Advances of Long Non-Coding RNA in Perennial Plants: Development and Stress Responses
Abstract
1. Introduction
2. Regulatory Mechanisms of Plant lncRNAs
2.1. LncRNAs as Signaling Molecules
2.2. LncRNAs as Molecular Decoys
2.3. LncRNAs as Guide Molecules
2.4. LncRNAs as Scaffold Molecules
2.5. LncRNAs as Precursors
2.6. LncRNAs as Direct or Indirect Regulators of Gene Expression
3. Regulatory Role of lncRNAs in Perennial Plant Development
3.1. Wood Formation
3.2. Adventitious Root Development
3.3. Leaf Development
3.4. Flower Bud and Female Bulb Development
3.5. Fruit Development
| Species | Name | Developmental Stage or Tissue | Function | Molecular Mechanism | References |
|---|---|---|---|---|---|
| P. tomentosa | NERDL | Cambium and Xylem | Secondary growth and wood formation | Modulates wood formation by directly or indirectly interacting with PtoNERD mRNA, thereby regulating its transcription or translation | [30] |
| P. deltoids × P. euramericana cv. ‘Nanlin895′ | lncWOX5 and lncWOX11 | Adventitious roots | The formation and development of adventitious roots | lncWOX5 negatively regulated WOX5 and lncWOX11 positively regulated WOX11 | [35] |
| lncWOX11a | Adventitious roots | Suppresses adventitious root formation | lncWOX11a acts as a negative regulator of adventitious rooting by downregulating the WUSCHEL-related homeobox gene WOX11, which is supposed to activate adventitious root development in plants. | [36] | |
| L. chinense | lch-lnc6026, lch-lnc0809, lch-lnc4261/5500, lch-lnc5465, lch-lnc2601/3102/6972, lch-lnc1857/4867/6438 | Leaf | Leaf polarity establishment and leaf morphology modulation | miRNA-lncRNA-TF regulatory networks | [38] |
| lch-lnc7374 | Flower | Stamen and pistil development | miRNA-lncRNA-TF regulatory networks | [38] | |
| G. biloba | MSTRG.2203.13-Gb_Novel_miR190-Gb_35828 | Female stalk primordia | Involved in the initial and exuberant differentiation stages of female stalk primordia | lncRNAs mediated transcriptional regulation through cis-regulation, trans-regulation, lncRNA-miRNA-mRNA as CeRNAs | [43] |
| C. bungei | LXLCO_019079, LXLOC_017817 and LXLOC_030659 | Axillary buds | Initiation of floral transition | lncRNA-mRNA interaction pairs may participate in floral transition | [44] |
| H. rhamnoides L. subsp. Mongolica Rousi × Chinensis Rousi | TCONS_00694050 (LNC1) | Mature green (MG), breaker (BR) and red-ripe stage of fruit | Anthocyanin biosynthesis, regulation of fruit quality | Functions as a molecular decoy that sequesters miR156, thereby releasing suppression of its target gene SPL9 and enhancing anthocyanin biosynthesis in fruits. | [45] |
| TCONS_00438839 (LNC2) | Mature green (MG), breaker (BR) and red-ripe stage of fruit | Anthocyanin biosynthesis, regulation of fruit quality | Acts as a molecular decoy that sequesters miR828, thereby derepressing its target gene MYB114 and suppressing anthocyanin biosynthesis in fruits. | [45] | |
| M. pumila | MdLNC499 | Apple fruit peels and callus | Anthocyanin accumulation, promoting apple coloring | Functions as a scaffolding molecule that facilitates the assembly of TFs MdWRKY1 and MdERF109 into a regulatory complex, which activates anthocyanin biosynthetic genes to enhance apple fruit coloration. | [46] |
| Malus × domestica | MLNC3.2 and MLNC4.6 | Apple fruit peels | Anthocyanin accumulation | Preventing miR156a from cleaving SPL2-like and SPL33 to regulate anthocyanin accumulation | [47] |
4. Stress Regulation by lncRNAs in Perennial Plants
4.1. Regulation of the Response to Biotic Stress by lncRNAs
4.2. Regulation of the Response of lncRNAs to Abiotic Stress
4.2.1. Response to High-Salt Stress
4.2.2. Response to Drought Stress
4.2.3. Response to High Temperature Stress
4.2.4. Response to Cold Stress
4.2.5. Response to Heavy Metal Stress
4.2.6. Response to Nutrient Deficiency
| Species | LncRNA | Stress | Molecular Mechanism | Up/Down-Regulated | Promotes Tolerance/ Confers Sensitivity | References |
|---|---|---|---|---|---|---|
| Citrus jambhiri | LNC_28805 | Diseases | LNC28805 might compete with endogenous miR5021 to maintain the homeostasis of immune gene expression levels. | Upregulated | Promotes Tolerance | [57] |
| Camellia sinensis | MSTRG.139242.1 | Salt stress | May interacted with TEA027212.1 (Ca2+-ATPase 13), participating in Ca2+ transport and alleviating the harmful effect of salt on cells | Upregulated | Promotes Tolerance | [64] |
| P. tomentosa | lncERF024 | Salt stress | May be involved in the regulation of both gene expression and protein function conferring salt tolerance | Upregulated | Promotes Tolerance | [65] |
| P. trichocarpa | Ptlinc-NAC72 | Salt stress | Mitigate growth costs by conferring plant resilience to salt stress | Upregulated | Promotes Tolerance | [66] |
| G. biloba | LncNAT11 | Salt stress | LncNAT11-MYB11-F3′H/FLS module enhances salt tolerance by regulating flavonol biosynthesis and increasing the efficiency of reactive oxygen species removal | Downregulated | Promotes Tolerance | [68] |
| P. simonii | TCONS_00202587 | Heat stress | Binds to upstream sequences via its secondary structure and interferes with target gene transcription | Upregulated | Promotes Tolerance | [72] |
| TCONS_00260893 | Heat stress | Enhances calcium influx in response to high-temperature treatment by interfering with a specific variant/isoform of the target gene | Upregulated | Promotes Tolerance | ||
| P. qiongdaoensis | lncHSP18.2 | Heat stress | miRNAs may negatively regulate both lncRNAs and mRNAs in tree responses to heat stress, lncHSP18.2 may cis-regulate HSP18.2. | Upregulated | Promotes Tolerance | [73] |
| P. × canadensis | lncRNAPc3, lncRNAPc5, lncRNAPc12, and lncRNAPc14 | Heat stress | May cis-regulate HSP genes via co-expression in response to heat stress | Upregulated | Promotes Tolerance | [74] |
| Picea glauca | lncRNAs MSTRG.505746.1, MSTRG.1070680.1, MSTRG.33602.1; MSTRG.1070680.1 MSTRG.33602.1; MSTRG.505746.1, MSTRG.1070680.1, MSTRG.33602.1 | Cold stress | Cold stress-enhanced early somatic embryogenesis through long non-coding regulatory network | Upregulated | Promotes Tolerance | [77] |
| P. tomentosa | lncRNA PMAT | Pb2+ toxic heavy-metal stress | PMAT-PtoMYB46-PtoMATE-PtoARF2 regulatory module control Pb2+ tolerance, uptake, and plant growth | Upregulated | Promotes Tolerance | [79] |
| MSTRG.22608.1 MSTRG.5634.1 | Cd stress | MSTRG.22608.1 with its cis-target gene PtoMYB73, and MSTRG.5634.1 with its trans-target gene PtoMYB27 | Upregulated | Promotes Tolerance | [80] | |
| B. platyphylla | LncRNA28068.1 and LncRNA2705.1 | Cd stress | LncRNA28068.1 and LncRNA2705.1 could confer Cd tolerance | Upregulated | Promotes Tolerance | [81] |
| LncRNA11415.1 and LncRNA30505.2 | LncRNA11415.1 and LncRNA30505.2 conferred sensitivity to Cd. | Downregulated | Confers Sensitivity | |||
| M. domestica | lncRNA MSTRG.85814 | Nutrient stress | MSTRG.85814.11 was shown to positively promote SAUR32 expression, which then activated proton extrusion involved in the Fe-deficiency response. | Upregulated | Promotes Tolerance | [85] |
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Yang, J.; Li, M.; Zhang, H.; Wang, Y.; Liu, X. Plant long non-coding RNAs: Biologically relevant and mechanistically intriguing. J. Exp. Bot. 2023, 74, 2364–2373. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhao, Y.; Wang, L.; Li, S.; Zhang, Q. Current perspectives of lncRNAs in abiotic and biotic stress tolerance in plants. Front. Plant Sci. 2024, 14, 1334620. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, W.; Zhang, Y.; Li, H.; Wang, Z. Long noncoding RNA transcriptome of plants. Plant Biotechnol. J. 2015, 13, 319–328. [Google Scholar] [CrossRef]
- Chen, J.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta 2015, 241, 125–143. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L.; Wang, H.; Li, J.; Zhao, S. Genome-wide analysis of long non-coding RNAs in shoot apical meristem and vascular cambium in Populus tomentosa. J. Plant Physiol. 2022, 275, 153759. [Google Scholar] [CrossRef]
- St Laurent, G.; Wahlestedt, C.; Kapranov, P. The landscape of long noncoding RNA classification. Trends Genet. 2015, 31, 239–251. [Google Scholar] [CrossRef]
- Chekanova, J.A. Long non-coding RNAs and their functions in plants. Curr. Opin. Plant Biol. 2015, 27, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Di, C.; Zhao, Y.; Li, J.; Wang, Q.; Zhang, X. Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J. 2014, 80, 848–861. [Google Scholar] [CrossRef]
- Fan, X.; Li, Y.; Wang, Z.; Zhang, L.; Liu, J. An lncRNA-miRNA-mRNA-ceRNA network regulates intervertebral disc degeneration: A bioinformatics study based on the dataset analysis. Gen. Physiol. Biophys. 2021, 40, 317–327. [Google Scholar] [CrossRef]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Paszkowski, J. Regulation of rice root development by a retrotransposon acting as a microRNA sponge. eLife 2017, 6, e30038. [Google Scholar] [CrossRef] [PubMed]
- Campalans, A.; Crespi, M.D.; van de Sande, K.; de Bruijn, F.J.; Goormachtig, S. Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell 2004, 16, 1047–1059. [Google Scholar] [CrossRef]
- Hung, T.; Chang, H.Y. Long noncoding RNA in genome regulation: Prospects and mechanisms. RNA Biol. 2010, 7, 582–585. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Li, J.; Liu, S.; Wang, Z. Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice. Nat. Commun. 2018, 9, 3516. [Google Scholar] [CrossRef]
- Engreitz, J.M.; Ollikainen, N.; Guttman, M. Long non-coding RNAs: Spatial amplifiers that control nuclear structure and gene expression. Nat. Rev. Mol. Cell Biol. 2016, 17, 756–770. [Google Scholar] [CrossRef]
- Ariel, F.; Cifuentes-Rojas, M.; Romero-Barrios, N.; Godoy, M.; Epple, P.; Jaeger, K.E. R-loop mediated trans action of the APOLO long noncoding RNA. Mol. Cell 2020, 77, 1055–1065. [Google Scholar] [CrossRef]
- Xin, M.; Wang, H.; Li, X.; Zhang, Y.; Kang, Z. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol. 2011, 11, 61. [Google Scholar] [CrossRef]
- Li, X.Z.; Wang, J.; Wang, S.; Xie, W. Defining piRNA primary transcripts. Cell Cycle 2013, 12, 1657–1658. [Google Scholar] [CrossRef]
- Kindgren, P.; Eriksson, S.; Johansson, A.; Baxter, J.; Nilsson, O. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nat. Commun. 2018, 9, 4561. [Google Scholar] [CrossRef] [PubMed]
- Henriques, R.; Müller, A.E.; Nilsson, O.; Johansson, A. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. New Phytol. 2017, 216, 854–867. [Google Scholar] [CrossRef] [PubMed]
- Fedak, H.; Cyrek, M.; Wypijewski, K.; Strzałka, M.; Krauze, T.; Miskiewicz, P. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript. Proc. Natl. Acad. Sci. USA 2016, 113, E7846–E7855. [Google Scholar] [CrossRef]
- Yatusevich, R.; Fedak, H.; Jończyk, I.; Miskiewicz, P. Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. EMBO Rep. 2017, 18, 2186–2196. [Google Scholar] [CrossRef] [PubMed]
- Hisanaga, T.; Kodama, Y.; Kohchi, T. A cis-acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO J. 2019, 38, e100240. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, B.J.M.; Qüesta, J.I. Mechanisms of epigenetic regulation of transcription by lncRNAs in plants. IUBMB Life 2023, 75, 427–439. [Google Scholar] [CrossRef]
- Bardou, F.; Ariel, F.; Crespi, M. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev. Cell 2014, 30, 166–176. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, L.; Wang, H.; Li, J.; Zhao, S. Genome-wide analysis of lncRNA and mRNA expression and endogenous hormone regulation during tension wood formation in Catalpa bungei. BMC Genom. 2020, 21, 609. [Google Scholar] [CrossRef]
- Xu, H.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Non-Coding RNA Analyses of seasonal cambium activity in Populus tomentosa. Cells 2022, 11, 640. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Identification and allelic dissection uncover roles of lncRNAs in secondary growth of Populus tomentosa. DNA Res. 2017, 24, 473–486. [Google Scholar] [CrossRef]
- Tian, J.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus. J. Exp. Bot. 2016, 67, 2467–2482. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Liu, S.; Wang, X.; Li, M.; Zhang, D. The interactions between the long non-coding RNA NERDL and its target gene affect wood formation in Populus tomentosa. Front. Plant Sci. 2017, 8, 1035. [Google Scholar] [CrossRef]
- Matzke, M.A.; Mosher, R.A. RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nat. Rev. Genet. 2014, 15, 394–408. [Google Scholar] [CrossRef] [PubMed]
- Quan, M.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Genetic architecture underlying the lignin biosynthesis pathway involves noncoding RNAs and transcription factors for growth and wood properties in Populus. Plant Biotechnol. J. 2019, 17, 302–315. [Google Scholar] [CrossRef]
- Maurya, J.P.; Bhalerao, R.P. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: A molecular perspective. Ann. Bot. 2017, 120, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, S.; Wang, J.; Zhang, Y.; Chen, X. Multilayer regulatory landscape and new regulators identification for bud dormancy release and bud break in Populus. Plant Cell Environ. 2024, 47, 3181–3197. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Li, M.; Zhang, D. Identification and characterization of long non-coding RNAs involved in the formation and development of poplar adventitious roots. Ind. Crops Prod. 2018, 118, 334–346. [Google Scholar] [CrossRef]
- Ran, N.; Li, S.; Wang, J.; Zhang, Y.; Chen, X. Long non-coding RNA lncWOX11a suppresses adventitious root formation of Poplar by regulating the expression of PeWOX11a. Int. J. Mol. Sci. 2023, 24, 5766. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Genetic dissection of the gene coexpression network underlying photosynthesis in Populus. Plant Biotechnol. J. 2020, 18, 1015–1026. [Google Scholar] [CrossRef]
- Tu, Z.; Li, S.; Wang, J.; Zhang, Y.; Chen, X. The roles of microRNA-long non-coding RNA-mRNA networks in the regulation of leaf and flower development in Liriodendron chinense. Front. Plant Sci. 2022, 13, 816875. [Google Scholar] [CrossRef]
- Zeng, M.; Li, S.; Wang, J.; Zhang, Y.; Chen, X. Conjoint analysis of genome-wide lncRNA and mRNA expression of heteromorphic leaves in response to environmental heterogeneity in Populus euphratica. Int. J. Mol. Sci. 2019, 20, 5148. [Google Scholar] [CrossRef]
- Li, W.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Genome-wide identification and characterization of novel lncRNAs in Ginkgo biloba. Genomics 2018, 32, 1429–1442. [Google Scholar]
- Liu, S.; Wang, X.; Li, M.; Zhang, D. Identification and characterization of long non-coding RNAs regulating flavonoid biosynthesis in Ginkgo biloba leaves. Plant Physiol. Biochem. 2020, 158, 112980. [Google Scholar] [CrossRef]
- Heo, J.B.; Sung, S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 2011, 331, 76–79. [Google Scholar] [CrossRef]
- Bai, P.P.; Li, S.; Wang, J.; Zhang, Y.; Chen, X. Temporal dynamic transcriptome landscape reveals regulatory network during the early differentiation of female strobilus buds in Ginkgo biloba. Front. Plant Sci. 2022, 13, 863330. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Genome-wide analysis of long non-coding RNAs in Catalpa bungei and their potential function in floral transition using high-throughput sequencing. BMC Genet. 2018, 19, 86. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Res. 2018, 25, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liu, S.; Wang, X.; Li, M.; Zhang, D. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. Plant Cell 2021, 33, 3309–3330. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Systematic identification of long noncoding RNAs expressed during light-induced anthocyanin accumulation in apple fruit. Plant J. 2019, 100, 572–590. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Plant noncoding RNAs: Hidden players in development and stress responses. Annu. Rev. Cell Dev. Biol. 2019, 35, 407–431. [Google Scholar] [CrossRef]
- Jha, U.C.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Long non-coding RNAs: Emerging players regulating plant abiotic stress response and adaptation. BMC Plant Biol. 2020, 20, 466. [Google Scholar] [CrossRef]
- Panchal, A.; Liu, S.; Wang, X.; Li, M.; Zhang, D. An insight into the roles of regulatory ncRNAs in plants: An abiotic stress and developmental perspective. Plant Physiol. Biochem. 2023, 201, 107823. [Google Scholar] [CrossRef]
- Shi, D.; Liu, S.; Wang, X.; Li, M.; Zhang, D. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. Plant Sci. 2024, 341, 111995. [Google Scholar] [CrossRef]
- Chand Jha, U.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Non-coding RNAs in legumes: Their emerging roles in regulating biotic/abiotic stress responses and plant growth and development. Cells 2021, 10, 1674. [Google Scholar] [CrossRef]
- Ma, X.; Liu, S.; Wang, X.; Li, M.; Zhang, D. The characters of non-coding RNAs and their biological roles in plant development and abiotic stress response. Int. J. Mol. Sci. 2022, 23, 4124. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, S.; Wang, X.; Li, M.; Zhang, D. The intersection of non-coding RNAs contributes to forest trees’ response to abiotic stress. Int. J. Mol. Sci. 2022, 23, 6365. [Google Scholar] [CrossRef]
- Patturaj, M.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Biologia Futura: Progress and future perspectives of long non-coding RNAs in forest trees. Biol. Futura. 2022, 73, 43–53. [Google Scholar] [CrossRef]
- Ma, W.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nat. Commun. 2022, 13, 529. [Google Scholar] [CrossRef]
- Zhuo, X.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Role of long non-coding RNA in regulatory network response to Candidatus Liberibacter asiaticus in citrus. Front. Plant Sci. 2023, 14, 1090711. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Zhang, Y.; Liu, J.; Chen, S. Whole transcriptome sequencing of Pseudomonas syringae pv. actinidiae-infected kiwifruit plants reveals species-specific interaction between long non-coding RNA and coding genes. Sci. Rep. 2017, 7, 4910. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Li, J.; Zhang, H.; Liu, X. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat. Commun. 2018, 9, 5056. [Google Scholar] [CrossRef]
- Li, L.; Zhang, S.; Wang, H.; Li, Y.; Zhao, Q. Genome-wide analysis of long noncoding RNAs affecting floral bud dormancy in pears in response to cold stress. Tree Physiol. 2021, 41, 771–790. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Wang, L.; Li, J.; Zhang, Y.; Liu, S. The lincRNA XH123 is involved in cotton cold-stress regulation. Plant Mol. Biol. 2021, 106, 521–531. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, H.; Li, J.; Wang, Y.; Zhao, X. The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in Moso bamboo under abiotic stress. Plant Sci. 2022, 325, 111451. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Genome-wide identification of long noncoding RNAs and their responses to salt stress in two closely related Poplars. Front. Genet. 2019, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Li, J.; Wang, Y.; Zhao, X.; Zhang, H. Integrated analysis of long non-coding RNAs (lncRNAs) and mRNAs reveals the regulatory role of lncRNAs associated with salt resistance in Camellia sinensis. Front. Plant Sci. 2020, 11, 218. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.; Liu, J.; Chen, S.; Wang, Z. LncRNA expression analysis by comparative transcriptomics among closely related poplars and their regulatory roles in response to salt stress. Tree Physiol. 2023, 43, 1233–1249. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wang, X.; Li, M.; Zhang, D.; Liu, S. Role of lncRNAs in cis- and trans-regulatory responses to salt in Populus trichocarpa. Plant J. 2022, 110, 978–993. [Google Scholar] [CrossRef]
- Jannesar, M.; Rezaei, M.; Karimi, M.; Salekdeh, G.H. A genome-wide identification, characterization and functional analysis of salt-related long non-coding RNAs in non-model plant Pistacia vera L. using transcriptome high throughput sequencing. Sci. Rep. 2020, 10, 5585. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Li, M.; Zhang, D.; Chen, J. The LncNAT11-MYB11-F3′H/FLS module mediates flavonol biosynthesis to regulate salt stress tolerance in Ginkgo biloba. J. Exp. Bot. 2025, 76, 1179–1201. [Google Scholar] [CrossRef]
- Niu, Y.; Li, S.; Wang, J.; Zhang, Y.; Chen, X. Genome-wide analysis of long noncoding RNAs affecting rubber biosynthesis in Hevea brasiliensis in response to drought stress. Ind. Crops Prod. 2024, 210, 118084. [Google Scholar] [CrossRef]
- Shuai, P.; Wang, X.; Li, M.; Zhang, D.; Liu, S. Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J. Exp. Bot. 2014, 65, 4975–4983. [Google Scholar] [CrossRef]
- Tao, X.; Li, J.; Wang, Y.; Zhao, X.; Zhang, H. Neofunctionalization of a polyploidization-activated cotton long intergenic non-coding RNA DAN1 during drought stress regulation. Plant Physiol. 2021, 186, 2152–2168. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, H.; Li, J.; Wang, Y.; Zhao, X. High-temperature-responsive Poplar lncRNAs modulate target gene expression via RNA interference and act as RNA scaffolds to enhance heat tolerance. Int. J. Mol. Sci. 2020, 21, 6808. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Li, M.; Zhang, D.; Liu, S. Third-generation sequencing found lncRNA associated with heat shock protein response to heat stress in Populus qiongdaoensis seedlings. BMC Genom. 2020, 21, 572. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Third-generation sequencing reveals lncRNA-regulated HSP genes in the Populus × canadensis moench heat stress response. Front. Genet. 2020, 11, 249. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Li, J.; Wang, Y.; Zhao, X.; Zhang, H. The transcriptomic response to heat stress of a jujube (Ziziphus jujuba Mill.) cultivar is featured with changed expression of long noncoding RNAs. PLoS ONE 2021, 16, e0249663. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J.; Zhang, Y.; Chen, X.; Niu, Y. Global identification of full-length cassava lncRNAs unveils the role of cold-responsive intergenic lncRNA 1 in cold stress response. Plant Cell Environ. 2022, 45, 412–426. [Google Scholar] [CrossRef]
- Gao, Y.; Li, S.; Wang, J.; Zhang, Y.; Chen, X. Cryo-treatment enhances the embryogenicity of mature somatic embryos via the lncRNA-miRNA-mRNA network in white spruce. Int. J. Mol. Sci. 2022, 23, 1111. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Wang, Y.; Zhao, X.; Zhang, H. Identification and functional prediction of cold-related long non-coding RNA (lncRNA) in grapevine. Sci. Rep. 2019, 9, 6638. [Google Scholar] [CrossRef]
- Chen, P.; Wang, X.; Li, M.; Zhang, D.; Liu, S. LncRNA PMAT-PtoMYB46 module represses PtoMATE and PtoARF2 promoting Pb(2+) uptake and plant growth in poplar. J. Hazard. Mater. 2022, 433, 128769. [Google Scholar] [CrossRef]
- Quan, M.; Liu, S.; Wang, X.; Li, M.; Zhang, D. Transcriptome analysis and association mapping reveal the genetic regulatory network response to cadmium stress in Populus tomentosa. J. Exp. Bot. 2021, 72, 576–591. [Google Scholar] [CrossRef]
- Wen, X.; Li, J.; Wang, Y.; Zhao, X.; Zhang, H. Identification and characterization of cadmium stress-related lncRNAs from Betula platyphylla. Plant Sci. 2020, 299, 110601. [Google Scholar] [CrossRef]
- Yan, H.; Peng, Z.; Zhang, H.; Wang, B.; Xu, W.; He, Z. Cadmium minimization in crops: A trade-off with mineral nutrients in safe breeding. Plant Cell Environ. 2025, 48, 838–851. [Google Scholar] [CrossRef]
- Ninkuu, V.; Liu, Z.; Sun, X. Genetic regulation of nitrogen use efficiency in Gossypium spp. Plant Cell Environ. 2023, 46, 1749–1773. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Li, M.; Zhang, D.; Liu, S. Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency. Mol. Genet. Genom. 2016, 291, 1663–1680. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Wang, Y.; Zhao, X.; Zhang, H. A long non-coding apple RNA, MSTRG.85814.11, acts as a transcriptional enhancer of SAUR32 and contributes to the Fe-deficiency response. Plant J. 2020, 103, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Li, S.; Wang, J.; Zhang, Y.; Chen, X. Integrative mRNA and long noncoding RNA analysis reveals the regulatory network of floral bud induction in Longan (Dimocarpus longan Lour.). Front. Plant Sci. 2022, 13, 923183. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Li, S.; Wang, J.; Zhang, Y.; Chen, X. Integrated transcriptomics and metabolomics analysis promotes the understanding of adventitious root formation in Eucommia ulmoides Oliver. Plants 2024, 13, 136. [Google Scholar] [CrossRef]
- Yang, E.; Li, S.; Wang, J.; Zhang, Y.; Chen, X. Integrated analysis of microRNAs and lncRNAs expression profiles reveals regulatory modules during adventitious shoot induction in Moringa oleifera Lam. BMC Plant Biol. 2024, 24, 1237. [Google Scholar] [CrossRef]
- Franco-Zorrilla, J.M.; Valli, A.; Todesco, M.; Mateos, I.; Puga, M.I.; Rubio-Somoza, I.; Leyva, A.; Weigel, D.; García, J.A.; Paz-Ares, J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 2007, 39, 1033–1037. [Google Scholar] [CrossRef]
- Jiang, N.; Cui, J.; Shi, Y.; Yang, G.; Zhou, X.; Hou, X.; Meng, J.; Luan, Y. Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRRgenes by decoying miR482b in the tomato-Phytophthora infestans interaction. Hortic. Res. 2019, 6, 28. [Google Scholar] [CrossRef]
- Rehman, O.U.; Uzair, M.; Farooq, M.S.; Saleem, B.; Attacha, S.; Attia, K.A.; Farooq, U.; Fiaz, S.; El-Kallawy, W.H.; Kimiko, I.; et al. Comprehensive insights into the regulatory mechanisms of lncRNA in alkaline-salt stress tolerance in rice. Mol. Biol. Rep. 2023, 50, 7381–7392. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Li, M.; Zhang, D.; Liu, S. Manipulating microRNA miR408 enhances both biomass yield and saccharification efficiency in poplar. Nat. Commun. 2023, 14, 4285. [Google Scholar] [CrossRef]
- Zhao, X.; Li, J.; Wang, Y.; Zhang, H.; Liu, X. MicroRNAs in plants development and stress resistance. Plant Cell Environ. 2025, 48, 5909–5929. [Google Scholar] [CrossRef]
- Ji, C.; Song, F.; He, C.; An, J.; Huang, S.; Yu, H.; Lu, H.; Xiao, S.; Bucher, M.; Pan, Z. Integrated miRNA-mRNA analysis reveals candidate miRNA family regulating arbuscular mycorrhizal symbiosis of Poncirus trifoliata. Plant Cell Environ. 2023, 46, 1805–1821. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, J.; Wang, Y.; Zhao, X.; Zhang, H. lncRNA MtCIR2 positively regulates plant-freezing tolerance by modulating CBF/DREB1 gene clusters. Plant Cell Environ. 2023, 46, 2450–2469. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, J.; Wang, Y.; Zhao, X.; Zhang, H. Transcriptional landscape of pathogen-responsive lncRNAs in tomato unveils the role of hydrolase encoding genes in response to Botrytis cinerea invasion. Plant Cell Environ. 2024, 47, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Z.; Watts, R.; Luo, H. Non-coding RNAs in plant stress responses: Molecular insights and agricultural applications. Plant Biotechnol. J. 2025, 23, 3195–3233. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, J.; Deng, F.; Wang, W.; Cheng, Y.; Song, L.; Hu, M.; Shen, J.; Xu, Q.; Shen, F. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC Plant Biol. 2019, 19, 459. [Google Scholar] [CrossRef]
- Chu, X.; Li, S.; Huang, H.; Wang, Y.; Yan, C.; Li, J.; Wang, M.; Yin, H. Integrative analysis of small RNA and gene expression uncovers a novel long-noncoding microRNA targeting a UDP-transferase in Camellia chekiangoleosa. Plant Cell Environ. 2025, 48, 511–525. [Google Scholar] [CrossRef]
- Gai, Y.P.; Li, J.; Wang, Y.; Zhao, X.; Zhang, H. A novel lncRNA, MuLnc1, associated with environmental stress in Mulberry (Morus multicaulis). Front. Plant Sci. 2018, 9, 669. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Guo, D.; Wang, Y.; Yin, J.; Liu, G.; Xu, H. Advances of Long Non-Coding RNA in Perennial Plants: Development and Stress Responses. Plants 2025, 14, 3280. https://doi.org/10.3390/plants14213280
Guo Y, Guo D, Wang Y, Yin J, Liu G, Xu H. Advances of Long Non-Coding RNA in Perennial Plants: Development and Stress Responses. Plants. 2025; 14(21):3280. https://doi.org/10.3390/plants14213280
Chicago/Turabian StyleGuo, Yayu, Danni Guo, Yunqing Wang, Jinhuan Yin, Guijun Liu, and Huimin Xu. 2025. "Advances of Long Non-Coding RNA in Perennial Plants: Development and Stress Responses" Plants 14, no. 21: 3280. https://doi.org/10.3390/plants14213280
APA StyleGuo, Y., Guo, D., Wang, Y., Yin, J., Liu, G., & Xu, H. (2025). Advances of Long Non-Coding RNA in Perennial Plants: Development and Stress Responses. Plants, 14(21), 3280. https://doi.org/10.3390/plants14213280

