]
- Prakash, V.; Singh, V.P.; Tripathi, D.K.; Sharma, S.; Corpas, F.J. Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environ. Exp. Bot. 2019, 161, 41–49. [Google Scholar] [CrossRef]
- Truong, H.A.; Lee, S.; Trinh, C.S.; Lee, W.J.; Chung, E.H.; Hong, S.W.; Lee, H. Overexpression of the HDA15 gene confers resistance to salt stress by the induction of NCED3, an ABA biosynthesis enzyme. Front. Plant Sci. 2021, 12, 640443. [Google Scholar] [CrossRef]
- Bharath, P.; Gahir, S.; Raghavendra, A.S. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. Front. Plant Sci. 2021, 12, 615114. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Feng, Z.H.; Lu, G.R.; Wang, M.M.; Liu, M.; Yang, H.Y.; Jiang, C.J.; Xie, X.Z.; Jin, Y.Y.; Yu, T.H.; et al. Transcriptome analysis of OsNCED3 transgenic rice reveals the response mechanism to alkaline stress. Plant Physiol. Biochem. 2025, 228, 110279. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.F.; Wang, D.; Zhang, X.H.; Lv, X.D.; Li, B. Current progress in deciphering the molecular mechanisms underlying plant salt tolerance. Curr. Opin. Plant Biol. 2025, 83, 102671. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, X.H.; Lv, W.J.; Yang, Y.Q. Molecular Mechanisms of Plant Responses to Salt Stress. Front. Plant Sci. 2022, 13, 934877. [Google Scholar] [CrossRef]
- Ni, L.; Fu, X.; Zhang, H.; Li, X.; Cai, X.; Zhang, P.; Liu, L.; Wang, Q.; Sun, M.; Wang, Q.W.; et al. Abscisic Acid Inhibits Rice Protein Phosphatase PP45 via H2O2 and Relieves Repression of the Ca2+/CaM-Dependent Protein Kinase DMI3. Plant Cell 2019, 31, 128–152. [Google Scholar] [CrossRef]
- Nishimura, N.; Sarkeshik, A.; Nito, K.; Park, S.Y.; Wang, A.; Carvalho, P.C.; Lee, S.; Caddell, D.F.; Cutler, S.R.; Chory, J.; et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J. 2010, 61, 290–299. [Google Scholar] [CrossRef]
- Danquah, A.; de Zelicourt, A.; Colcombet, J.; Hirt, H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 2014, 32, 40–52. [Google Scholar] [CrossRef]
- Lin, Z.; Li, Y.; Wang, Y.; Liu, X.; Ma, L.; Zhang, Z.; Mu, C.; Zhang, Y.; Peng, L.; Xie, S.; et al. Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nat. Commun. 2021, 12, 2456. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Li, C.A.; Li, L.; Gao, L.F.; Hu, G.; Zhang, Y.F.; Reynolds, M.P.; Zhang, X.Y.; Jia, J.Z.; Mao, X.G.; et al. DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by de-phosphorylating TaSnRK1.1 in wheat. J. Integr. Plant Biol. 2023, 65, 1918–1936. [Google Scholar] [CrossRef]
- Liu, T.F.; Dong, L.P.; Wang, E.S.; Liu, S.X.; Cheng, Y.X.; Zhao, J.; Xu, S.J.; Liang, Z.; Ma, H.; Nie, B.H. StHAB1, a negative regulatory factor in abscisic acid signaling, plays crucial roles in potato drought tolerance and shoot branching. J. Exp. Bot. 2023, 74, 6708–6721. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, X.; Ahmad, F.H.; Fuglsang, A.T.; Steppuhn, A.; Stintzi, A.; Schaller, A. Poltergeist-Like 2 (PLL2)-dependent activation of herbivore defence distinguishes systemin from other immune signalling pathways. Nat. Plants 2025, 11, 1270–1281. [Google Scholar] [CrossRef]
- Fu, H.Q.; Yu, X.; Jiang, Y.Y.; Wang, Y.H.; Yang, Y.Q.; Chen, S.; Chen, Q.J.; Guo, Y. SALT OVERLY SENSITIVE 1 is inhibited by clade D Protein phosphatase 2C D6 and D7 in Arabidopsis thaliana. Plant Cell 2023, 35, 279–297. [Google Scholar] [CrossRef]
- Endo, A.; Nelson, K.M.; Thoms, K.; Abrams, S.R.; Nambara, E.; Sato, Y. Functional characterization of xanthoxin dehydrogenase in rice. J. Plant Physiol. 2014, 171, 1231–1240. [Google Scholar] [CrossRef]
- Zhang, G.; Shen, T.; Ren, N.; Jiang, M. Phosphorylation of OsABA2 at Ser197 by OsMPK1 regulates abscisic acid biosynthesis in rice. Biochem. Biophys. Res. Commun. 2022, 586, 68–73. [Google Scholar] [CrossRef]
- Zhang, G.; Ren, N.; Huang, L.P.; Shen, T.; Chen, Y.; Yang, Y.; Huang, X.; Jiang, M. Basic helix-loop-helix transcription factor OsbHLH110 positively regulates abscisic acid biosynthesis and salinity tolerance in rice. Plant Physiol. Biochem. 2024, 207, 108423. [Google Scholar] [CrossRef]
- Shen, T.; Xu, F.J.; Chen, D.; Yan, R.J.; Wang, Q.W.; Li, K.Y.; Zhang, G.; Ni, L.; Jiang, M.Y. A B-box transcription factor OsBBX17 regulates saline-alkaline tolerance through the MAPK cascade pathway in rice. New Phytol. 2024, 241, 2158–2175. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Ni, L.; Zhang, A.Y.; Cao, J.M.; Zhang, H.; Qin, T.T.; Tan, M.P.; Zhang, J.H.; Jiang, M.Y. OsDMI3 Is a Novel Component of Abscisic Acid Signaling in the Induction of Antioxidant Defense in Leaves of Rice. Mol. Plant 2012, 5, 1359–1374. [Google Scholar] [CrossRef]
- Han, T.X.; Sun, X.J.; He, S.P.; Li, J.X.; Tian, X.J.; Sun, Q.J.; Wang, H.J.; Pang, Q.Y.; Niu, N.; Chen, L.G. Cu-doped ZnO nanozyme with citric acid modification alleviate saline-alkaline stress in wheat by scavenging reactive oxygen species. Plant Physiol. Biochem. 2025, 229, 110365. [Google Scholar] [CrossRef]
- Lu, J.Y.; Li, N.; Li, G.J.; Tian, Z.; Shi, L.P.; Wang, Y.; Cai, Y.A.; Zhang, K.Y.; Sun, W.T.; Wang, D.Y.; et al. N-glycosylation of SnRK2s affects NADPH maintenance in peroxisomes during prolonged ABA signalling. Nat. Commun. 2024, 15, 6630. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, G.J.; Bressan, R.A.; Song, C.P.; Zhu, J.K.; Zhao, Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Bao, C.; Chen, P.; Cao, F.; Liu, X.; Geng, D.; Li, Z.; Li, X.; Hou, N.; Zhi, F.; et al. Abscisic acid homeostasis is mediated by feedback regulation of MdMYB88 and MdMYB124. J. Exp. Bot. 2021, 72, 592–607. [Google Scholar] [CrossRef]
- Ma, F.; Ni, L.; Liu, L.; Li, X.; Zhang, H.; Zhang, A.; Tan, M.; Jiang, M. ZmABA2, an interacting protein of ZmMPK5, is involved in abscisic acid biosynthesis and functions. Plant Biotechnol. J. 2016, 14, 771–782. [Google Scholar] [CrossRef]
- Guo, Y.Z.; Shi, Y.B.; Wang, Y.L.; Liu, F.; Li, Z.; Qi, J.S.; Wang, Y.; Zhang, J.B.; Yang, S.H.; Wang, Y.; et al. The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytol. 2023, 237, 1728–1744. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Chang, Y.A.; Wang, Y.R.; Gan, C.L.; Li, C.H.; Zhang, X.J.; Guo, Y.D.; Zhang, N. Protein phosphatase PP2C2 dephosphorylates transcription factor ZAT5 and modulates tomato fruit ripening. Plant Physiol. 2025, 197, kiaf017. [Google Scholar] [CrossRef]
- Huang, S.; Wang, C.L.; Ding, Z.X.; Zhao, Y.Q.; Dai, J.; Li, J.; Huang, H.N.; Wang, T.K.; Zhu, M.; Feng, M.F.; et al. A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity. Nat. Commun. 2024, 15, 3205. [Google Scholar] [CrossRef]
- Cao, P.; Zhou, L.; Du, M.; Tian, X.; Li, F.; Li, Z. GhTOPP4aD and GhRAF36 inversely regulate cotton (Gossypium hirsutum) response to ABA and salt stress through reversible phosphorylation of GhABI1. Plant Biotechnol. J. 2025, 23, 3561–3580. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, X.; Wu, Y.; Wang, R.; Zhang, Y.; Shi, F.; Zhao, H.; Yu, P.; Wang, Y.; Chen, M.; et al. TaPP2C-a5 fine-tunes wheat seed dormancy and germination with a Triticeae-specific, alternatively spliced transcript. J. Adv. Res. 2025; in press. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, M.; Jia, J.; Zhao, X.; Huang, X.; Ji, E.; Ni, L.; Jiang, M. An Atypical Late Embryogenesis Abundant Protein OsLEA5 Plays a Positive Role in ABA-Induced Antioxidant Defense in Oryza sativa L. Plant Cell Physiol. 2018, 59, 916–929. [Google Scholar] [CrossRef]
- Gong, Z. Plant abiotic stress: New insights into the factors that activate and modulate plant responses. J. Integr. Plant Biol. 2021, 63, 429–430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Y.; Wen, F.; Yao, D.; Wang, L.; Guo, J.; Ni, L.; Zhang, A.; Tan, M.; Jiang, M. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J. Exp. Bot. 2014, 65, 5795–5809. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ni, L.; Chen, J.; Sun, M.; Qin, C.; Zhang, G.; Zhang, A.; Jiang, M. Rice calcium/calmodulin-dependent protein kinase directly phosphorylates a mitogen-activated protein kinase kinase to regulate abscisic acid responses. Plant Cell 2021, 33, 1790–1812. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Sun, X.; Bian, X.; Wei, T.; Han, T.; Yan, J.; Zhang, A. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize. J. Exp. Bot. 2021, 72, 1399–1410. [Google Scholar] [CrossRef]
- Shen, T.; Li, K.Y.; Yan, R.J.; Xu, F.J.; Ni, L.; Jiang, M.Y. The UDP-glucuronic acid decarboxylase OsUXS3 regulates Na+ ion toxicity tolerance under salt stress by interacting with OsCATs in rice. Plant Physiol. Bioch 2023, 196, 850–858. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Yang, Y.; Jing, Y.; Xin, M.; Shi, S.; Chen, Q.; Yao, K.; Su, M.; Wang, L.; Jiang, M. Protein Phosphatase OsPP2C55 Negatively Regulates Abscisic Acid Biosynthesis and Saline–Alkaline Tolerance in Rice. Plants 2025, 14, 3362. https://doi.org/10.3390/plants14213362
Zhang G, Yang Y, Jing Y, Xin M, Shi S, Chen Q, Yao K, Su M, Wang L, Jiang M. Protein Phosphatase OsPP2C55 Negatively Regulates Abscisic Acid Biosynthesis and Saline–Alkaline Tolerance in Rice. Plants. 2025; 14(21):3362. https://doi.org/10.3390/plants14213362
Chicago/Turabian StyleZhang, Gang, Yi Yang, Yuhan Jing, Mengjiao Xin, Shuxian Shi, Qingshuai Chen, Ke Yao, Mengyu Su, Lijing Wang, and Mingyi Jiang. 2025. "Protein Phosphatase OsPP2C55 Negatively Regulates Abscisic Acid Biosynthesis and Saline–Alkaline Tolerance in Rice" Plants 14, no. 21: 3362. https://doi.org/10.3390/plants14213362
APA StyleZhang, G., Yang, Y., Jing, Y., Xin, M., Shi, S., Chen, Q., Yao, K., Su, M., Wang, L., & Jiang, M. (2025). Protein Phosphatase OsPP2C55 Negatively Regulates Abscisic Acid Biosynthesis and Saline–Alkaline Tolerance in Rice. Plants, 14(21), 3362. https://doi.org/10.3390/plants14213362

