A Review and Survey of Local Eastern Kentucky Medicinal Plants and Their Pharmacological Benefits
Abstract
1. Introduction
2. Study Design
- Can you remember or know of a local Eastern Kentucky plant used in your household for a medicinal purpose?
- Do you know the name of that plant (local/common name)?
- Do you know what part of that plant (fruit, leaf, root, etc.) is used for its benefit?
- Do you know the clinical or medical indication for which it is used?
- Do you know how the plant is prepared, including any special instructions, for using it for its medicinal purpose?
3. Results and Discussion
3.1. Asimina triloba (L.) Dunal
3.2. Callicarpa americana L.
3.3. Chimaphila umbellata (L.) Barton
3.4. Cichorium intybus L.
3.5. Eupatorium perfoliatum L.
3.6. Monotropa uniflora L.
3.7. Paulownia tomentosa (Thunb.) Steud.
3.8. Phytolacca americana L.
3.9. Portulaca oleracea L.
3.10. Sassafras albidum (Nutt.) Nees
3.11. Ampelopsis glandulosa (Wall.) Momiy.
3.12. Ulmus rubra Muhl.
3.13. Verbascum thapsus Linnaeus
3.14. Xanthorhiza simplicissima Marshall
4. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghayur, M.N. Science across borders: 5th annual natural health product research conference—March 26–29, 2008, Toronto, Canada. Evid. Based Complement. Altern. Med. 2010, 7, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Ghayur, M.N.; Janssen, L.J. A natural way to cardiovascular health. Nat. Rev. Cardiol. 2010, 7, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Farnsworth, N.R.; Soejarto, D.D. Global importance of medicinal plants. In The Conservation of Medicinal Plants; Akerele, O., Heywood, V., Synge, H., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 25–51. [Google Scholar]
- Light, P.D.; Gladstar, R.; Wood, M. Southern Folk Medicine: Healing Traditions from the Appalachian Fields and Forests; North Atlantic Books: Berkeley, CA, USA, 2018. [Google Scholar]
- Light, P.D. A history of southern and Appalachian folk medicine. J. Am. Herbalists Guild 2008, 8, 27–38. [Google Scholar]
- Krochmal, A. Medicinal Plants and Appalachia. Econ. Bot. 1968, 22, 332–337. [Google Scholar] [CrossRef]
- Pardieu, S. Biodiversity in Eastern Kentucky: Effects of Habitat Change, Surface Top Mining, and Current Reclamation Practices. Bachelor’s Thesis, Bellarmine University, Louisville, KY, USA, 2023. [Google Scholar]
- Boggs, C.; Shiferawe, K.; Karsten, E.; Hamlet, J.; Altheide, S.T.; Marion, J.W. Evaluation of a Tetracycline-Resistant E. coli Enumeration Method for Correctly Classifying E. coli in Environmental Waters in Kentucky, USA. Pathogens 2023, 12, 1090. [Google Scholar] [CrossRef]
- Ghayur, M.N. Natural products breaking through. Pharmacog. Mag. 2006, 2, 1–2. [Google Scholar]
- Alam-Siddiqui, F.; Ghayur, A.; Ul-Haq, Z.; Ghayur, M.N. Herbal Medicine for the Mind: Traditionally Used Medicinal Plants for Memory Loss from the Indian Subcontinent. Future Integr. Med. 2025, 4, 116–127. [Google Scholar] [CrossRef]
- Gautam, D.; Regmi, K.; Shrestha, S.; Karki, P. Medicinal Plants as A Natural Immunity Booster Against Covid 19: A Review. Kalika J. Multidiscip. Stud. 2024, 6, 145–167. [Google Scholar] [CrossRef]
- Begum, S.; Hassan, S.I.; Siddiqui, B.S.; Ifzal, R.; Perwaiz, S.; Kiran, T.; Shaheen, F.; Ghayur, M.N.; Gilani, A.H. Preparation, structure and spasmolytic activities of some derivatives of harmine series of alkaloids. Nat. Prod. Res. 2006, 20, 213–227. [Google Scholar] [CrossRef]
- Ghayur, M.N.; Janssen, L.J. Nephroprotective drugs from traditionally used Aboriginal medicinal plants. Kidney Int. 2010, 77, 471–472. [Google Scholar] [CrossRef]
- Krochmal, A.; Walters, R.S.; Doughty, R.M. A Guide to Medicinal Plants of Appalachia; Forest Service; U.S. Department of Agriculture: Upper Darby, PA, USA, 1969.
- Wharton, M.E.; Barbour, R.W. Trees & Shrubs of Kentucky; The University Press of Kentucky: Lexington, KY, USA, 1973. [Google Scholar]
- Jones, R.L. Plant Life of Kentucky—An Illustrated Guide to the Vascular Flora; The University Press of Kentucky: Lexington, KY, USA, 2005. [Google Scholar]
- Clark, J.B. The Vascular Flora of Breaks Interstate Park, Pike County, Kentucky, and Dickenson County, Virginia. Master’s Thesis, Eastern Kentucky University, Richmond, KY, USA, 2012. [Google Scholar]
- Nam, J.S.; Jang, H.L.; Rhee, Y.H. Antioxidant Activities and Phenolic Compounds of Several Tissues of Pawpaw (Asimina triloba [L.] Dunal) Grown in Korea. J. Food Sci. 2017, 82, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Moerman, D.E. Native American Ethnobotany; Timber Press Inc.: Portland, OR, USA, 1998. [Google Scholar]
- Setzer, W.N. The Phytochemistry of Cherokee Aromatic Medicinal Plants. Medicines 2018, 5, 121. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.; Khan, M.M.; Khan, N.; Haya, R.T.; Asghar, M.U.; Abbasi, B.H. Chimaphila umbellata; a biotechnological perspective on the coming-of-age prince’s pine. Phytochem. Rev. 2023, 23, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Blakey, Y.C. On the Use of the Chimaphila umbellata in the Treatment of Fungus Articuli, or White Swelling. Med. Exam. 1846, 2, 585–587. [Google Scholar]
- Kent, J.T. Eupatorium perfoliatum. Homoeopath. Physician 1887, 7, 55–58. [Google Scholar]
- Lockwood, T.T. On the Use of Eupatorium perfoliatum, Thoroughwort Boneset. Buffalo Med. J. Mon. Rev. Med. Surg. Sci. 1847, 3, 197–198. [Google Scholar] [CrossRef]
- Perlmutter, J.; Cogan, R.; Wiseman, M.C. Treatment of Atopic Dermatitis, Dermatophytes, and Syphilis by Indigenous Peoples Prior to 1850. J. Cutan. Med. Surg. 2022, 26, 198–200. [Google Scholar] [CrossRef]
- Oil of Sassafras for Neuralgia. Dent. Regist. 1886, 40, 256.
- Wu, M.J.; Yen, J.H.; Wang, L.; Weng, C.Y. Antioxidant activity of Porcelainberry (Ampelopsis brevipedunculata (Maxim.) Trautv.). Am. J. Chin. Med. 2004, 32, 681–693. [Google Scholar] [CrossRef]
- Choi, Y.A.; Yu, J.H.; Jung, H.D.; Lee, S.; Park, P.H.; Lee, H.S.; Kwon, T.K.; Shin, T.Y.; Lee, S.W.; Rho, M.C.; et al. Inhibitory effect of ethanol extract of Ampelopsis brevipedunculata rhizomes on atopic dermatitis-like skin inflammation. J. Ethnopharmacol. 2019, 238, 111850. [Google Scholar] [CrossRef]
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury—Slippery Elm. Available online: https://www.ncbi.nlm.nih.gov/books/NBK599741/ (accessed on 4 September 2025).
- Baratto, L.C.; Päßler, U. Plants of the USA: Recordings on native North American useful species by Alexander von Humboldt. J. Ethnobiol. Ethnomed. 2024, 20, 87. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Park, S.; Oh, H.; Jang, H.; Rhee, Y.H. Phenolic profiles, antioxidant and antimicrobial activities of pawpaw pulp (Asimina triloba [L.] Dunal) at different ripening stages. J. Food Sci. 2019, 84, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Coothankandaswamy, V.; Liu, Y.; Mao, S.C.; Morgan, J.B.; Mahdi, F.; Jekabsons, M.B.; Nagle, D.G.; Zhou, Y.D. The alternative medicine pawpaw and its acetogenin constituents suppress tumor angiogenesis via the HIF-1/VEGF pathway. J. Nat. Prod. 2010, 73, 956–961. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Tong, J.; Li, Z.; Yao, L.; Chen, C.; Wan, L.; Ma, W.; Zheng, X.; Cho, N.; Huang, B. Anticancer and chemo-sensitizing effects of annonacin via p53-mediated DNA damage in ovarian cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167971. [Google Scholar] [CrossRef]
- Monsen, P.J.; Luzzio, F.A. Antiangiogenic Activity and Chemical Derivatization of the Neurotoxic Acetogenin Annonacin Isolated from Asimina triloba. J. Nat. Prod. 2018, 81, 1905–1909. [Google Scholar] [CrossRef]
- Nam, J.S.; Park, S.Y.; Lee, H.J.; Lee, S.O.; Jang, H.L.; Rhee, Y.H. Correlation Between Acetogenin Content and Antiproliferative Activity of Pawpaw (Asimina triloba [L.] Dunal) Fruit Pulp Grown in Korea. J. Food Sci. 2018, 83, 1430–1435. [Google Scholar] [CrossRef]
- Dettweiler, M.; Melander, R.J.; Porras, G.; Risener, C.; Marquez, L.; Samarakoon, T.; Melander, C.; Quave, C.L. A Clerodane diterpene from Callicarpa americana resensitizes methicillin-resistant Staphylococcus aureus to β-lactam antibiotics. ACS Infect. Dis. 2020, 6, 1667–1673. [Google Scholar] [CrossRef]
- Cantrell, C.L.; Klun, J.A.; Bryson, C.T.; Kobaisy, M.; Duke, S.O. Isolation and identification of mosquito bite deterrent terpenoids from leaves of American (Callicarpa americana) and Japanese (Callicarpa japonica) beautyberry. J. Agric. Food Chem. 2005, 53, 5948–5953. [Google Scholar] [CrossRef]
- Carroll, J.F.; Cantrell, C.L.; Klun, J.A.; Kramer, M. Repellency of two terpenoid compounds isolated from Callicarpa americana (Lamiaceae) against Ixodes scapularis and Amblyomma americanum ticks. Exp. Appl. Acarol. 2007, 41, 215–224. [Google Scholar] [CrossRef]
- Pineau, R.M.; Hanson, S.E.; Lyles, J.T.; Quave, C.L. Growth Inhibitory Activity of Callicarpa americana Leaf Extracts Against Cutibacterium acnes. Front. Pharmacol. 2019, 10, 1206. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Godden, G.T.; Lanier, E.; Bhat, W.W.; Kinser, T.J.; Vaillancourt, B.; Wang, H.; Wood, J.C.; Jiang, J.; Soltis, P.S.; et al. Generation of a chromosome-scale genome assembly of the insect-repellent terpenoid-producing Lamiaceae species, Callicarpa americana. GigaScience 2020, 9, giaa093. [Google Scholar] [CrossRef] [PubMed]
- Galván, I.J.; Mir-Rashed, N.; Jessulat, M.; Atanya, M.; Golshani, A.; Durst, T.; Petit, P.; Amiguet, V.T.; Boekhout, T.; Summerbell, R.; et al. Antifungal and antioxidant activities of the phytomedicine pipsissewa, Chimaphila umbellata. Phytochem. 2008, 69, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.K.; Kim, J.; Kang, K.S.; Piao, H.S.; Park, J.H.; Hwang, G.S. A new naphthalene glycoside from Chimaphila umbellata inhibits the RANKL-stimulated osteoclast differentiation. Arch. Pharm. Res. 2015, 38, 2059–2065. [Google Scholar] [CrossRef] [PubMed]
- Vandal, J.; Abou-Zaid, M.M.; Ferroni, G.; Leduc, L.G. Antimicrobial activity of natural products from the flora of Northern Ontario, Canada. Pharm. Biol. 2015, 53, 800–806. [Google Scholar] [CrossRef]
- Birsa, M.L.; Sarbu, L.G. Health Benefits of Key Constituents in Cichorium intybus L. Nutrients 2023, 15, 1322. Nutrients 2023, 15, 1322. [Google Scholar] [CrossRef]
- Janda, K.; Gutowska, I.; Geszke-Moritz, M.; Jakubczyk, K. The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties-A Review. Molecules 2021, 26, 1814. [Google Scholar] [CrossRef]
- Peña-Espinoza, M.; Romero-Uzqueda, Y.; Valente, A.H.; de Roode, M.; Simonsen, H.T.; Thamsborg, S.M.; Williams, A.R.; López-Muñoz, R. Anti-protozoal activity and metabolomic analyses of Cichorium intybus L. against Trypanosoma cruzi. Int. J. Parasitol. Drugs Drug Resist. 2022, 20, 43–53. [Google Scholar] [CrossRef]
- Pieroni, A.; Janiak, V.; Dürr, C.M.; Lüdeke, S.; Trachsel, E.; Heinrich, M. In vitro antioxidant activity of non-cultivated vegetables of ethnic Albanians in southern Italy. Phytother. Res. 2002, 16, 467–473. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Z.; Zhang, B.; Jiang, Z.; Guo, F.; Yang, T. Cichorium intybus L. Extract Suppresses Experimental Gout by Inhibiting the NF-κB and NLRP3 Signaling Pathways. Int. J. Mol. Sci. 2019, 20, 4921. [Google Scholar] [CrossRef]
- Amatjan, M.; Li, N.; He, P.; Zhang, B.; Mai, X.; Jiang, Q.; Xie, H.; Shao, X. A Novel Approach Based on Gut Microbiota Analysis and Network Pharmacology to Explain the Mechanisms of Action of Cichorium intybus L. Formula in the Improvement of Hyperuricemic Nephropathy in Rats. Drug Des. Dev. Ther. 2023, 17, 107–128. [Google Scholar] [CrossRef]
- Derksen, A.; Kühn, J.; Hafezi, W.; Sendker, J.; Ehrhardt, C.; Ludwig, S.; Hensel, A. Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza A virus. J. Ethnopharmacol. 2016, 188, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Tomassone, D. Homeopathic Eupatorium perfoliatum in the treatment of COVID-19. Homeopathy 2023, 112, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Sarkar, A.; Roy, A.K.; Ghorai, T.; Nayak, D.; Kaushik, S.; Das, S. Ultradiluted Eupatorium perfoliatum Prevents and Alleviates SARS-CoV-2 Spike Protein-Induced Lung Pathogenesis by Regulating Inflammatory Response and Apoptosis. Diseases 2025, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Kaur, L.; Bhalerao, R.; Nahar, K.; Ram, H.; Sharma, P.; Gupta, A.; Singh, S.; Khurana, A.; Manchanda, R.K. Effectiveness of Eupatorium perfoliatum 30C in Preventing Dengue Fever-A Prospective, Community-Based, Open Label, Parallel Cohort Study in Delhi, India. Homeopathy 2025, 114, 163–172. [Google Scholar] [CrossRef]
- Nayak, D.; Bhalla, R.; Bhalerao, R.; Kaur, L.; Gupta, A.; Dev, V.; Singh, S.; Khurana, A.; Manchanda, R.K. Effectiveness of Eupatorium perfoliatum 30C in Prevention of Dengue Fever and Acute Febrile Illness during 2017 Dengue Outbreak in Urban Slums of Delhi: A Prospective, Open-Label, Community-Based, Parallel Cohort Study. Complement. Med. Res. 2023, 30, 471–480. [Google Scholar] [CrossRef]
- Sinha, M.; Chakraborty, U.; Kool, A.; Chakravarti, M.; Das, S.; Ghosh, S.; Thakur, L.; Khuranna, A.; Nayak, D.; Basu, B.; et al. In-vitro antiviral action of Eupatorium perfoliatum against dengue virus infection: Modulation of mTOR signaling and autophagy. J. Ethnopharmacol. 2022, 282, 114627. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Fan, Y. Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway. Iran. J. Basic Med. Sci. 2019, 22, 1340–1346. [Google Scholar]
- Maas, M.; Deters, A.M.; Hensel, A. Anti-inflammatory activity of Eupatorium perfoliatum L. extracts, eupafolin, and dimeric guaianolide via iNOS inhibitory activity and modulation of inflammation-related cytokines and chemokines. J. Ethnopharmacol. 2011, 137, 371–381. [Google Scholar] [CrossRef]
- Habtemariam, S.; Macpherson, A.M. Cytotoxicity and antibacterial activity of ethanol extract from leaves of a herbal drug, boneset (Eupatorium perfoliatum). Phytother. Res. 2000, 14, 575–577. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Chen, H.P.; Tao, H.; Li, X.; Zhao, Q.; Liu, J.K. Penidaleodiolides A and B, cage-like polyketides with neurotransmission-regulating activity from the soil fungus penicillium daleae L3SO. Org. Lett. 2024, 26, 7632–7637. [Google Scholar] [CrossRef]
- Anez, S.G.; Burkhart, E.P.; Kellogg, J.J. Ghost Pipe Then and Now: The Influence of Digital Media on the Medicinal Use of Monotropa uniflora in the United States. Econ. Bot. 2025. [Google Scholar] [CrossRef]
- Schneiderová, K.; Šmejkal, K. Phytochemical profile of Paulownia tomentosa (Thunb). Steud. Phytochem. Rev. 2015, 14, 799–833. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.W.; Park, Y.J.; Lee, S.U.; Lee, S.; Yuk, H.J.; Seo, K.H.; Kim, Y.U.; Hwang, B.Y.; Oh, S.R. Potential Anti-inflammatory Effects of the Fruits of Paulownia tomentosa. J. Nat. Prod. 2017, 80, 2659–2665. [Google Scholar] [CrossRef] [PubMed]
- Molčanová, L.; Treml, J.; Brezáni, V.; Maršík, P.; Kurhan, S.; Trávníček, Z.; Uhrin, P.; Šmejkal, K. C-geranylated flavonoids from Paulownia tomentosa Steud. fruit as potential anti-inflammatory agents. J. Ethnopharmacol. 2022, 296, 115509. [Google Scholar] [CrossRef]
- Lee, J.W.; Seo, K.H.; Ryu, H.W.; Yuk, H.J.; Park, H.A.; Lim, Y.; Ahn, K.S.; Oh, S.R. Anti-inflammatory effect of stem bark of Paulownia tomentosa Steud. in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and LPS-induced murine model of acute lung injury. J. Ethnopharmacol. 2018, 210, 23–30. [Google Scholar] [CrossRef]
- Hanáková, Z.; Hošek, J.; Kutil, Z.; Temml, V.; Landa, P.; Vaněk, T.; Schuster, D.; Dall’Acqua, S.; Cvačka, J.; Polanský, O.; et al. Anti-inflammatory Activity of Natural Geranylated Flavonoids: Cyclooxygenase and Lipoxygenase Inhibitory Properties and Proteomic Analysis. J. Nat. Prod. 2017, 80, 999–1006. [Google Scholar] [CrossRef]
- Hanáková, Z.; Hošek, J.; Babula, P.; Dall’Acqua, S.; Václavík, J.; Šmejkal, K. C-Geranylated Flavanones from Paulownia tomentosa Fruits as Potential Anti-inflammatory Compounds Acting via Inhibition of TNF-alpha Production. J. Nat. Prod. 2015, 78, 850–863. [Google Scholar] [CrossRef]
- Park, E.S.; Hwang, Y.S.; Ryu, H.W.; Yoon, H.R.; Kim, J.T.; Lim, J.S.; Cho, H.J.; Lee, H.G. Paulownin elicits anti-tumor effects by enhancing NK cell cytotoxicity through JNK pathway activation. Front. Pharmacol. 2024, 15, 1439079. [Google Scholar] [CrossRef]
- Kang, M.J.; Ryu, H.W.; Oh, E.S.; Song, Y.N.; Huh, Y.H.; Park, J.Y.; Oh, S.M.; Lee, S.Y.; Park, Y.J.; Kim, D.Y.; et al. Diplacone Isolated from Paulownia tomentosa Mature Fruit Induces Ferroptosis-Mediated Cell Death through Mitochondrial Ca2+ Influx and Mitochondrial Permeability Transition. Int. J. Mol. Sci. 2023, 24, 7057. [Google Scholar] [CrossRef]
- Molčanová, L.; Kauerová, T.; Dall’Acqua, S.; Maršík, P.; Kollár, P.; Šmejkal, K. Antiproliferative and cytotoxic activities of C-Geranylated flavonoids from Paulownia tomentosa Steud. Fruit. Bioorg. Chem. 2021, 111, 104797. [Google Scholar] [CrossRef]
- Singh, M.P.; Park, K.H.; Khaket, T.P.; Kang, S.C. CJK-7, a Novel Flavonoid from Paulownia tomentosa Triggers Cell Death Cascades in HCT-116 Human Colon Carcinoma Cells via Redox Signaling. Anticancer Agents Med. Chem. 2018, 18, 428–437. [Google Scholar] [CrossRef]
- Xu, S.; Kang, A.; Tian, Y.; Li, X.; Qin, S.; Yang, R.; Guo, Y. Plant Flavonoids with Antimicrobial Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). ACS Infect. Dis. 2024, 10, 3086–3097. [Google Scholar] [CrossRef] [PubMed]
- Bouqellah, N.A.; Hussein, E.T.; Abdel Razik, A.B.; Ahmed, M.F.; Faraag, A.H.I. Development of transgenic Paulownia trees expressing antimicrobial thionin genes for enhanced resistance to fungal infections using chitosan nanoparticles. Microb. Pathog. 2024, 191, 106659. [Google Scholar] [CrossRef] [PubMed]
- Škovranová, G.; Molčanová, L.; Jug, B.; Jug, D.; Klančnik, A.; Smole-Možina, S.; Treml, J.; Tušek Žnidarič, M.; Sychrová, A. Perspectives on antimicrobial properties of Paulownia tomentosa Steud. fruit products in the control of Staphylococcus aureus infections. J. Ethnopharmacol. 2024, 321, 117461. [Google Scholar] [CrossRef]
- Navrátilová, A.; Nešuta, O.; Vančatová, I.; Čížek, A.; Varela-M, R.E.; López-Abán, J.; Villa-Pulgarin, J.A.; Mollinedo, F.; Muro, A.; Žemličková, H.; et al. C-Geranylated flavonoids from Paulownia tomentosa fruits with antimicrobial potential and synergistic activity with antibiotics. Pharm. Biol. 2016, 54, 1398–1407. [Google Scholar] [CrossRef]
- Navrátilová, A.; Schneiderová, K.; Veselá, D.; Hanáková, Z.; Fontana, A.; Dall’Acqua, S.; Cvačka, J.; Innocenti, G.; Novotná, J.; Urbanová, M.; et al. Minor C-geranylated flavanones from Paulownia tomentosa fruits with MRSA antibacterial activity. Phytochemistry 2013, 89, 104–113. [Google Scholar] [CrossRef]
- Smejkal, K.; Chudík, S.; Kloucek, P.; Marek, R.; Cvacka, J.; Urbanová, M.; Julínek, O.; Kokoska, L.; Slapetová, T.; Holubová, P.; et al. Antibacterial C-geranylflavonoids from Paulownia tomentosa Fruits. J. Nat. Prod. 2008, 71, 706–709. [Google Scholar] [CrossRef]
- Magurano, F.; Micucci, M.; Nuzzo, D.; Baggieri, M.; Picone, P.; Gioacchini, S.; Fioravanti, R.; Bucci, P.; Kojouri, M.; Mari, M.; et al. A potential host and virus targeting tool against COVID-19: Chemical characterization, antiviral, cytoprotective, antioxidant, respiratory smooth muscle relaxant effects of Paulownia tomentosa Steud. Biomed. Pharmacother. 2023, 158, 114083. [Google Scholar] [CrossRef]
- Ji, P.; Chen, C.; Hu, Y.; Zhan, Z.; Pan, W.; Li, R.; Li, E.; Ge, H.M.; Yang, G. Antiviral activity of Paulownia tomentosa against enterovirus 71 of hand, foot, and mouth disease. Biol. Pharm. Bull. 2015, 38, 1–6. [Google Scholar] [CrossRef]
- Cho, J.K.; Ryu, Y.B.; Curtis-Long, M.J.; Ryu, H.W.; Yuk, H.J.; Kim, D.W.; Kim, H.J.; Lee, W.S.; Park, K.H. Cholinestrase inhibitory effects of geranylated flavonoids from Paulownia tomentosa fruits. Bioorg. Med. Chem. 2012, 20, 2595–2602. [Google Scholar] [CrossRef]
- Kim, S.K.; Cho, S.B.; Moon, H.I. Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud. against glutamate-induced neurotoxicity in primary cultured rat cortical cells. Phytother. Res. 2010, 24, 1898–1900. [Google Scholar] [CrossRef]
- Domashevskiy, A.V.; Goss, D.J. Pokeweed antiviral protein, a ribosome inactivating protein: Activity, inhibition and prospects. Toxins 2015, 7, 274–298. [Google Scholar] [CrossRef]
- Ishag, H.Z.; Li, C.; Huang, L.; Sun, M.X.; Ni, B.; Guo, C.X.; Mao, X. Inhibition of Japanese encephalitis virus infection in vitro and in vivo by pokeweed antiviral protein. Virus Res. 2013, 171, 89–96. [Google Scholar] [CrossRef]
- Attitalla, I.H. Anti-colon activity in ethanolic extract of Phytolacca americana. Pak. J. Biol. Sci. 2011, 14, 914–915. [Google Scholar] [CrossRef] [PubMed]
- George Thompson, A.M.; Iancu, C.V.; Nguyen, T.T.; Kim, D.; Choe, J.Y. Inhibition of human GLUT1 and GLUT5 by plant carbohydrate products; insights into transport specificity. Sci. Rep. 2015, 5, 12804. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Y.; Ogg, S.; Ge, H. Expression of novel fusion antiviral proteins ricin a chain-pokeweed antiviral proteins (RTA-PAPs) in Escherichia coli and their inhibition of protein synthesis and of hepatitis B virus in vitro. BMC Biotechnol. 2018, 18, 47. [Google Scholar] [CrossRef]
- Mattera, M.; Pilla, N.; Aguzzi, A.; Gabrielli, P.; DiLena, G.; Durazzo, A.; Lucarini, M. Portulaca oleracea L.: Literature quantitative research analysis. Nat. Prod. Res. 2024, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.X.; Xin, H.L.; Rahman, K.; Wang, S.J.; Peng, C.; Zhang, H. Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. BioMed Res. Int. 2015, 2015, 925631. [Google Scholar] [CrossRef]
- Rahimi, V.B.; Ajam, F.; Rakhshandeh, H.; Askari, V.R. A Pharmacological Review on Portulaca oleracea L.: Focusing on Anti-Inflammatory, Antioxidant, Immuno-Modulatory and Antitumor Activities. J. Pharmacopunct. 2019, 22, 7–15. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiao, D.; Zhang, Y.; Chen, Q.; Chen, Y.; Tang, Y.; Que, R.; Chen, Y.; Zheng, L.; Dai, Y.; et al. Portulaca oleracea L. Extract Ameliorates Intestinal Inflammation by Regulating Endoplasmic Reticulum Stress and Autophagy. Mol. Nutr. Food Res. 2022, 66, e2100791. [Google Scholar] [CrossRef]
- Zhu, M.Z.; Xu, H.M.; Liang, Y.J.; Xu, J.; Yue, N.N.; Zhang, Y.; Tian, C.M.; Yao, J.; Wang, L.S.; Nie, Y.Q.; et al. Edible exosome-like nanoparticles from Portulaca oleracea L. mitigate DSS-induced colitis via facilitating double-positive CD4+CD8+T cells expansion. J. Nanobiotechnol. 2023, 21, 309. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimian, Z.; Razavi, B.M.; Mousavi Shaegh, S.A.; Hosseinzadeh, H. Effects of Portulaca oleracea L. (purslane) on the metabolic syndrome: A review. Iran. J. Basic Med. Sci. 2022, 25, 1275–1285. [Google Scholar] [PubMed]
- Malek, F.; Boskabady, M.H.; Borushaki, M.T.; Tohidi, M. Bronchodilatory effect of Portulaca oleracea in airways of asthmatic patients. J. Ethnopharmacol. 2004, 93, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Askari, V.R.; Rezaee, S.A.; Abnous, K.; Iranshahi, M.; Boskabady, M.H. The influence of hydro-ethanolic extract of Portulaca oleracea L. on Th(1)/Th(2) balance in isolated human lymphocytes. J. Ethnopharmacol. 2016, 194, 1112–1121. [Google Scholar] [CrossRef]
- Kaveh, M.; Eidi, A.; Nemati, A.; Boskabady, M.H. The Extract of Portulaca oleracea and Its Constituent, Alpha Linolenic Acid Affects Serum Oxidant Levels and Inflammatory Cells in Sensitized Rats. Iran. J. Allergy Asthma Immunol. 2017, 16, 256–270. [Google Scholar]
- Kaveh, M.; Eidi, A.; Nemati, A.; Boskabady, M.H. Modulation of lung inflammation and immune markers in asthmatic rats treated by Portulaca oleracea. Avicenna J. Phytomed. 2017, 7, 409–416. [Google Scholar]
- Shakeri, F.; Ghorani, V.; Saadat, S.; Gholamnezhad, Z.; Boskabady, M.H. The Stimulatory Effects of Medicinal Plants on β2-adrenoceptors of Tracheal Smooth Muscle. Iran. J. Allergy Asthma Immunol. 2019, 18, 12–26. [Google Scholar] [CrossRef]
- Khazdair, M.R.; Anaeigoudari, A.; Kianmehr, M. Anti-Asthmatic Effects of Portulaca oleracea and its Constituents, a Review. J. Pharmacopunct. 2019, 22, 122–130. [Google Scholar] [CrossRef]
- Weng, Q.; Yuan, K.; Zhang, H.; Xiong, J.; Wang, C.; Xu, G. Determination of dopamine and norepinephrine in Portulaca oleracea L. by micellar electrokinetic capillary chromatography with amperometric detection. Se Pu 2005, 23, 18–21. [Google Scholar]
- Zhou, X.; Li, Y.; Li, T.; Cao, J.; Guan, Z.; Xu, T.; Jia, G.; Ma, G.; Zhao, R. Portulaca oleracea L. Polysaccharide Inhibits Porcine Rotavirus In Vitro. Animals 2023, 13, 2306. [Google Scholar] [CrossRef]
- Wei, H.; Chen, Z.; Lai, W.; Wang, W.; Bian, X.; Zhang, L.; Li, X. Aqueous extracts of Portulaca oleracea L. alleviate atopic dermatitis by restoring skin barrier function. Front. Pharmacol. 2025, 16, 1591394. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Y.; Li, W.; Hu, Q.; Huang, H.; Xu, X.; Du, B.; Li, P. Probiotic-fermented Portulaca oleracea L. alleviated DNFB-induced atopic dermatitis by inhibiting the NF-kappaB signaling pathway. J. Ethnopharmacol. 2023, 313, 116613. [Google Scholar] [CrossRef]
- Lv, W.J.; Huang, J.Y.; Li, S.P.; Gong, X.P.; Sun, J.B.; Mao, W.; Guo, S.N. Portulaca oleracea L. extracts alleviate 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice. Front. Nutr. 2022, 9, 986943. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Geng, S.; Ma, L.; Wang, Y.; Han, D.; Fan, G.; Zhang, W.; Lv, Y.; Ma, J. A Chinese drug-compatibility-based approach to purslane hydrogels for acute eczema therapy. Front. Pharmacol. 2025, 16, 1504120. [Google Scholar] [CrossRef] [PubMed]
- Heydarirad, G.; Rastegar, S.; Haji-Abdolvahab, H.; Fuzimoto, A.; Hunter, J.; Zare, R.; Pasalar, M. Efficacy and safety of purslane (Portulaca oleracea) for mild to moderate chronic hand eczema; A randomized, double-blind, placebo-controlled clinical trial. Explore 2024, 20, 401–410. [Google Scholar] [CrossRef]
- Qu, L.; Wang, F.; Ma, X. The extract from Portulaca oleracea L. rehabilitates skin photoaging via adjusting miR-138-5p/Sirt1-mediated inflammation and oxidative stress. Heliyon 2023, 9, e21955. [Google Scholar] [CrossRef]
- Wei, J.; Quan, Q.; Wang, P.; Wang, Y.; Huo, T.; An, Q. Portulaca oleracea extract relieves skin barrier damage induced by increased photosensitivity after GA peeling. Cutan. Ocul. Toxicol. 2022, 41, 257–263. [Google Scholar] [CrossRef]
- Budiawanm, A.; Purwanto, A.; Puradewa, L.; Cahyani, E.D.; Purwaningsih, C.E. Wound healing activity and flavonoid contents of purslane (Portulaca grandiflora) of various varieties. RSC Adv. 2023, 13, 9871–9877. [Google Scholar] [CrossRef]
- Alves Barros, A.S.; Oliveira Carvalho, H.; Dos Santos, I.V.F.; Taglialegna, T.; Dos Santos Sampaio, T.I.; Duarte, J.L.; Fernandes, C.P.; Tavares Carvalho, J.C. Study of the non-clinical healing activities of the extract and gel of Portulaca pilosa L. in skin wounds in Wistar rats: A preliminary study. Biomed. Pharmacother. 2017, 96, 182–190. [Google Scholar] [CrossRef]
- Rashed, A.N.; Afifi, F.U.; Disi, A.M. Simple evaluation of the wound healing activity of a crude extract of Portulaca oleracea L. (growing in Jordan) in Mus musculus JVI-1. J. Ethnopharmacol. 2003, 88, 131–136. [Google Scholar] [CrossRef]
- Pulivarthi, D.; Steinberg, K.M.; Monzote, L.; Piñón, A.; Setzer, W.N. Antileishmanial Activity of Compounds Isolated from Sassafras albidum. Nat. Prod. Commun. 2015, 10, 1229–1230. [Google Scholar] [CrossRef]
- Monzote, L.; Piñón, A.; Setzer, W.N. Antileishmanial Potential of Tropical Rainforest Plant Extracts. Medicines 2014, 1, 32–55. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Kim, M.J.; Choi, Y.A.; Lee, S.W.; Lee, S.; Jang, Y.H.; Kim, S.H. Ethanol Extract of Ampelopsis brevipedunculata Rhizomes Suppresses IgE-Mediated Mast Cell Activation and Anaphylaxis. Adv. Pharmacol. Pharm. Sci. 2024, 2024, 5083956. [Google Scholar] [CrossRef] [PubMed]
- Le, M.Q.; Kim, M.S.; Song, Y.S.; Noh, W.N.; Chun, S.C.; Yoon, D.Y. Water-extracted Ampelopsis brevipedunculata downregulates IL-1β, CCL5, and COX-2 expression via inhibition of PKC-mediated JNK/NF-kappaB signaling pathways in human monocytic cells. J. Pharmacol. Sci. 2014, 126, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.J.; Lee, S.J.; Lim, H.J.; Jung, K.; Lee, S.; Park, C.S.; Lee, S.W.; Rho, M.C. Inhibitory Effects of Compounds and Extracts from Ampelopsis brevipedunculata on IL-6-Induced STAT3 Activation. BioMed Res. Int. 2018, 2018, 3684845. [Google Scholar] [CrossRef]
- Bak, S.G.; Lim, H.J.; Won, Y.S.; Park, E.J.; Kim, Y.H.; Lee, S.W.; Oh, J.H.; Kim, J.E.; Lee, M.J.; Lee, S.; et al. Effect of Ampelopsis brevipedunculata (Maxim.) Trautv extract on a model of atopic dermatitis in HaCaT cells and mice. Food Sci. Nutr. 2023, 11, 6616–6625. [Google Scholar] [CrossRef]
- Chang, C.I.; Chien, W.C.; Huang, K.X.; Hsu, J.L. Anti-Inflammatory Effects of Vitisinol A and Four Other Oligostilbenes from Ampelopsis brevipedunculata var. Hancei. Molecules 2017, 22, 1195. [Google Scholar] [CrossRef]
- Huang, T.Y.; Lin, J.Y.; Su, W.T. Coaxial nanofibers encapsulated with Ampelopsis brevipedunculata extract and green synthesized AgNPs for wound repair. Colloids Surf. B Biointerfaces 2024, 235, 113771. [Google Scholar] [CrossRef]
- Huang, T.Y.; Wang, Y.W.; Liao, H.X.; Su, W.T. Sprayable hydroxypropyl chitin/collagen extract of Ampelopsis brevipedunculata hydrogel accelerates wound healing. J. Wound Care 2024, 33, S10–S23. [Google Scholar] [CrossRef]
- Yum, M.J.; Koppula, S.; Kim, J.S.; Shin, G.M.; Chae, Y.J.; Yoon, T.; Chun, C.S.; Lee, J.D.; Song, M. Protective effects of Ampelopsis brevipedunculata against in vitro hepatic stellate cells system and thioacetamide-induced liver fibrosis rat model. Pharm. Biol. 2017, 55, 1577–1585. [Google Scholar] [CrossRef]
- Yabe, N.; Matsui, H. Ampelopsis brevipedunculata (Vitaceae) extract inhibits a progression of carbon tetrachloride-induced hepatic injury in the mice. Phytomedicine 2000, 7, 493–498. [Google Scholar] [CrossRef]
- Yang, L.L.; Yen, K.Y.; Kiso, Y.; Hikino, H. Antihepatotoxic actions of Formosan plant drugs. J. Ethnopharmacol. 1987, 19, 103–110. [Google Scholar] [CrossRef]
- Yabe, N.; Tanaka, K.; Matsui, H. An ethanol-extract of Ampelopsis brevipedunculata (Vitaceae) berries decreases ferrous iron-stimulated hepatocyte injury in culture. J. Ethnopharmacol. 1998, 59, 147–159. [Google Scholar] [CrossRef]
- Yabe, N.; Matsui, H. Ampelopsis brevipedunculata (Vitaceae) extract stimulates collagen synthesis through superoxide generation in the serum-free cultures of rat dermal fibroblasts and Ito cells. J. Ethnopharmacol. 1997, 56, 67–76. [Google Scholar] [CrossRef]
- Yabe, N.; Matsui, H. Effects of Ampelopsis brevipedunculata (Vitaceae) extract on hepatic M cell culture: Function in collagen biosynthesis. J. Ethnopharmacol. 1997, 56, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Su, P.S.; Doerksen, R.J.; Chen, S.H.; Sung, W.C.; Juan, C.C.; Rawendra, R.D.; Chen, C.R.; Li, J.W.; Aisha; Huang, T.C.; et al. Screening and profiling stilbene-type natural products with angiotensin-converting enzyme inhibitory activity from Ampelopsis brevipedunculata var. hancei (Planch.) Rehder. J. Pharm. Biomed. Anal. 2015, 108, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, S.H.; Oh, H.M.; Kwak, S.C.; Baek, J.M.; Lee, M.S.; Rho, M.C.; Oh, J. Ampelopsis brevipedunculata extract prevents bone loss by inhibiting osteoclastogenesis in vitro and in vivo. Molecules 2014, 19, 18465–18478. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lin, J.Y. Antimutagenic activity of extracts from anticancer drugs in Chinese medicine. Mutat. Res. 1988, 204, 229–234. [Google Scholar] [CrossRef]
- Sun, X.; Guan, Y.X.; Luo, X.L.; Yu, Y.A.; Gao, H.Z. Observation of the efficacy of Ampelopsis brevipedunculata Trautv. in the treatment of herpes zoster. J. Tradit. Chin. Med. 1986, 6, 17–18. [Google Scholar]
- Ried, K.; Travica, N.; Dorairaj, R.; Sali, A. Herbal formula improves upper and lower gastrointestinal symptoms and gut health in Australian adults with digestive disorders. Nutr. Res. 2020, 76, 37–51. [Google Scholar] [CrossRef]
- Peterson, C.T.; Sharma, V.; Uchitel, S.; Denniston, K.; Chopra, D.; Mills, P.J.; Peterson, S.N. Prebiotic Potential of Herbal Medicines Used in Digestive Health and Disease. J. Altern. Complement. Med. 2018, 24, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.; Lee, C.H.; Seo, J.; Park, J.H.Y.; Lee, K.W. Catechin and flavonoid glycosides from the Ulmus genus: Exploring their nutritional pharmacology and therapeutic potential in osteoporosis and inflammatory conditions. Fitoterapia 2024, 178, 106188. [Google Scholar] [CrossRef] [PubMed]
- Aleman, R.S.; Page, R.; Cedillos, R.; Montero-Fernández, I.; Fuentes, J.A.M.; Olson, D.W.; Aryana, K. Influences of Yogurt with Functional Ingredients from Various Sources That Help Treat Leaky Gut on Intestinal Barrier Dysfunction in Caco-2 Cells. Pharm. 2023, 16, 1511. [Google Scholar] [CrossRef] [PubMed]
- Taleb, S.; Saeedi, M. The effect of the Verbascum Thapsus on episiotomy wound healing in nulliparous women: A randomized controlled trial. BMC Complement. Med. Ther. 2021, 21, 166. [Google Scholar] [CrossRef]
- Shahbaz, F.; Akhter, N.; Shahid, M.; Riaz, M.; Anjum, F.; Hussain, F. Ultrasound Assisted Extraction and Characterization of Bioactives From Verbascum thapsus Roots to Evaluate Their Antioxidant and Medicinal Potential. Dose Response 2022, 20, 15593258221097665. [Google Scholar] [CrossRef]
- Zhang, N.; Baran, A.; Valioglu, F.; Teng, L.; Atalar, M.N.; Keskin, C.; Wang, X.X.; Hatipoğlu, A.; Baran, M.F.; Abdelsalam, A.H.; et al. Antioxidant, AChE inhibitory, and anticancer effects of Verbascum thapsus extract. Cell Mol. Biol. 2023, 69, 211–216. [Google Scholar] [CrossRef]
- Beghelli, D.; Zallocco, L.; Angeloni, C.; Bistoni, O.; Ronci, M.; Cavallucci, C.; Mazzoni, M.R.; Nuccitelli, A.; Catalano, C.; Hrelia, S.; et al. Dietary Supplementation with Boswellia serrata, Verbascum thapsus, and Curcuma longa in Show Jumping Horses: Effects on Serum Proteome, Antioxidant Status, and Anti-Inflammatory Gene Expression. Life 2023, 13, 750. [Google Scholar] [CrossRef]
- Kavousi, H.R.; Karimi, M.R.; Neghab, M.G. Assessment the copper-induced changes in antioxidant defense mechanisms and copper phytoremediation potential of common mullein (Verbascum thapsus L.). Environ. Sci. Pollut. Res. Int. 2021, 28, 18070–18080. [Google Scholar] [CrossRef]
- Mahdavi, S.; Amiradalat, M.; Babashpour, M.; Sheikhlooei, H.; Miransari, M. The Antioxidant, Anticarcinogenic and Antimicrobial Properties of Verbascum thapsus L. Med. Chem. 2020, 16, 991–995. [Google Scholar] [CrossRef]
- Ferrucci, V.; Miceli, M.; Pagliuca, C.; Bianco, O.; Castaldo, L.; Izzo, L.; Cozzolino, M.; Zannella, C.; Oglio, F.; Polcaro, A.; et al. Modulation of innate immunity related genes resulting in prophylactic antimicrobial and antiviral properties. J. Transl. Med. 2024, 22, s574. [Google Scholar] [CrossRef]
- Escobar, F.M.; Sabini, M.C.; Zanon, S.M.; Tonn, C.E.; Sabini, L.I. Antiviral effect and mode of action of methanolic extract of Verbascum thapsus L. on pseudorabies virus (strain RC/79). Nat. Prod. Res. 2012, 26, 1621–1625. [Google Scholar] [CrossRef]
- Rajbhandari, M.; Mentel, R.; Jha, P.K.; Chaudhary, R.P.; Bhattarai, S.; Gewali, M.B.; Karmacharya, N.; Hipper, M.; Lindequist, U. Antiviral activity of some plants used in Nepalese traditional medicine. Evid. Based Complement. Alternat. Med. 2009, 6, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Soto, K.M.; Luzardo-Ocampo, I.; López-Romero, J.M.; Mendoza, S.; Loarca-Piña, G.; Rivera-Muñoz, E.M.; Manzano-Ramírez, A. Gold Nanoparticles Synthesized with Common Mullein (Verbascum thapsus) and Castor Bean (Ricinus communis) Ethanolic Extracts Displayed Antiproliferative Effects and Induced Caspase 3 Activity in Human HT29 and SW480 Cancer Cells. Pharmaceutics 2022, 14, 2069. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Wang, S.F.; Li, Y.; He, Q.X.; Liu, K.C.; Yang, Y.P.; Li, X.L. Isolation of chemical constituents from the aerial parts of Verbascum thapsus and their antiangiogenic and antiproliferative activities. Arch. Pharm. Res. 2011, 34, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Ali-Shah, S.W.; Shah, I.; Ahmed, G.; Ghias, M.; Khan, I.; Ali, W. Anthelmintic and relaxant activities of Verbascum Thapsus Mullein. BMC Complement. Altern. Med. 2012, 12, 29. [Google Scholar] [CrossRef]
- Calabrese, G.; Zappalà, A.; Dolcimascolo, A.; Acquaviva, R.; Parenti, R.; Malfa, G.A. Phytochemical Analysis and Anti-Inflammatory and Anti-Osteoarthritic Bioactive Potential of Verbascum thapsus L. (Scrophulariaceae) Leaf Extract Evaluated in Two In Vitro Models of Inflammation and Osteoarthritis. Molecules 2021, 26, 5392. [Google Scholar] [CrossRef]
- Speranza, L.; Franceschelli, S.; Pesce, M.; Reale, M.; Menghini, L.; Vinciguerra, I.; De Lutiis, M.A.; Felaco, M.; Grilli, A. Antiinflammatory effects in THP-1 cells treated with verbascoside. Phytother. Res. 2010, 24, 1398–1404. [Google Scholar] [CrossRef]
- Fakhrieh-Kashan, Z.; Arbabi, M.; Delavari, M.; Mohebali, M.; Hooshyar, H. Induction of Apoptosis by Alcoholic Extract of Combination Verbascum thapsus and Ginger officinale on Iranian Isolate of Trichomonas vaginalis. Iran. J. Parasitol. 2018, 13, 72–78. [Google Scholar]
- Mehriardestani, M.; Aliahmadi, A.; Toliat, T.; Rahimi, R. Medicinal plants and their isolated compounds showing anti-Trichomonas vaginalis- activity. Biomed. Pharmacother. 2017, 88, 885–893. [Google Scholar] [CrossRef]
- Kashan, Z.F.; Arbabi, M.; Delavari, M.; Hooshyar, H.; Taghizadeh, M.; Joneydy, Z. Effect of Verbascum thapsus ethanol extract on induction of apoptosis in Trichomonas vaginalis in vitro. Infect. Disord. Drug Targets 2015, 15, 125–130. [Google Scholar] [CrossRef]
- Okunade, A.L.; Hufford, C.D.; Richardson, M.D.; Peterson, J.R.; Clark, A.M. Antimicrobial properties of alkaloids from Xanthorhiza simplicissima. J. Pharm. Sci. 1994, 83, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Yamagishi, T.; Lee, K.H. Cytotoxic isoquinoline alkaloids from Xanthorhiza simplicissima. Kaohsiung J. Med. Sci. 1989, 5, 409–411. [Google Scholar]
- Purja, S.; Kim, M.; Elghanam, Y.; Shim, H.J.; Kim, E. Efficacy and safety of vancomycin compared with those of alternative treatments for methicillin-resistant Staphylococcus aureus infections: An umbrella review. J. Evid. Based Med. 2024, 17, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Bomfim, D.P.; da Rocha, M.A.D.; Sanudo, A.; Bagatin, E. A Prospective Randomized Trial Comparing Quality of Life in Adult Female Acne Treated with Azelaic Acid 15% Gel versus Oral Spironolactone. Clin. Cosmet. Investig. Dermatol. 2024, 17, 2335–2343. [Google Scholar] [CrossRef]
- Valente Duarte de Sousa, I.C. An update on the pharmacological management of acne vulgaris: The state of the art. Expert Opin. Pharmacother. 2024, 25, 2177–2190. [Google Scholar] [CrossRef]
- Zhu, C.; Wei, B.; Li, Y.; Wang, C. Antibiotic resistance rates in Cutibacterium acnes isolated from patients with acne vulgaris: A systematic review and meta-analysis. Front. Microbiol. 2025, 16, 1565111. [Google Scholar] [CrossRef]
- Hu, L.; Wu, F.; He, J.; Zhong, L.; Song, Y.; Shao, H. Cytotoxicity of safrole in HepaRG cells: Studies on the role of CYP1A2-mediated ortho-quinone metabolic activation. Xenobiotica 2019, 49, 1504–1515. [Google Scholar] [CrossRef]
- Sadati, S.N.; Ardekani, M.R.; Ebadi, N.; Yakhchali, M.; Dana, A.R.; Masoomi, F.; Khanavi, M.; Ramezany, F. Review of Scientific Evidence of Medicinal Convoy Plants in Traditional Persian Medicine. Pharmacog. Rev. 2016, 10, 33–38. [Google Scholar]
- Cicero, A.F.; Baggioni, A. Berberine and its role in chronic disease. Adv. Exp. Med. Biol. 2016, 928, 27–45. [Google Scholar]
Scientific Name | Family | Plant Type | Plant Local Name | Medicinal Use of Plant | Plant Part Used for Consumption | Method of Preparing Plant for Medicinal Use | References for Plant Details |
---|---|---|---|---|---|---|---|
Asimina triloba | Annonaceae | Tree | Pawpaw | Used as a food | Fruit | Eaten as is (tropical fruit) | [15,16,17,18] |
Callicarpa americana | Lamiaceae | Shrub | Beautyberry | Insect repellant | Berry | [16,19,20] | |
Chimaphila umbellata | Ericaceae | Shrub | Pipsissewa | Antirheumatic | Leaf | [21,22] | |
Cichorium intybus | Asteraceae | Herb | Chicory (blue) | Coffee alternative | Root | Made into tea | [16,19,20] |
Eupatorium perfoliatum * | Asteraceae | Shrub | Boneset | Laxative, cough | Leaf | Made into tea | [14,16,19,20,23,24] |
Monotropa uniflora | Ericaceae | Herb | Ghost pipe | Pain relief | Flower | [16,17] | |
Paulownia tomentosa | Paulowniaceae | Tree | Princess tree | As a food/salad | Fruit | Fruit sliced and eaten | [15,16,17] |
Phytolacca americana * | Phytolaccaceae | Herb | Pokeweed | Anti-arthritic | Berry | Poisonous (seed; sap allergy causing) but made into edible via boiling. Berry made into jam | [14,16,17,19,20] |
Portulaca oleracea * | Portulacaceae | Herb | Purslane | Overall health | Leaf | Edible raw or cooked | [16] |
Sassafras albidum * | Lauraceae | Small tree | Sassafras | Respiratory (bronchitis) | Root | Made into tea | [14,15,16,25,26] |
Ampelopsis glandulosa * | Vitaceae | Creeper | Porcelain berry | Anti-arthritic | Berry | [16,27,28] | |
Ulmus rubra * | Ulmaceae | Tree | Slippery elm | Laxative | Bark | Made into tea | [14,15,29] |
Verbascum thapsus | Scrophulariaceae | Herb | Mullein | Expectorant | Whole plant | Made into tea | [14,17] |
Xanthorhiza simplicissima * | Ranunculaceae | Shrub | Yellowroot | Sore throat | Root | Root made into a bitter liquid | [14,15,16,20,30] |
Plant Names | Alternate Scientific Names |
---|---|
Eupatorium perfoliatum | E. chapmanii, E. connatum, E. salviifolium, E. truncatum, E. cuneatum, Uncasia cuneata, U. truncata, U. perfoliate, Cunigunda perfoliata |
Phytolacca americana | P. decandra, P. rigida |
Portulaca oleracea | P. hortensis, P. officinarum |
Sassafras albidum | S. officinalis, S triloba, S. variifolium, Laurus sassafras |
Ampelopsis glandulosa | A. brevipedunculata, A. citrulloides, A. heterophylla, A. regeliana, A. sinica, Cissus brevipedunculata, Vitis brevipedunculata, V. elegans, V. glandulosa, V. heterophylla, V. sinica |
Ulmus rubra | U. americana, U. crispa, U. dimidiate, U. elliptica, U. fulva, U. heyderi, U. pinguis, U. pubescens |
Xanthorhiza simplicissima | X. apiifolia |
Plant Name | Reported Activities in Literature | References |
---|---|---|
Asimina triloba | Antioxidant; anticancer; antimicrobial | [31,32,33,34,35] |
Callicarpa americana | Antimicrobial; insect repellant | [36,37,38,39,40] |
Chimaphila umbellata | Antifungal; anticancer; antioxidant; bone protective; antimicrobial | [21,22,41,42,43] |
Cichorium intybus | Hepatoprotective; antiallergic, antitumor, antioxidant, anti-inflammatory; antidiabetic; antimicrobial; analgesic; antiprotozoal; anti-gout | [44,45,46,47,48,49] |
Eupatorium perfoliatum | Immunostimulant; antiviral; cardioprotective; anti-inflammatory; cytotoxic & antibacterial | [50,51,52,53,54,55,56,57,58] |
Monotropa uniflora | Neurotransmission regulator; pain relief | [59,60] |
Paulownia tomentosa | Antioxidant, antibacterial, cytotoxic; anti-inflammatory; anticancer, antimicrobial; antiv iral, neuroprotective | [61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80] |
Phytolacca americana | Antiviral, anticancer, anti-inflammatory; antidiabetic | [81,82,83,84,85] |
Portulaca oleracea | Antioxidant, anti-inflammatory, anti-asthmatic, immunomodulatory, anticancer, antimicrobial; GI health; anti-metabolic syndrome; antiviral; wound healing | [86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109] |
Sassafras albidum | Antiparasitic | [110,111] |
Ampelopsis glandulosa | Anti-inflammatory; wound healing; antioxidant; hepatoprotective, antihypertensive; bone protective; anticancer; antiviral | [28,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128] |
Ulmus rubra | GI health; antioxidant, anti-inflammatory; bone protective | [129,130,131,132] |
Verbascum thapsus | Wound healing; antioxidant; antimicrobial; antiviral; anticancer; anti-inflammatory, anthelmintic, antispasmodic; bone protective; antiprotozoal | [133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149] |
Xanthorhiza simplicissima | Antimicrobial, anticancer | [150,151] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veldhi, P.; Crager, C.; Ghayur, A.; Ul-Haq, Z.; Ghayur, M.N. A Review and Survey of Local Eastern Kentucky Medicinal Plants and Their Pharmacological Benefits. Plants 2025, 14, 3182. https://doi.org/10.3390/plants14203182
Veldhi P, Crager C, Ghayur A, Ul-Haq Z, Ghayur MN. A Review and Survey of Local Eastern Kentucky Medicinal Plants and Their Pharmacological Benefits. Plants. 2025; 14(20):3182. https://doi.org/10.3390/plants14203182
Chicago/Turabian StyleVeldhi, Pratyusha, Chris Crager, Ayesha Ghayur, Zaheer Ul-Haq, and Muhammad Nabeel Ghayur. 2025. "A Review and Survey of Local Eastern Kentucky Medicinal Plants and Their Pharmacological Benefits" Plants 14, no. 20: 3182. https://doi.org/10.3390/plants14203182
APA StyleVeldhi, P., Crager, C., Ghayur, A., Ul-Haq, Z., & Ghayur, M. N. (2025). A Review and Survey of Local Eastern Kentucky Medicinal Plants and Their Pharmacological Benefits. Plants, 14(20), 3182. https://doi.org/10.3390/plants14203182