Genome-Wide Identification and Expression Pattern Analysis of the DNA Methyltransferase Gene Family Revealed the DNA Methylation Response to Tapping in Rubber Tree
Abstract
1. Introduction
2. Results
2.1. Identification of HbMTaes Gene Family Members and Physicochemical Characterization Analysis
2.2. Gene Structure, Conserved Domains, and Motif Analysis of HbMTase Genes
2.3. Promoter Cis-Acting Elements Analysis of HbMTase Genes
2.4. Analysis of the Expression Patterns of the HbMTaes Genes and Determination of DNA Methyltransferase Activity
2.5. Subcellular Localization of HbMET1-1, HbDRM2-2 and HbDNMT2
3. Discussion
4. Materials and Methods
4.1. Identification and Phylogenetic Analysis of the MTase Genes
4.2. Physicochemical Characterization Analysis and Protein Secondary Structure Prediction
4.3. Gene Structure Analysis, Conserved Domain Prediction, Motif Prediction, and Chromosome Localization
4.4. Analysis of the Promoter Cis-Regulating Elements
4.5. RNA Sequencing
4.6. Gene Expression Profiles and Enzymatic Activity Assays
4.7. Subcellular Localization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.Y.; Song, J.; Liu, Y.; Song, C.X.; Yi, C. Mapping the epigenetic modifications of DNA and RNA. Protein Cell 2020, 11, 792–808. [Google Scholar] [CrossRef]
- Razin, A.; Riggs, A.D. DNA methylation and gene function. Science 1980, 210, 604–610. [Google Scholar] [CrossRef]
- Zhang, H.; Lang, Z.; Zhu, J.K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 2018, 19, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Vanyushin, B.F.; Ashapkin, V.V. DNA methylation in higher plants: Past, present and future. Biochim. Biophys. Acta 2011, 1809, 360–368. [Google Scholar] [CrossRef]
- Duan, C.G.; Zhu, J.K.; Cao, X. Retrospective and perspective of plant epigenetics in China. J. Genet. Genom. = Yi Chuan Xue Bao 2018, 45, 621–638. [Google Scholar] [CrossRef] [PubMed]
- Seymour, D.K.; Becker, C. The causes and consequences of DNA methylome variation in plants. Curr. Opin. Plant Biol. 2017, 36, 56–63. [Google Scholar] [CrossRef]
- Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wu, X.; Liu, H.; Zhang, M.; Liao, W. DNA methylation in tomato fruit ripening. Physiol. Plant 2022, 174, e13627. [Google Scholar] [CrossRef]
- Shilpa; Thakur, R.; Prasad, P. Epigenetic regulation of abiotic stress responses in plants. Biochim. Et Biophys. Acta Gen. Subj. 2024, 1868, 130661. [Google Scholar] [CrossRef]
- An, Y.C.; Goettel, W.; Han, Q.; Bartels, A.; Liu, Z.; Xiao, W. Dynamic changes of genome-wide DNA methylation during soybean seed development. Sci. Rep. 2017, 7, 12263. [Google Scholar] [CrossRef]
- Tang, X.; Wang, Q.; Yuan, H.; Huang, X. Chilling-induced DNA Demethylation is associated with the cold tolerance of Hevea brasiliensis. BMC Plant Biol. 2018, 18, 70. [Google Scholar] [CrossRef]
- Hao, M.; Zhou, Y.; Zhou, J.; Zhang, M.; Yan, K.; Jiang, S.; Wang, W.; Peng, X.; Zhou, S. Cold-induced ginsenosides accumulation is associated with the alteration in DNA methylation and relative gene expression in perennial American ginseng (Panax quinquefolius L.) along with its plant growth and development process. J. Ginseng Res. 2020, 44, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, G.; Guo, S.; Wang, Y.; Sun, J. SlSAMS1 enhances salt tolerance through regulation DNA methylation of SlGI in tomato. Plant Sci. Int. J. Exp. Plant Biol. 2023, 335, 111808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, D.; Zhang, Y.; Li, G.; Sun, D.; Zhou, B.; Li, J. Insights into the epigenetic basis of plant salt tolerance. Int. J. Mol. Sci. 2024, 25, 11698. [Google Scholar] [CrossRef]
- Fan, Y.; Sun, C.; Yan, K.; Li, P.; Hein, I.; Gilroy, E.M.; Kear, P.; Bi, Z.; Yao, P.; Liu, Z.; et al. Recent advances in studies of genomic DNA methylation and its involvement in regulating drought stress response in crops. Plants 2024, 13, 1400. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, D.R.; Crisp, P.A.; Eichten, S.R.; Pogson, B.J. The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiol. 2017, 175, 1893–1912. [Google Scholar] [CrossRef]
- Ma, Y.; Min, L.; Wang, M.; Wang, C.; Zhao, Y.; Li, Y.; Fang, Q.; Wu, Y.; Xie, S.; Ding, Y.; et al. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. Plant Cell 2018, 30, 1387–1403. [Google Scholar] [CrossRef]
- Bewick, A.J.; Niederhuth, C.E.; Ji, L.; Rohr, N.A.; Griffin, P.T.; Leebens-Mack, J.; Schmitz, R.J. The evolution of chromoethylases and gene body DNA methylation in plants. Genome Biol. 2017, 18, 65–75. [Google Scholar] [CrossRef]
- Parrilla-Doblas, J.T.; Roldán-Arjona, T.; Ariza, R.R.; Córdoba-Cañero, D. Active DNA Demethylation in Plants. Int. J. Mol. Sci. 2019, 20, 4683. [Google Scholar] [CrossRef]
- Solís, M.T.; Rodríguez-Serrano, M.; Meijón, M.; Cañal, M.J.; Cifuentes, A.; Risueño, M.C.; Testillano, P.S. DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J. Exp. Bot. 2012, 63, 6431–6444. [Google Scholar] [CrossRef]
- Papareddy, R.K.; Páldi, K.; Smolka, A.D.; Hüther, P.; Becker, C.; Nodine, M.D. Repression of CHROMOMETHYLASE 3 prevents epigenetic collateral damage in Arabidopsis. eLife 2021, 23, 68396–69418. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Du, J.; Hale, C.J.; Gallego-Bartolome, J.; Feng, S.; Vashisht, A.A.; Chory, J.; Wohlschlegel, J.A.; Patel, D.J.; Jacobsen, S.E. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 2014, 157, 1050–1060. [Google Scholar] [CrossRef]
- Jeltsch, A.; Ehrenhofer-Murray, A.; Jurkowski, T.P.; Lyko, F.; Reuter, G.; Ankri, S.; Nellen, W.; Schaefer, M.; Helm, M. Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biol. 2017, 14, 1108–1123. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, D.; Wu, J.; Ma, Y.; Cai, C.; Chen, Y.; Qin, M.; Dai, H. New substrates and determinants for tRNA recognition of RNA methyltransferase DNMT2/TRDMT1. RNA Biol. 2021, 18, 2531–2545. [Google Scholar] [CrossRef]
- Wei, C.; Liu, H.; Cao, X.; Zhang, M.; Li, X.; Chen, K.; Zhang, B. Synthesis of flavour-related linalool is regulated by PpbHLH1 and associated with changes in DNA methylation during peach fruit ripening. Plant Biotechnol. J. 2021, 19, 2082–2096. [Google Scholar] [CrossRef]
- Ogneva, Z.V.; Dubrovina, A.S.; Kiselev, K.V. Age-associated alterations in DNA methylation and expression of methyltransferase and demethylase genes in Arabidopsis thaliana. Biol. Plant. 2016, 60, 628–634. [Google Scholar] [CrossRef]
- Victoria, D.; Aliki, K.; Venetia, K.; Georgios, M.; Zoe, H. Spatial and temporal expression of cytosine-5 DNA methyltransferase and DNA demethylase gene families of the Ricinus communis during seed development and drought stress. Plant Growth Regul. 2018, 84, 81–94. [Google Scholar] [CrossRef]
- Xu, W.; Yang, T.; Dong, X.; Li, D.Z.; Liu, A. Genomic DNA methylation analyses reveal the distinct profiles in castor bean seeds with persistent endosperms. Plant Physiol. 2016, 171, 1242–1258. [Google Scholar] [CrossRef]
- Pan, X.; Liu, Z.; Feng, L.; Wang, C.; Liu, C.; Li, A.; Yao, K.; Liao, W. The response of DNA methyltransferase and demethylase genes to abiotic stresses in tomato seedling. Plant Physiol. Bioch. 2024, 217, 109276. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Zhao, H.; Xu, W.; Deng, H.; Wang, H.; Wang, S.; Su, D.; Zheng, Z.; Yang, B.; et al. Genome-Wide Identification of DNA Methylases and Demethylases in Kiwifruit (Actinidia chinensis). Front. Plant Sci. 2020, 11, 514993. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Feng, B.-E.; Liu, Y.-J.; Gong, J.; Tang, Y.-M.; Zhang, L.-P.; Pang, B.-S.; Sun, R.-W.; Zhang, F.-T.; Chen, Z.-B.; et al. Genome-wide identification and transcriptional characterization of DNA methyltransferases conferring temperature-sensitive male sterility in wheat. BMC Genom. 2021, 22, 310. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Beyene, G.; Zhai, J.; Feng, S.; Fahlgren, N.; Taylor, N.J.; Bart, R.; Carrington, J.C.; Jacobsen, S.E.; Ausin, I. CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proc. Natl. Acad. Sci. USA 2015, 112, 13729–13734. [Google Scholar] [CrossRef]
- Sharma, R.; Mohan Singh, R.K.; Malik, G.; Deveshwar, P.; Tyagi, A.K.; Kapoor, S.; Kapoor, M. Rice cytosine DNA methyltransferases—Gene expression profiling during reproductive development and abiotic stress. FEBS J. 2009, 276, 6301–6311. [Google Scholar] [CrossRef]
- Xu, J.; Xiong, L.; Yao, J.L.; Zhao, P.; Jiang, S.; Sun, X.; Dong, C.; Jiang, H.; Xu, X.; Zhang, Y. Hypermethylation in the promoter regions of flavonoid pathway genes is associated with skin color fading during ‘Daihong’ apple fruit development. Hortic. Res. 2024, 11, uhae031. [Google Scholar] [CrossRef]
- Fang, Y.; Xiao, X.; Lin, J.; Lin, Q.; Wang, J.; Liu, K.; Li, Z.; Xing, J.; Liu, Z.; Wang, B.; et al. Pan-genome and phylogenomic analyses highlight Hevea species delineation and rubber trait evolution. Nat. Commun. 2024, 15, 7232. [Google Scholar] [CrossRef] [PubMed]
- He, X.-J.; Chen, T.; Zhu, J.-K. Regulation and function of DNA methylation in plants and animals. Cell Res. 2011, 21, 442–465. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, C.; Lu, S. Identification and characterization of the cytosine-5 DNA methyltransferase gene family in Salvia miltiorrhiza. PeerJ 2018, 6, e4461. [Google Scholar] [CrossRef]
- Kuo, A.J.; Song, J.; Cheung, P.; Ishibe-Murakami, S.; Yamazoe, S.; Chen, J.K.; Patel, D.J.; Gozani, O. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier–Gorlin syndrome. Nature 2012, 484, 115–119. [Google Scholar] [CrossRef]
- Yang, N.; Xu, R.M. Structure and function of the BAH domain in chromatin biology. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 211–221. [Google Scholar] [CrossRef]
- Jones, D.O.; Cowell, I.G.; Singh, P.B. Mammalian chromodomain proteins: Their role in genome organisation and expression. BioEssays 2000, 22, 124–137. [Google Scholar] [CrossRef]
- Sanulli, S.; Trnka, M.J.; Dharmarajan, V.; Tibble, R.W.; Pascal, B.D.; Burlingame, A.L.; Griffin, P.R.; Gross, J.D.; Narlikar, G.J. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 2019, 575, 390–394. [Google Scholar] [CrossRef]
- Chen, J.; Lu, J.; Liu, J.; Fang, J.; Zhong, X.; Song, J. DNA conformational dynamics in the context-dependent non-CG CHH methylation by plant methyltransferase DRM2. J. Biol. Chem. 2023, 299, 105433. [Google Scholar] [CrossRef]
- Henderson, I.R.; Deleris, A.; Wong, W.; Zhong, X.; Chin, H.G.; Horwitz, G.A.; Kelly, K.A.; Pradhan, S.; Jacobsen, S.E. The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet. 2010, 6, e1001182. [Google Scholar] [CrossRef]
- Guo, X.; Xie, Q.; Li, B.; Su, H. Molecular characterization and transcription analysis of DNA methyltransferase genes in tomato (Solanum lycopersicum). Genet. Mol. Biol. 2020, 43, e20180295. [Google Scholar] [CrossRef]
- Cheng, M.C.; Liao, P.M.; Kuo, W.W.; Lin, T.P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 2013, 162, 1566–1582. [Google Scholar] [CrossRef]
- Yang, S.; Qiao, S.; Yang, Y.; Wang, F.; Song, W.; Tan, W.; Li, Y.; Zhu, Y. Genome-Wide identification and analysis of DNA methyltransferase and demethylase gene families in sweet potato and its diploid relative. Plants 2025, 14, 14111735. [Google Scholar] [CrossRef]
- Mouginot, P.; Luviano Aparicio, N.; Gourcilleau, D.; Latutrie, M.; Marin, S.; Hemptinne, J.L.; Grunau, C.; Pujol, B. Phenotypic response to light versus shade associated with DNA methylation changes in snapdragon plants (Antirrhinum majus). Genes 2021, 12, 227. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, X.; Wu, R.; Lv, S.; Li, Y.; Jia, H.; Yang, Y.; Li, B.; Chen, W.; Allan, A.C.; et al. DNA methylation controlling abscisic acid catabolism responds to light to mediate strawberry fruit ripening. J. Integr. Plant Biol. 2024, 66, 1718–1734. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Di, Y.; Li, J.; Li, K.; Wei, H.; Zhang, F.; Su, Z. Systematic analysis of DNA demethylase gene families in Foxtail Millet (Setaria italica L.) and their expression variations after abiotic stresses. Int. J. Mol. Sci. 2024, 25, 4464. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Liu, M.; Yang, H.; Dai, L.; Wang, L. Brassinosteroids regulate the water deficit and latex yield of rubber trees. Int. J. Mol. Sci. 2023, 24, 12857. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Guo, D.; Yang, S.; Shi, M.; Chao, J.; Li, H.; Peng, S.; Tian, W. Jasmonate signalling in the regulation of rubber biosynthesis in laticifer cells of rubber tree, Hevea brasiliensis. J. Exp. Bot. 2018, 69, 3559–3571. [Google Scholar] [CrossRef]
- Tungngoen, K.; Viboonjun, U.; Kongsawadworakul, P.; Katsuhara, M.; Julien, J.L.; Sakr, S.; Chrestin, H.; Narangajavana, J. Hormonal treatment of the bark of rubber trees (Hevea brasiliensis) increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes. J. Plant Physiol. 2011, 168, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Ashapkin, V.V.; Kutueva, L.I.; Vanyushin, B.F. Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes. Genetika 2016, 52, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, S.; Zhou, C.; Chen, L.; Fu, H.; Li, X.; Lin, Y.; Lai, Z.; Guo, Y. Genome-wide investigation and transcriptional analysis of cytosine-5 DNA methyltransferase and DNA demethylase gene families in tea plant (Camellia sinensis) under abiotic stress and withering processing. PeerJ 2020, 8, e8432. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.; Lyko, F. Solving the Dnmt2 enigma. Chromosoma 2010, 119, 35–40. [Google Scholar] [CrossRef]
- Thiagarajan, D.; Dev, R.R.; Khosla, S. The DNA methyltranferase Dnmt2 participates in RNA processing during cellular stress. Epigenetics 2011, 6, 103–113. [Google Scholar] [CrossRef]
- Niederhuth, C.E.; Schmitz, R.J. Covering your bases: Inheritance of DNA methylation in Plant genomes. Mol. Plant 2014, 7, 472–480. [Google Scholar] [CrossRef]
- Schmidt, A.; Wöhrmann, H.J.; Raissig, M.T.; Arand, J.; Gheyselinck, J.; Gagliardini, V.; Heichinger, C.; Walter, J.; Grossniklaus, U. The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. Plant J. Cell Mol. Biol. 2013, 73, 776–787. [Google Scholar] [CrossRef]
- Mishra, J.; Chakraborty, S.; Niharika; Roy, A.; Manna, S.; Baral, T.; Nandi, P.; Patra, S.K. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J. Cell. Biochem. 2024, 125, e30531. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]









| Gene Name | Gene ID | Protein Length/aa | Mw/Da | pI | Instability Coefficient | GRAVY | Aliphatic Index |
|---|---|---|---|---|---|---|---|
| HbMET1-1 | EVM0040483.1 | 1564 | 176,182.09 | 6.28 | 44.78 | −0.5 | 76.14 |
| HbMET1-2 | EVM0017774.1 | 363 | 40,470.56 | 7.95 | 40.69 | −0.204 | 78.18 |
| HbMET1-3 | EVM0034152.1 | 305 | 33,775.82 | 8.01 | 37.8 | −0.185 | 81.25 |
| HbMET1-4 | EVM0009780.1 | 489 | 54,555.93 | 9.12 | 37.2 | −0.41 | 81.6 |
| HbCMT2 | EVM0022511.1 | 851 | 95,824.44 | 5.46 | 39.61 | −0.541 | 75.86 |
| HbCMT3-1 | EVM0032926.1 | 868 | 98,273.59 | 5.11 | 41.15 | −0.615 | 74.91 |
| HbCMT3-2 | EVM0037387.1 | 878 | 99,130.47 | 5 | 41.19 | −0.604 | 76.49 |
| HbDRM1 | EVM0009056.1 | 535 | 60,795.16 | 5.07 | 44.7 | −0.411 | 83.29 |
| HbDRM2-1 | EVM0008822.1 | 679 | 76,276.52 | 5 | 39.63 | −0.282 | 88.32 |
| HbDRM2-2 | EVM0008920.5 | 663 | 74,009.45 | 5.03 | 43.31 | −0.406 | 79.29 |
| HbDRM3-1 | EVM0030405.1 | 710 | 80,273.46 | 4.82 | 48.68 | −0.465 | 77.96 |
| HbDRM3-2 | EVM0010462.1 | 759 | 85,960.17 | 5.2 | 51.85 | −0.433 | 78.59 |
| HbDNMT2 | EVM0039861.1 | 413 | 46,859.4 | 5.83 | 41.76 | −0.198 | 83.78 |
| Gene Name | Gene ID | Subcellular Localization | α-Helix (%) | β-Fold (%) | Random Curling (%) |
|---|---|---|---|---|---|
| HbMET1-1 | EVM0040483.1 | Cell nucleus | 29.03 | 13.11 | 57.86 |
| HbMET1-2 | EVM0017774.1 | Cell nucleus | 30.3 | 12.4 | 57.3 |
| HbMET1-3 | EVM0034152.1 | Cell nucleus | 33.77 | 11.15 | 55.08 |
| HbMET1-4 | EVM0009780.1 | Cell nucleus | 27.4 | 9.2 | 63.39 |
| HbCMT2 | EVM0022511.1 | Cell nucleus | 27.85 | 10.46 | 61.69 |
| HbCMT3-1 | EVM0032926.1 | Cell nucleus | 26.27 | 11.52 | 62.21 |
| HbCMT3-2 | EVM0037387.1 | Cell nucleus | 25.85 | 8.54 | 65.6 |
| HbDRM1 | EVM0009056.1 | Cell nucleus | 43.93 | 6.73 | 49.35 |
| HbDRM2-1 | EVM0008822.1 | Cell nucleus | 43.45 | 7.07 | 49.48 |
| HbDRM2-2 | EVM0008920.5 | Cell nucleus | 42.38 | 6.18 | 51.43 |
| HbDRM3-1 | EVM0030405.1 | Cell nucleus | 38.03 | 6.76 | 55.21 |
| HbDRM3-2 | EVM0010462.1 | Cell nucleus | 34.78 | 8.83 | 56.39 |
| HbDNMT2 | EVM0039861.1 | Cytoplasm | 28.33 | 9.69 | 61.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Hu, B.; Xue, Y.; Li, X.; Wang, K.; Dai, X.; Guo, Z.; Long, X. Genome-Wide Identification and Expression Pattern Analysis of the DNA Methyltransferase Gene Family Revealed the DNA Methylation Response to Tapping in Rubber Tree. Plants 2025, 14, 3284. https://doi.org/10.3390/plants14213284
Hao Y, Hu B, Xue Y, Li X, Wang K, Dai X, Guo Z, Long X. Genome-Wide Identification and Expression Pattern Analysis of the DNA Methyltransferase Gene Family Revealed the DNA Methylation Response to Tapping in Rubber Tree. Plants. 2025; 14(21):3284. https://doi.org/10.3390/plants14213284
Chicago/Turabian StyleHao, Yuanyuan, Bin Hu, Yongkang Xue, Xuelian Li, Kun Wang, Xuemei Dai, Zhifu Guo, and Xiangyu Long. 2025. "Genome-Wide Identification and Expression Pattern Analysis of the DNA Methyltransferase Gene Family Revealed the DNA Methylation Response to Tapping in Rubber Tree" Plants 14, no. 21: 3284. https://doi.org/10.3390/plants14213284
APA StyleHao, Y., Hu, B., Xue, Y., Li, X., Wang, K., Dai, X., Guo, Z., & Long, X. (2025). Genome-Wide Identification and Expression Pattern Analysis of the DNA Methyltransferase Gene Family Revealed the DNA Methylation Response to Tapping in Rubber Tree. Plants, 14(21), 3284. https://doi.org/10.3390/plants14213284

