The Impact of Phyllostachys heterocyclas Expansion on the Phylogenetic Diversity and Community Assembly of Subtropical Forest
Abstract
1. Introduction
2. Results
2.1. Changes in Soil Physicochemical Properties Along the Moso Bamboo Expansion Gradient
2.2. Changes in Community Species Diversity Along the Moso Bamboo Expansion Gradient
2.3. Changes in Community Phylogenetic Diversity Along the Moso Bamboo Expansion Gradient
2.4. Changes in Species Importance and Expansion Resistance Along the Moso Bamboo Expansion Gradient
2.5. Effects of Moso Bamboo Expansion and Soil Changes on Community Diversity
3. Discussion
3.1. Effects of Moso Bamboo Expansion on Tree-Layer Diversity
3.2. Effects of Moso Bamboo Expansion on Shrub- and Herb-Layer Diversities
3.3. Phylogenetic Diversity and Species Expansion Resistance
3.4. Moso Bamboo Expansion and Soil Changes Jointly Drive Community Diversity Changes
3.5. Implications for Management
4. Materials and Methods
4.1. Study Area
4.2. Plot Design and Sampling
4.3. Species Importance Value
4.4. Phylogenetic Tree Construction
4.5. Diversity Index Calculations
4.6. Resistance Index (RI)
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BF | Moso bamboo-free (0% Moso bamboo) broadleaf forest |
LM | Low Moso bamboo mixture forest (~20–40% Moso bamboo stems) |
HM | High Moso bamboo mixture forest (~60–80% Moso bamboo stems) |
MB | Moso bamboo monoculture (~100% bamboo) |
DBH | Diameter at breast height |
IV | Importance value |
MPD | Mean pairwise phylogenetic distance |
MNTD | Mean nearest taxon distance |
NRI | Net relatedness index |
NTI | Nearest taxon index |
PD | Faith’s phylogenetic diversity |
RI | Resistance Index |
TOC | Total organic carbon |
TN | Total nitrogen |
TP | Total phosphorus |
References
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; Chan, K.M.A.; et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 2019, 366, eaax3100. [Google Scholar] [CrossRef] [PubMed]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [PubMed]
- Simberloff, D.; Souza, L.; Nuñez, M.A.; Barrios-Garcia, M.N.; Bunn, W. The natives are restless, but not often and mostly when disturbed. Ecology 2012, 93, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Canavan, S.; Kumschick, S.; Le Roux, J.J.; Richardson, D.M.; Wilson, J.R.U. Does origin determine environmental impacts? Not for bamboos. Plants People Planet 2019, 1, 119–128. [Google Scholar] [CrossRef]
- Gaira, K.S.; Pandey, A.; Sinha, S.; Badola, H.K.; Lepcha, J.; Dhyani, P.P.; Chettri, N. Maling bamboo (Yushania maling) over-dominance alters forest structure and composition in Khangchendzonga Landscape, Eastern Himalaya. Sci. Rep. 2022, 12, 4468. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, J.; Tang, Z.; Wang, T.; Li, W.; Wang, X.; Cui, H.; Hu, X.; Qi, L. Moso bamboo (Phyllostachys edulis) expansion enhances soil pH and alters soil nutrients and microbial communities. Sci. Total Environ. 2024, 912, 169346. [Google Scholar] [CrossRef]
- Xu, Q.-F.; Liang, C.-F.; Chen, J.-H.; Li, Y.-C.; Qin, H.; Fuhrmann, J.J. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Glob. Ecol. Conserv. 2020, 21, e00787. [Google Scholar] [CrossRef]
- Griscom, B.W.; Ashton, P.M.S. A self-perpetuating bamboo disturbance cycle in a Neotropical forest. J. Trop. Ecol. 2006, 22, 587–597. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Huang, S.; Fang, D. Impacts of moso bamboo (Phyllostachys pubescens) invasion on species diversity and aboveground biomass of secondary coniferous and broad-leaved mixed forest. Front. Plant Sci. 2022, 13, 1001785. [Google Scholar] [CrossRef]
- Ouyang, M.; Tian, D.; Pan, J.; Chen, G.; Su, H.; Yan, Z.; Yang, Q.; Ji, C.; Tang, Z.; Fang, J. Moso bamboo (Phyllostachys pubescens) invasion increases forest soil pH in subtropical China. Catena 2022, 215, 106339. [Google Scholar] [CrossRef]
- Liu, X.; Siemann, E.; Cui, C.; Liu, Y.; Guo, X.; Zhang, L. Moso bamboo (Phyllostachys edulis) invasion effects on litter, soil and microbial PLFA characteristics depend on sites and invaded forests. Plant Soil 2019, 438, 85–99. [Google Scholar] [CrossRef]
- Webb, C.O.; Ackerly, D.D.; McPeek, M.A.; Donoghue, M.J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 2002, 33, 475–505. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Dinnage, R.; Tilman, D. Phylogenetic diversity promotes ecosystem stability. Ecology 2012, 93, S223–S233. [Google Scholar] [CrossRef]
- Renault, D.; Hess, M.C.M.; Braschi, J.; Cuthbert, R.N.; Sperandii, M.G.; Bazzichetto, M.; Chabrerie, O.; Thiébaut, G.; Buisson, E.; Grandjean, F.; et al. Advancing biological invasion hypothesis testing using functional diversity indices. Sci. Total Environ. 2022, 834, 155102. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, C.; Wang, L.; Zhang, J.; Wang, Q.; Shao, S.; Qin, H.; Xu, Q.; Liang, C.; Chen, J. Moso bamboo invasion changes the assembly process and interactive relationship of soil microbial communities in a subtropical broadleaf forest. For. Ecol. Manage. 2023, 536, 120901. [Google Scholar] [CrossRef]
- Sun, H.; Hu, W.; Dai, Y.; Ai, L.; Wu, M.; Hu, J.; Zuo, Z.; Li, M.; Yang, H.; Ma, J. Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau) invasion affects soil microbial communities in adjacent planted forests in the Lijiang River Basin, China. Front. Microbiol. 2023, 14, 1111498. [Google Scholar] [CrossRef] [PubMed]
- Garrott, R.A.; White, P.J.; White, C.A.V. Overabundance: An issue for conservation biologists? Conserv. Biol. 1993, 7, 946–949. [Google Scholar] [CrossRef]
- Liang, S.; Dong, M.; Jiang, Y.; Petticord, D.F.; Li, J.; Long, J.; Su, Q. Untangling community assembly through functional traits and phylogenetic alpha diversity in subtropical karst forests. Ecol. Evol. 2021, 11, e71616. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Qian, S.; Sandel, B. Phylogenetic structure of alien and native species in regional plant assemblages across China: Testing niche conservatism hypothesis versus niche convergence hypothesis. Glob. Ecol. Biogeogr. 2022, 31, 1864–1876. [Google Scholar] [CrossRef]
- Yang, Z.; Cao, Y.; Zhao, J.; Zhou, B.; Ge, X.; Li, Q.; Li, M. Root response of moso bamboo (Phyllostachys edulis (Carriere) J. Houz.) seedlings to drought with different intensities and durations. Forests 2021, 12, 50. [Google Scholar] [CrossRef]
- Okutomi, K.; Shinoda, S.; Fukuda, H. Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. J. Veg. Sci. 1996, 7, 723–728. [Google Scholar] [CrossRef]
- Webb, C.O. Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. Am. Nat. 2000, 156, 145–155. [Google Scholar] [CrossRef]
- Bai, S.; Zhou, G.; Wang, Y.; Liang, Q.; Chen, J.; Cheng, Y.; Shen, R. Plant species diversity and dynamics in forests invaded by moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve. Biodivers. Sci. 2013, 21, 288–295. [Google Scholar] [CrossRef]
- Gong, C.; Zeng, X.; Zhu, X.; Huang, W.; Compson, Z.G.; Ren, Z.; Ran, H.; Song, Q.; Yang, Q.; Huang, D.; et al. Bamboo expansion promotes radial growth of surviving trees in a broadleaf forest. Front. Plant Sci. 2023, 14, 1242364. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, Y.; Qin, H.; Liang, C.; Shao, S.; Fuhrmann, J.J.; Chen, J.; Xu, Q. Moso bamboo invasion has contrasting effects on soil bacterial and fungal abundances, co-occurrence networks and their associations with enzyme activities in three broadleaved forests across subtropical China. For. Ecol. Manage 2021, 498, 119549. [Google Scholar] [CrossRef]
- Song, Q.; Lu, H.; Liu, J.; Yang, J.; Yang, G.; Yang, Q. Assessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Sci. Rep. 2017, 7, 40383. [Google Scholar] [CrossRef]
- Cachera, M.; Le Loc’h, F. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes). Ecol. Evol. 2017, 7, 6292–6303. [Google Scholar] [CrossRef] [PubMed]
- Steudel, B.; Hallmann, C.; Lorenz, M.; Abrahamczyk, S.; Prinz, K.; Herrfurth, C.; Feussner, I.; Martini, J.; Kessler, M. Contrasting biodiversity–ecosystem functioning relationships in phylogenetic and functional diversity. New Phytol. 2016, 212, 409–420. [Google Scholar] [CrossRef]
- Tu, H.; Li, J.; Yang, L.T.; Bai, J.; Lu, G.Q.; Li, H.; Liang, S.; Jiang, Y. Interspecific associations of the main tree populations of the Cyclobalanopsis glauca community in karst hills of Guilin, Southwest China. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2019, 30, 67–76. [Google Scholar] [CrossRef]
- Ernst, A.R.; Barak, R.S.; Glasenhardt, M.; Kramer, A.T.; Larkin, D.J.; Marx, H.E.; Kamakura, R.P.; Hipp, A.L. Dominant species establishment may influence invasion resistance more than phylogenetic or functional diversity. J. Appl. Ecol. 2023, 60, 2652–2664. [Google Scholar] [CrossRef]
- Wang, H.-C.; Tian, G.; Chiu, C. Invasion of moso bamboo into a Japanese cedar plantation affects the chemical composition and humification of soil organic matter. Sci. Rep. 2016, 6, 32211. [Google Scholar] [CrossRef]
- Ernst, A.R.; Barak, R.S.; Hipp, A.L.; Kramer, A.T.; Marx, H.E.; Larkin, D.J. The invasion paradox dissolves when using phylogenetic and temporal perspectives. J. Ecol. 2022, 110, 443–456. [Google Scholar] [CrossRef]
- Li, S.; Guo, T.; Cadotte, M.; Chen, Y.; Kuang, J.; Hua, Z.; Zeng, Y.; Song, Y.; Liu, Z.; Shu, W.; et al. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 2015, 52, 89–99. [Google Scholar] [CrossRef]
- Mao, Y.; Zhou, X.; Wang, N.; Li, X.; You, Y.; Bai, S. Impact of Phyllostachys edulis expansion to Chinese fir forest on the soil bacterial community. Biodivers. Sci. 2023, 31, 22659. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Z.; Fan, C.; Fan, F.; Shi, J.; Yang, Q.; Yan, G. Species diversity along the succession series from bamboo forest to broad-leaved forest in a limestone mountain. Chin. J. Ecol. 2014, 33, 3238–3244. [Google Scholar]
- Brown, B.L.; Barney, J.N. Rethinking biological invasions as a metacommunity problem. Front. Ecol. Evol. 2021, 9, 584701. [Google Scholar] [CrossRef]
- Delavaux, C.S.; Crowther, T.W.; Zohner, C.M.; Robmann, N.M.; Lauber, T.; van den Hoogen, J.; Kuebbing, S.; Liang, J.; de-Miguel, S.; Nabuurs, G.-J.; et al. Native diversity buffers against severity of non-native tree invasions. Nature 2023, 621, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Pickett, S.T.A. Space-for-time substitution as an alternative to long-term studies. In Long-Term Studies in Ecology: Approaches and Alternatives; Likens, G.E., Ed.; Springer: New York, NY, USA, 1989; pp. 110–135. ISBN 978-1-4615-7358-6. [Google Scholar]
- O’Loughlin, L.S.; Panetta, F.D.; Gooden, B. Identifying thresholds in the impacts of an invasive groundcover on native vegetation. Sci. Rep. 2021, 11, 20512. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Q.; Zhong, Z.; Huang, Z.; Wen, X.; Bian, F.; Yang, C. Determining changes in microbial nutrient limitations in bamboo soils under different management practices via enzyme stoichiometry. Catena 2023, 223, 106939. [Google Scholar] [CrossRef]
- Curtis, J.T.; McIntosh, R.P. An upland forest continuum in the prairie–forest border region of Wisconsin. Ecology 1951, 32, 476–496. [Google Scholar] [CrossRef]
- The Angiosperm Phylogeny Group; Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- Jin, Y.; Qian, H.V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography 2019, 42, 1353–1359. [Google Scholar] [CrossRef]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef]
- Godoy, O.; Kraft, N.J.B.; Levine, J.M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 2014, 17, 836–844. [Google Scholar] [CrossRef]
- Strayer, D.L. Non-native species have multiple abundance–impact curves. Ecol. Evol. 2020, 10, 6833–6844. [Google Scholar] [CrossRef]
- Sofaer, H.R.; Jarnevich, C.S.; Pearse, I.S. The relationship between invader abundance and impact. Ecosphere 2018, 9, e02415. [Google Scholar] [CrossRef]
- Parker, I.M.; Simberloff, D.; Lonsdale, W.M.; Goodell, K.; Wonham, M.; Kareiva, P.M.; Williamson, M.H.; Von Holle, B.; Moyle, P.B.; Byers, J.E.; et al. Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1999, 1, 3–19. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Blanchard, G.; Roquain, E. Adaptive false discovery rate control under independence and dependence. J. Mach. Learn. Res. 2009, 10, 2837–2871. [Google Scholar]
- Legendre, P.; Anderson, M.J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 1999, 69, 1–24. [Google Scholar] [CrossRef]
- Peres-Neto, P.R.; Legendre, P.; Dray, S.; Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 2006, 87, 2614–2625. [Google Scholar] [CrossRef] [PubMed]
Factor | BF | LM | HM | MB | τ | p |
---|---|---|---|---|---|---|
pH | 4.39 ± 0.16 a | 4.62 ± 0.14 ab | 4.76 ± 0.12 b | 5.24 ± 0.1 c | 0.85 | <0.001 *** |
TOC (g/kg) | 30.74 ± 3.49 c | 24.78 ± 2.11 b | 19.47 ± 0.66 a | 17.07 ± 1.62 a | −0.791 | <0.001 *** |
TN (g/kg) | 2.13 ± 0.28 c | 1.95 ± 0.11 bc | 1.61 ± 0.13 ab | 1.48 ± 0.19 a | −0.668 | 0.01 ** |
TP (g/kg) | 0.22 ± 0.07 | 0.23 ± 0.06 | 0.23 ± 0.03 | 0.23 ± 0.02 | 0.158 | 0.569 |
Layer | Factor | BF | LM | HM | MB | τ | p |
---|---|---|---|---|---|---|---|
Tree | Margalef | 3.17 ± 0.34 a | 3.02 ± 0.29 a | 2.19 ± 0.3 b | 0 c | −0.775 | <0.001 *** |
Pielou | 0.79 ± 0.08 a | 0.75 ± 0.05 a | 0.51 ± 0.05 b | 0 c | −0.793 | <0.001 *** | |
Simpson | 0.83 ± 0.08 a | 0.82 ± 0.03 a | 0.51 ± 0.06 b | 0 c | −0.757 | <0.001 *** | |
Shannon | 2.2 ± 0.34 a | 2.09 ± 0.18 a | 1.23 ± 0.11 b | 0 c | −0.793 | <0.001 *** | |
PD | 1796.64 ± 216.36 a | 1781.46 ± 121.94 a | 1514.07 ± 153.99 ab | 390.7 ± 0 b | −0.649 | 0.002 ** | |
NTI | 0.77 ± 0.75 | −0.05 ± 0.28 | 0.2 ± 0.37 | 0 ± 0 | 0.072 | 0.800 | |
NRI | −0.16 ± 0.92 | −0.08 ± 0.54 | 0.71 ± 0.07 | 0 ± 0 | −0.162 | 0.569 | |
Shrub | Margalef | 5.02 ± 0.36 ab | 4.84 ± 0.56 b | 5.62 ± 0.61 ab | 5.95 ± 0.45 a | 0.527 | 0.0123 * |
Pielou | 0.84 ± 0.05 | 0.85 ± 0.01 | 0.84 ± 0.02 | 0.82 ± 0.03 | −0.246 | 0.308 | |
Simpson | 0.91 ± 0.03 | 0.91 ± 0.02 | 0.92 ± 0.02 | 0.92 ± 0.02 | 0.088 | 0.756 | |
Shannon | 2.73 ± 0.18 | 2.76 ± 0.13 | 2.91 ± 0.17 | 2.93 ± 0.15 | 0.369 | 0.095 | |
PD | 2140.3 ± 150.22 b | 2214.21 ± 247.32 b | 2671.78 ± 95.96 ab | 3276.66 ± 113.42 a | 0.720 | <0.001 *** | |
NTI | −0.27 ± 0.16 | −0.29 ± 0.18 | −0.13 ± 0.39 | −0.27 ± 0.3 | 0.369 | 0.095 | |
NRI | −0.69 ± 0.4 | −0.22 ± 0.65 | −0.07 ± 0.32 | −0.13 ± 0.51 | 0.105 | 0.709 | |
Herb | Margalef | 0.4 ± 0.13 b | 0.6 ± 0.26 b | 0.89 ± 0.26 b | 2.57 ± 0.33 a | 0.703 | 1 |
Pielou | 0.51 ± 0.19 b | 0.84 ± 0.22 ab | 0.88 ± 0.13 a | 0.74 ± 0.08 ab | 0.132 | 0.625 | |
Simpson | 0.23 ± 0.11 c | 0.45 ± 0.19 bc | 0.58 ± 0.11 ab | 0.76 ± 0.07 a | 0.750 | <0.001 *** | |
Shannon | 0.4 ± 0.16 c | 0.68 ± 0.3 bc | 0.98 ± 0.27 b | 1.9 ± 0.31 a | 0.767 | <0.001 *** | |
PD | 701.96 ± 150.85 b | 763.89 ± 180.7 b | 788.89 ± 274.74 b | 2034.17 ± 200.47 a | 0.545 | 0.011 * | |
NTI | 0.45 ± 0.96 | 0.68 ± 0.94 | −0.23 ± 1.06 | 0.6 ± 0.98 | −0.018 | 0.996 | |
NRI | 0.55 ± 1.15 | 0.81 ± 1.01 | −0.11 ± 1.37 | 0.62 ± 0.78 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, R.; Huang, Z.; Peng, S.; Ge, Z.; Lin, X.; Mao, L. The Impact of Phyllostachys heterocyclas Expansion on the Phylogenetic Diversity and Community Assembly of Subtropical Forest. Plants 2025, 14, 3231. https://doi.org/10.3390/plants14203231
Wang J, Li R, Huang Z, Peng S, Ge Z, Lin X, Mao L. The Impact of Phyllostachys heterocyclas Expansion on the Phylogenetic Diversity and Community Assembly of Subtropical Forest. Plants. 2025; 14(20):3231. https://doi.org/10.3390/plants14203231
Chicago/Turabian StyleWang, Jiannan, Ru Li, Zichen Huang, Sili Peng, Zhiwei Ge, Xiaoyue Lin, and Lingfeng Mao. 2025. "The Impact of Phyllostachys heterocyclas Expansion on the Phylogenetic Diversity and Community Assembly of Subtropical Forest" Plants 14, no. 20: 3231. https://doi.org/10.3390/plants14203231
APA StyleWang, J., Li, R., Huang, Z., Peng, S., Ge, Z., Lin, X., & Mao, L. (2025). The Impact of Phyllostachys heterocyclas Expansion on the Phylogenetic Diversity and Community Assembly of Subtropical Forest. Plants, 14(20), 3231. https://doi.org/10.3390/plants14203231