Greening African Cities for Sustainability: A Systematic Review of Urban Gardening’s Role in Biodiversity and Socio-Economic Resilience
Abstract
1. Introduction
- Urban gardening can pose environmental risks such as soil and groundwater contamination from heavy metals (e.g., lead, cadmium, arsenic) [17]
- The green infrastructure can increase unwanted pest populations beyond economic damage thresholds if pest control is not well-managed [18].
- The unwanted spread of weeds, invasive plant species or even a potential contribution to greenhouse gas emission [19].
- The selection of suitable plant species, prioritizing both spatial planning and the enhancement of biodiversity, with a focus on adaptation to local climatic and edaphic conditions.
- The effective integration of urban gardens into broader urban planning and policy frameworks, ensuring their long-term viability, sustainability and scalability.
- A thorough understanding of the prevailing socio-economic and cultural context, to ensure that urban garden initiatives are accepted, designed and implemented in a manner that maximizes accessibility and benefits for all urban residents.
2. Results
2.1. Geography and Study Characteristics
2.2. Plant Species Composition and Biodiversity
2.3. Socioeconomic Impacts and Community Well-Being
2.4. Technological and Management Aspects
2.5. Urban Gardens and Planning
3. Discussion
3.1. Geographical Representation and Methodological Insights
3.2. Biodiversity and Ecological Functionality
3.3. Community Resilience and Socioeconomic Implications
3.4. Technological Integration and Sustainable Management
3.5. Urban Planning and Governance Challenges
3.6. Limitations and Research Gaps
4. Materials and Methods
4.1. Systematic Literature Review
4.1.1. Identification
4.1.2. Screening
4.1.3. Eligibility
- Publication type and language: Only studies published in peer-reviewed English-language journals or grey literature (including government and technical reports, theses, dissertations, and conference proceedings) between 2000 and 2025 were considered.
- Topical relevance: The study must examine urban gardens in the context of climate change mitigation, biodiversity, food security, or city/town planning.
- Geographical relevance: The study should be based in or include case studies from sub-Saharan Africa.
- Empirical evidence: Eligible studies must present field data, observational case studies, or documented planning interventions, rather than theoretical modelling alone.
- Analytical rigour: The included studies provide statistical analysis, policy evaluation, spatial planning models, or community-level outcome assessments.
- (a)
- Were solely descriptive without analytical depth.
- (b)
- Focused exclusively on rural agriculture without urban context.
- (c)
- Lacked evidence of real-world application or planning impact.
- (d)
- Addressed general sustainability topics without specific reference to urban gardening.
- (e)
- Focused on controlled greenhouse or laboratory experiments unless field validation was also provided.
4.1.4. Inclusion
4.2. Data Analysis
- General Study Characteristics
- Geographical scope: Country, region, and urban setting (e.g., city or town context).
- Urban typology: Type of urban garden studied (e.g., home gardens, rooftop gardens, community gardens, school gardens).
- Study design: Qualitative, quantitative, or mixed-methods approaches.
- Temporal scope: Duration of study, seasonality considerations, and longitudinal relevance.
- Data collection methods: Interviews, field surveys, remote sensing, participatory methods, policy analysis, or experimental plots.
- Ecological and Biodiversity Contributions
- Plant species composition and diversity: Indigenous vs. exotic species, functional traits, and ecosystem services.
- Urban ecology outcomes: Pollinator support, urban biodiversity enrichment, soil health, and microclimate regulation.
- Integration with green infrastructure: Linkages to parks, street trees, green corridors, and land use planning.
- Technological and Management Aspects
- Use of modern technologies: Smart irrigation, vertical farming, hydroponics, GIS-based planning.
- Innovation in design and implementation: Mobile garden units, recycled materials, adaptive reuse of urban spaces.
- Maintenance practices and community participation models.
- Socio-Economic and Community Impacts
- Food security outcomes: Crop diversity, nutritional benefits, household food provisioning.
- Livelihoods and economic opportunities: Income generation, local enterprise development, job creation.
- Health and well-being: Mental health, physical activity, and social cohesion indicators.
- Equity and inclusiveness: Gender participation, access by marginalised groups, and affordability.
- Urban Planning and Governance Interface
- Policy integration: How urban gardens are incorporated into local planning frameworks, municipal strategies, and land-use policies.
- Planning instruments: Zoning laws, incentives for green space development, and spatial inclusion of food production zones.
- Barriers and enablers: Institutional, infrastructural, or socio-political constraints and drivers of urban gardening adoption.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CSATs | Climate-smart agricultural technologies |
EBHAF | Enset-based home garden agroforestry |
GIS | Geographic Information Systems |
OECD | Organization for Economic Co-operation and Development |
PAF | Parkland agroforestry |
References
- Zhang, X.Q. The Trends, Promises and Challenges of Urbanisation in the World. Habitat Int. 2016, 54, 241–252. [Google Scholar] [CrossRef]
- Grimm, N.B.; Foster, D.; Groffman, P.; Grove, J.M.; Hopkinson, C.S.; Nadelhoffer, K.J.; Pataki, D.E.; Peters, D.P.C. The Changing Landscape: Ecosystem Responses to Urbanization and Pollution across Climatic and Societal Gradients. Front. Ecol. Environ. 2008, 6, 264–272. [Google Scholar] [CrossRef]
- Waele, J.D.; Gutiérrez, F.; Parise, M.; Plan, L. Geomorphology and Natural Hazards in Karst Areas: A Review. Geomorphology 2011, 134, 1–8. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Nature, D.G. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Garrett, J.K.; White, M.P.; Huang, J.; Ng, S.; Hui, Z.; Leung, C.; Tse, L.A.; Fung, F.; Elliott, L.R.; Depledge, M.H.; et al. Urban Blue Space and Health and Wellbeing in Hong Kong: Results from a Survey of Older Adults. Health Place 2019, 55, 100–110. [Google Scholar] [CrossRef]
- Jana, A.; Chattopadhyay, A. Prevalence and Potential Determinants of Chronic Disease among Elderly in India: Rural-Urban Perspectives. PLoS ONE 2022, 17, e0264937. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.G.; Cavan, G.; Connelly, A.; Guy, S.; Handley, J.; Kazmierczak, A. Climate Change and the City: Building Capacity for Urban Adaptation. Prog. Plan. 2015, 95, 1–66. [Google Scholar] [CrossRef]
- Parker, J.; de Baro, M.E.Z. Green Infrastructure in the Urban Environment: A Systematic Quantitative Review. Sustainability 2019, 11, 3182. [Google Scholar] [CrossRef]
- Ferrini, F.; Fini, A.; Mori, J.; Gori, A. Role of Vegetation as a Mitigating Factor in the Urban Context. Sustainability 2020, 12, 4247. [Google Scholar] [CrossRef]
- Coutts, C.; Hahn, M. Green Infrastructure, Ecosystem Services, and Human Health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for Cooler Cities: A Framework to Prioritise Green Infrastructure to Mitigate High Temperatures in Urban Landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Ramyar, R.; Saeedi, S.; Bryant, M.; Davatgar, A.; Hedjri, G.M. Ecosystem Services Mapping for Green Infrastructure Planning–The Case of Tehran. Sci. Total Environ. 2020, 703, 135466. [Google Scholar] [CrossRef]
- Stevenson, J.L.; Birkel, C.; Comte, J.C.; Tetzlaff, D.; Marx, C.; Neill, A.; Maneta, M.; Boll, J.; Soulsby, C. Quantifying Heterogeneity in Ecohydrological Partitioning in Urban Green Spaces Through the Integration of Empirical and Modelling Approaches. Environ. Monit. Assess. 2023, 195, 468. [Google Scholar] [CrossRef]
- Jahrl, I.; Moschitz, H.; Cavin, J.S. The Role of Food Gardening in Addressing Urban Sustainability—A New Framework for Analysing Policy Approaches. Land Use Policy 2021, 108, 105564. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- Wang, D.; Xu, P.Y.; An, B.W.; Guo, Q.P. Urban green infrastructure: Bridging biodiversity conservation and sustainable urban development through adaptive management approach. Front. Ecol. Evol. 2024, 12, 1440477. [Google Scholar] [CrossRef]
- Mitchell, R.G.; Spliethoff, H.M.; Ribaudo, L.N.; Lopp, D.M.; Shayler, H.A.; Marquez-Bravo, L.G.; Lambert, V.T.; Ferenz, G.S.; Russell-Anelli, J.M.; Stone, E.B.; et al. Lead (Pb) and Other Metals in New York City Community Garden Soils: Factors Influencing Contaminant Distributions. Environ. Pollut. 2014, 187, 162–169. [Google Scholar] [CrossRef]
- Gregory, M.M.; Leslie, T.W.; Drinkwater, L.E. Agroecological and Social Characteristics of New York City Community Gardens: Contributions to Urban Food Security, Ecosystem Services, and Environmental Education. Urban Ecosyst. 2016, 19, 763–794. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Blanuša, T. Green Infrastructure and Ecosystem Services–Is the Devil in the Detail? Ann. Bot. 2016, 118, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Sæbø, A.; Benedikz, T.; Randrup, T.B. Selection of Trees for Urban Forestry in the Nordic Countries. Urban For. Urban Green. 2003, 2, 101–114. [Google Scholar] [CrossRef]
- Hitchmough, J.; Fieldhouse, K. Selecting Plant Species, Cultivars and Nursery Products. In Plant User Handbook: A Guide to Effective Specifying; Blackwell Publishing: Hoboken, NJ, USA, 2004; pp. 7–24. ISBN 0-632-05843-9. [Google Scholar]
- Goodness, J.; Andersson, E.; Anderson, P.M.L.; Elmqvist, T. Exploring the Links Between Functional Traits and Cultural Ecosystem Services to Enhance Urban Ecosystem Management. Ecol. Indic. 2016, 70, 597–605. [Google Scholar] [CrossRef]
- Hoyle, H.; Hitchmough, J.; Jorgensen, A. Attractive, Climate-Adapted and Sustainable? Public Perception of Non-Native Planting in the Designed Urban Landscape. Landsc. Urban Plan. 2017, 164, 49–63. [Google Scholar] [CrossRef]
- Sjöman, H.; Nielsen, A.B. Selecting Trees for Urban Paved Sites in Scandinavia–A Review of Information on Stress Tolerance and Its Relation to the Requirements of Tree Planners. Urban For. Urban Green. 2010, 9, 281–293. [Google Scholar] [CrossRef]
- Asgarzadeh, M.; Vahdati, K.; Lotfi, M.; Arab, M.; Babaei, A.; Naderi, F.; Soufi, M.P.; Rouhani, G. Plant Selection Method for Urban Landscapes of Semi-Arid Cities (a Case Study of Tehran). Urban For. Urban Green. 2014, 13, 450–458. [Google Scholar] [CrossRef]
- Conway, T.M.; Vecht, J.V. Growing a Diverse Urban Forest: Species Selection Decisions by Practitioners Planting and Supplying Trees. Landsc. Urban Plan. 2015, 138, 1–10. [Google Scholar] [CrossRef]
- Wei, H.; Huang, Z. From Experience-Oriented to Quantity-Based: A Method for Landscape Plant Selection and Configuration in Urban Built-Up Areas. J. Sustain. For. 2015, 34, 698–719. [Google Scholar] [CrossRef]
- Smith, R.M.; Thompson, K.; Hodgson, J.G.; Warren, P.H.; Gaston, K.J. Urban Domestic Gardens (IX): Composition and Richness of the Vascular Plant Flora, and Implications for Native Biodiversity. Biol. Conserv. 2006, 129, 312–322. [Google Scholar] [CrossRef]
- Kendal, D.; Dobbs, C.; Gallagher, R.V.; Beaumont, L.J.; Baumann, J.; Williams, N.S.G.; Livesley, S.J. A Global Comparison of the Climatic Niches of Urban and Native Tree Populations. Glob. Ecol. Biogeogr. 2018, 27, 629–637. [Google Scholar] [CrossRef]
- Pauleit, S.; Vasquéz, A.; Maruthaveeran, S.; Liu, L.; Cilliers, S.S. Urban Green Infrastructure in the Global South. Cities Nat. 2021, F337, 107–143. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs. World Urbanization Prospects: The 2014 Revision, Highlights; Department of Economic and Social Affairs: New York, NY, USA, 2014. [Google Scholar]
- Kamjou, E.; Scott, M.; Lennon, M. Green Infrastructure Inequalities in Informal Settlements. Habitat Int. 2024, 147, 103058. [Google Scholar] [CrossRef]
- Namwinbown, T.; Imoro, Z.A.; Weobong, C.A.A.; Tom-Dery, D.; Baatuuwie, B.N.; Aikins, T.K.; Poreku, G.; Lawer, E.A. Patterns of Green Space Change and Fragmentation in a Rapidly Expanding City of Northern Ghana, West Africa. City Environ. Interact. 2024, 21, 100136. [Google Scholar] [CrossRef]
- El-Bouayady, R.; Radoine, H. Urbanization and Sustainable Urban Infrastructure Development in Africa. Environ. Ecol. Res. 2023, 11, 385–391. [Google Scholar] [CrossRef]
- Wernecke, B.; Language, B.; Piketh, S.J.; Burger, R. Indoor and Outdoor Particulate Matter Concentrations on the Mpumalanga Highveld–A Case Study. Clean Air J. 2015, 25, 12. [Google Scholar] [CrossRef]
- Gnacadja, L. The Cities of the Africa We Want. Rise Africa, Inspiring Action for Sustainable Cities. Discussion Series Africa Is the 21st Century Global Gamechanger and the Role of Our Cities. 2022. Available online: https://riseafrica.iclei.org/wp-content/uploads/2022/04/The-AfricaWeWant_Luc-Gnacadja_pdf.pdf (accessed on 30 March 2025).
- Kanosvamhira, T.P.; Follmann, A.; Tevera, D. Experimental Urban Commons?: Re-Examining Urban Community Food Gardens in Cape Town, South Africa. Geogr. J. 2024, 190, e12553. [Google Scholar] [CrossRef]
- Matooane, L.S.; Matamanda, A.; Bhanye, J.; Nel, V. The Role of Urban Planning in Strengthening Urban Food Security in Africa: Insights from Lesotho, Zimbabwe and South Africa. Urban Forum 2025, 36, 209–237. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Garbole, J. The Role of Enset-Based Homegarden Agroforestry in Agrobiodiversity Conservation and Sustainable Food Production in the Semi-Arid Areas of Dugda Dawa District, Southern Ethiopia. J. Agric. Food Res. 2025, 19, 101662. [Google Scholar] [CrossRef]
- Mellisse, B.T.; Tolera, M.; Derese, A. Traditional Homegardens Change to Perennial Monocropping of Khat (Catha Edulis) Reduced Woody Species and Enset Conservation and Climate Change Mitigation Potentials of the Wondo Genet Landscape of Southern Ethiopia. Heliyon 2024, 10, e23631. [Google Scholar] [CrossRef] [PubMed]
- Salako, V.K.; Fandohan, B.; Kassa, B.; Assogbadjo, A.E.; Idohou, A.F.R.; Gbedomon, R.C.; Chakeredza, S.; Dulloo, M.E.; Kakaï, R.G. Home Gardens: An Assessment of Their Biodiversity and Potential Contribution to Conservation of Threatened Species and Crop Wild Relatives in Benin. Genet. Resour. Crop Evol. 2014, 61, 313–330. [Google Scholar] [CrossRef]
- Gbedomon, R.C.; Fandohan, A.B.; Salako, V.K.; Idohou, A.F.R.; Kakaï, R.G.; Assogbadjo, A.E. Factors Affecting Home Gardens Ownership, Diversity and Structure: A Case Study from Benin. J. Ethnobiol. Ethnomedicine 2015, 11, 1–15. [Google Scholar] [CrossRef]
- Gbedomon, R.C.; Salako, V.K.; Fandohan, A.B.; Idohou, A.F.R.; Kakaï, R.G.; Assogbadjo, A.E. Functional Diversity of Home Gardens and Their Agrobiodiversity Conservation Benefits in Benin, West Africa. J. Ethnobiol. Ethnomedicine 2017, 13, 66. [Google Scholar] [CrossRef]
- Kingazi, N.; Temu, R.-A.; Sirima, A.; Jonsson, M. Pollination Knowledge among Local Farmers in Northern Tanzania and the Role of Traditional Agroforestry Practices in Promoting Pollinator Forage Plants. Environ. Sustain. Indic. 2024, 23, 100435. [Google Scholar] [CrossRef]
- Kingazi, N.; Temu, R.-A.; Sirima, A.; Jonsson, M. Tropical Agroforestry Supports Insect Pollinators and Improves Bean Yield. J. Appl. Ecol. 2024, 61, 1067–1080. [Google Scholar] [CrossRef]
- Lubbe, C.S.; Siebert, S.J.; Cilliers, S.S. Floristic Analysis of Domestic Gardens in the Tlokwe City Municipality, South Africa. Bothalia 2011, 41, 351–361. [Google Scholar] [CrossRef]
- High, C.; Shackleton, C.M. The Comparative Value of Wild and Domestic Plants in Home Gardens of a South African Rural Village. Agrofor. Syst. 2000, 48, 141–156. [Google Scholar] [CrossRef]
- Kaoma, H.; Shackleton, C.M. Homestead Greening Is Widespread amongst the Urban Poor in Three Medium-Sized South African Towns. Urban Ecosyst. 2014, 17, 1191–1207. [Google Scholar] [CrossRef]
- Davoren, E.; Siebert, S.; Cilliers, S.; du Toit, M.J. Influence of Socioeconomic Status on Design of Batswana Home Gardens and Associated Plant Diversity Patterns in Northern South Africa. Landsc. Ecol. Eng. 2016, 12, 129–139. [Google Scholar] [CrossRef]
- Rimlinger, A.; Duminil, J.; Avana-Tientcheu, M.-L.; Carrière, S.M. Can Seed Exchange Networks Explain the Morphological and Genetic Diversity in Perennial Crop Species? The Case of the Tropical Fruit Tree Dacryodes Edulis in Rural and Urban Cameroon. Plants People Planet 2024, 6, 421–436. [Google Scholar] [CrossRef]
- Rimlinger, A.; Avana, M.-L.; Awono, A.; Chakocha, A.; Gakwavu, A.; Lemoine, T.; Marie, L.; Mboujda, F.; Vigouroux, Y.; Johnson, V.; et al. Trees and Their Seed Networks: The Social Dynamics of Urban Fruit Trees and Implications for Genetic Diversity. PLoS ONE 2021, 16, e0243017. [Google Scholar] [CrossRef]
- Naigaga, H.; Ssekandi, J.; Ngom, A.; Sseremba, G.; Mbaye, M.S.; Noba, K. Ethnobotanical Knowledge of Home Garden Plant Species and Its Effect on Home Garden Plant Diversity in Thies Region of Senegal. Environ. Dev. Sustain. 2021, 23, 7524–7536. [Google Scholar] [CrossRef]
- Naigaga, H.; Ssekandi, J.; Ngom, A.; Diouf, N.; Diouf, J.; Dieng, B.; Mbaye, M.S.; Noba, K. Assessment of the Contribution of Home Gardens to Plant Diversity Conservation in Thies Region, Senegal. Environ. Dev. Sustain. 2022, 24, 7022–7034. [Google Scholar] [CrossRef]
- Kanosvamhira, T.P.; Musasa, T.; Mupepi, O. The Potential for Urban Agriculture (UA) in Cape Town, South Africa: A Suitability Analysis. Ann. GIS 2025, 31, 107–122. [Google Scholar] [CrossRef]
- Kanosvamhira, T.P.; Tevera, D. Food Resilience and Urban Gardener Networks in Sub-Saharan Africa: What Can We Learn from the Experience of the Cape Flats in Cape Town, South Africa? J. Asian Afr. Stud. 2022, 57, 1013–1026. [Google Scholar] [CrossRef]
- Bernholt, H.; Kehlenbeck, K.; Gebauer, J.; Buerkert, A. Plant Species Richness and Diversity in Urban and Peri-Urban Gardens of Niamey, Niger. Agrofor. Syst. 2009, 77, 159–179. [Google Scholar] [CrossRef]
- Hansen, L.S.; Kihagi, G.W.; Agure, E.; Muok, E.M.O.; Mank, I.; Danquah, I.; Sorgho, R. Sustainable Home Gardens in Western Kenya: A Qualitative Study for Co-Designing Nutrition-Sensitive Interventions. J. Rural Stud. 2023, 103, 103132. [Google Scholar] [CrossRef]
- Debie, E.; Mengistie, D. Determinants of Urban Agriculture and Green Infrastructure Integration in Bahir Dar City, Northwest Ethiopia. Discov. Sustain. 2025, 6, 97. [Google Scholar] [CrossRef]
- Thamaga-Chitja, J.M.; Tamako, N.; Ojo, T.O. Implications of Land Ownership Heterogeneity on Household Food Security: A Case Study of Urban Farming in Pietermaritzburg, KwaZulu-Natal Province. Land 2025, 14, 236. [Google Scholar] [CrossRef]
- Khumalo, N.Z.; Sibanda, M. Does Urban and Peri-Urban Agriculture Contribute to Household Food Security? An Assessment of the Food Security Status of Households in Tongaat, eThekwini Municipality. Sustainability 2019, 11, 1082. [Google Scholar] [CrossRef]
- Magidimisha, H.; Chipungu, L.; Awuorh-Hayangah, R. Challenges and Strategies among the Poor: Focus on Urban Agriculture in KwaMashu, Durban, South Africa. J. Agric. Food Syst. Community Dev. 2012, 3, 110–126. [Google Scholar] [CrossRef]
- Simatele, D.M.; Binns, T. Motivation and Marginalization in African Urban Agriculture: The Case of Lusaka, Zambia. Urban Forum 2008, 19, 1–21. [Google Scholar] [CrossRef]
- Thornton, A. Beyond the Metropolis: Small Town Case Studies of Urban and Peri-Urban Agriculture in South Africa. Urban Forum 2008, 19, 243–262. [Google Scholar] [CrossRef]
- Lubbe, C.S.; Siebert, S.J.; Cilliers, S.S. Political Legacy of South Africa Affects the Plant Diversity Patterns of Urban Domestic Gardens Along a Socio-Economic Gradient. Sci. Res. Essays 2010, 5, 2900–2910. [Google Scholar]
- Bigirimana, J.; Bogaert, J.; Cannière, C.D.; Bigendako, M.J.; Parmentier, I. Domestic Garden Plant Diversity in Bujumbura, Burundi: Role of the Socio-Economical Status of the Neighborhood and Alien Species Invasion Risk. Landsc. Urban Plan. 2012, 107, 118–126. [Google Scholar] [CrossRef]
- Kanosvamhira, T.P.; Shade, M.D. Urban Agriculture for Environmentally Just Cities: The Case of Urban Community Gardens in Cape Town, South Africa. Local Environ. 2025, 30, 133–149. [Google Scholar] [CrossRef]
- Mashi, S.A.; Inkani, A.; Oghenejabor, O.D. Determinants of Awareness Levels of Climate Smart Agricultural Technologies and Practices of Urban Farmers in Kuje, Abuja, Nigeria. Technol. Soc. 2022, 70, 102030. [Google Scholar] [CrossRef]
- Richter, I.; Neef, N.E.; Moghayedi, A.; Owoade, F.M.; Kapanji-Kakoma, K.; Sheena, F.; Ewon, K. Willing to Be the Change: Perceived Drivers and Barriers to Participation in Urban Smart Farming Projects. J. Urban Aff. 2023, 47, 1540–1558. [Google Scholar] [CrossRef]
- Degefu, M.A.; Kifle, F. Impacts of Climate Variability on the Vegetable Production of Urban Farmers in the Addis Ababa Metropolitan Area: Nexus of Climate-Smart Agricultural Technologies. Clim. Serv. 2024, 33, 100430. [Google Scholar] [CrossRef]
- Khumalo, N.Z.; Mdoda, L.; Sibanda, M. Uptake and Level of Use of Climate-Smart Agricultural Practices by Small-Scale Urban Crop Farmers in eThekwini Municipality. Sustainability 2024, 16, 5348. [Google Scholar] [CrossRef]
- Masha, M.; Bojago, E.; Ngare, I. Determinants of Adoption of Urban Agriculture (UA) as Climate-Smart Agriculture (CSA) Practices and Its Impact on Food Security: Evidence from Wolaita Sodo City, South Ethiopia. Discov. Sustain. 2024, 5, 168. [Google Scholar] [CrossRef]
- Abdelhamid, M.A.; Abdelkader, T.K.; Sayed, H.A.A.; Zhang, Z.; Zhao, X.; Atia, M.F. Design and Evaluation of a Solar Powered Smart Irrigation System for Sustainable Urban Agriculture. Sci. Rep. 2025, 15, 11761. [Google Scholar] [CrossRef] [PubMed]
- Tambol, T.; Derbile, E.K.; Soulé, M. Use of Climate Smart Agriculture Technologies in West Africa Peri-Urban Sahel in Niger. Sci. Rep. 2025, 15, 2771. [Google Scholar] [CrossRef]
- Darge, A.; Haji, J.; Beyene, F.; Ketema, M. Smallholder Farmers’ Climate Change Adaptation Strategies in the Ethiopian Rift Valley: The Case of Home Garden Agroforestry Systems in the Gedeo Zone. Sustainability 2023, 15, 8997. [Google Scholar] [CrossRef]
- Maponya, P. Water Management Training and Extension Services as Key Drivers to Homestead Food Garden Production: A Case Study of Households in Gauteng Province, South Africa. Irrig. Drain. 2023, 72, 1306–1316. [Google Scholar] [CrossRef]
- Lawrence, K.; Jeeva, Z. The Role of Rooftop Agriculture on Urban Food Security: A Case Study on the Priority Zone Rooftop Garden. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Istanbul, Türkiye, 7–10 March 2022. [Google Scholar]
- Ngie, A.; Sithole, N. Assessing Urban Transformational Strategies through Innovative Farming Practices in the Johannesburg City Center. Urban Agric. Reg. Food Syst. 2023, 8, e20047. [Google Scholar] [CrossRef]
- Gumisiriza, M.S.; Ndakidemi, P.; Nalunga, A.; Mbega, E.R. Building Sustainable Societies Through Vertical Soilless Farming: A Cost-Effectiveness Analysis on a Small-Scale Non-Greenhouse Hydroponic System. Sustain. Cities Soc. 2022, 83, 103923. [Google Scholar] [CrossRef]
- Górna, A.; Górny, K. Singapore vs. the “Singapore of Africa”-Different Approaches to Managing Urban Agriculture. Land 2021, 10, 987. [Google Scholar] [CrossRef]
- Magigi, W.; Drescher, A.W. Integration of Urban Agriculture into Spatial Planning. In African Indigenous Vegetables in Urban Agriculture; Routledge: London, UK, 2009; pp. 245–270. [Google Scholar]
- Stander, K. Considering Sustainable Urban Agriculture as Spatial Planning Instrument: A South African Framework. Ph.D. Thesis, North-West University, Potchefstroom, South Africa, 2018. [Google Scholar]
- Nkosi, D.S.; Moyo, T.; Land, I.M. Unlocking Land for Urban Agriculture: Lessons from Marginalised Areas in Johannesburg, South Africa. Land 2022, 11, 1713. [Google Scholar] [CrossRef]
- Awoniran, D.R.; Olugbamila, O.B.; Omisore, E.O. Spatio-Temporal Analysis of the Practice of Urban Agriculture in Lagos Metropolis and the Implications for Urban Planning. Analele Univ. Din Oradea Ser. Geogr. 2020, 30, 76–87. [Google Scholar] [CrossRef]
- Simatele, D.; Binns, T.; Simatele, M. Urban Livelihoods under a Changing Climate*: Perspectives on Urban Agriculture and Planning in Lusaka, Zambia. J. Hum. Dev. Capab. 2012, 13, 269–293. [Google Scholar] [CrossRef]
- Molebatsi, L.Y.; Siebert, S.J.; Cilliers, S.S.; Lubbe, C.S.; Davoren, E. The Tswana Tshimo: A Homegarden System of Useful Plants with a Particular Layout and Function. Afr. J. Agric. Res. 2010, 5, 2952–2963. [Google Scholar]
- Pei, L. Green Urban Garden Landscape Design and User Experience Based on Virtual Reality Technology and Embedded Network. Environ. Technol. Innov. 2021, 24, 101738. [Google Scholar] [CrossRef]
- Keding, G.B.; Termote, C.; Kehlenbeck, K. The Role and Importance of Agricultural Biodiversity in Urban Agriculture. In Routledge Handbook of Agricultural Biodiversity; Routledge: London, UK, 2017; ISBN 978-1-315-79735-9. [Google Scholar]
- Mburu, S.W.; Koskey, G.; Kimiti, J.M.; Ombori, O.; Maingi, J.M.; Njeru, E.M. Agrobiodiversity Conservation Enhances Food Security in Subsistence-Based Farming Systems of Eastern Kenya. Agric. Food Secur. 2016, 5, 19. [Google Scholar] [CrossRef]
- Kim, D.-G.; Terefe, B.; Girma, S.; Kedir, H.; Morkie, N.; Woldie, T.M. Conversion of Home Garden Agroforestry to Crop Fields Reduced Soil Carbon and Nitrogen Stocks in Southern Ethiopia. Agrofor. Syst. 2016, 90, 251–264. [Google Scholar] [CrossRef]
- Negash, M.; Kaseva, J.; Kahiluoto, H. Perennial Monocropping of Khat Decreased Soil Carbon and Nitrogen Relative to Multistrata Agroforestry and Natural Forest in Southeastern Ethiopia. Reg. Environ. Chang. 2022, 22, 38. [Google Scholar] [CrossRef]
Concept | Search Terms | Notes |
---|---|---|
Urban gardening and agriculture | (“urban garden” OR “urban agriculture” OR “community garden” OR “home garden’’ OR “food garden” OR “rooftop garden” OR “vertical garden” OR “domestic garden” OR “private green space”) | Core topic—ensures inclusion of all types of urban gardening activities |
Food security, biodiversity and climate change | (“food security” OR “urban food system” OR “climate change” OR “climate resilience” OR “food sovereignty” OR “plant selection” OR “urban biodiversity”) | Targets thematic alignment with SDG goals and environmental drivers |
Socio-economic resilience | (“livelihoods” OR “economic resilience” OR “social capital” OR “community empowerment”) | Focuses on the societal dimensions and community benefits of urban gardens |
Sustainable urban development | (“sustainable city” OR “urban development” OR “resilient city” OR “urban sustainability”) | Captures planning and sustainability literature |
Urban planning and policy | (“city planning” OR “urban planning” OR “land use policy” OR “zoning” OR “municipal development plan” OR “green space”) | Introduces city-scale governance and integration of urban gardens into urban design and planning |
Technological interventions | (“smart technology” OR “modern technology” OR “smart agriculture” OR “smart agricultural technology” OR “climate-smart technology” OR “hydroponics” OR “aquaponics” OR “smart sensors”) | Introduces the use and implementation of modern technologies in urban gardening |
Regional focus | (“Sub-Saharan Africa” OR “developing countries” OR “global south” OR “Africa”) | Ensures geographical relevance to urban areas in need of development focus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mhlanga, P.F.; Wesch, N.S.; Moseri, M.E.; Neumann, F.H.; Ngobese, N.Z. Greening African Cities for Sustainability: A Systematic Review of Urban Gardening’s Role in Biodiversity and Socio-Economic Resilience. Plants 2025, 14, 3187. https://doi.org/10.3390/plants14203187
Mhlanga PF, Wesch NS, Moseri ME, Neumann FH, Ngobese NZ. Greening African Cities for Sustainability: A Systematic Review of Urban Gardening’s Role in Biodiversity and Socio-Economic Resilience. Plants. 2025; 14(20):3187. https://doi.org/10.3390/plants14203187
Chicago/Turabian StyleMhlanga, Philisiwe Felicity, Niké Susan Wesch, Moteng Elizabeth Moseri, Frank Harald Neumann, and Nomali Ziphorah Ngobese. 2025. "Greening African Cities for Sustainability: A Systematic Review of Urban Gardening’s Role in Biodiversity and Socio-Economic Resilience" Plants 14, no. 20: 3187. https://doi.org/10.3390/plants14203187
APA StyleMhlanga, P. F., Wesch, N. S., Moseri, M. E., Neumann, F. H., & Ngobese, N. Z. (2025). Greening African Cities for Sustainability: A Systematic Review of Urban Gardening’s Role in Biodiversity and Socio-Economic Resilience. Plants, 14(20), 3187. https://doi.org/10.3390/plants14203187