Virulence of Five Root-Knot Nematodes (Meloidogyne spp.) on Nine Industrial Hemp (Cannabis sativa L.) Varieties and Nematicidal Potential of Hemp Seed Extracts Against Meloidogyne javanica
Abstract
:1. Introduction
2. Results
2.1. Virulence of Five Meloidogyne Species on Nine Industrial Hemp Varieties
2.1.1. Influence on Shoot Development
2.1.2. Influence on Root Development
2.1.3. The Development of Nematodes in Roots
2.1.4. Number of Egg Masses per Gram of Root
2.1.5. Influence on Nematode Fecundity
2.2. Influence of Hemp Seed Extracts Against M. javanica
2.2.1. The Effect of the Aqueous Extract on J2s Mobility
2.2.2. The Effect of the Ethanolic Extract on J2s Mobility
2.2.3. Effect of Aqueous Extract on Egg Hatching
2.2.4. Effect of Ethanolic Extract on Egg Hatching
3. Discussion
4. Materials and Methods
4.1. Nematode Cultures
4.2. Hemp Plants
4.3. Virulence of Five Meloidogyne Species on Nine Industrial Hemp Varieties
4.4. Preparation of Extracts
4.4.1. Motility Tests Using J2s
4.4.2. Hatching Tests Using Egg Masses
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zuardi, A.W. History of cannabis as a medicine: A review. Rev. Bras. Psiquiatr. 2006, 28, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Angelini, L.G.; Tavarini, S.; Cestone, B.; Beni, C. Variation in mineral composition in three different plant organs of five fibre cannabis (Cannabis sativa L.) cultivars. Agrochim. Pisa 2014, 58, 1–18. [Google Scholar]
- Bouloc, P. Cannabis: Industrial Production and Uses; CABI Publishing: Cambridge, MA, USA, 2013; pp. 5–23. [Google Scholar]
- Kakabouki, I.; Mavroeidis, A.; Tataridas, A.; Kousta, A.; Efthimiadou, A.; Karydogianni, S.; Katsenios, N.; Roussis, I.; Papastylianou, P. Effect of Rhizophagus irregularis on growth and quality of Cannabis sativa seedlings. Plants 2021, 10, 1333. [Google Scholar] [CrossRef] [PubMed]
- Carus, M.; Sarmento, L. The European Hemp Industry: Cultivation, processing and applications for fibres, shivs, seeds and flowers. Eur. Ind. Hemp Assoc. 2016, 2016, 1–9. [Google Scholar]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Pisanti, S.; Bifulco, M. Medical Cannabis: A plurimillennial history of an evergreen. J. Cell. Physiol. 2019, 234, 8342–8351. [Google Scholar] [CrossRef]
- Gorelick, J.; Bernstein, N. Chemical and Physical Elicitation for Enhanced Cannabinoid Production in Cannabis. In Cannabis sativa L.—Botany and Biotechnology, 1st ed.; Chandra, S., Lata, H., ElSohly, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 439–456. [Google Scholar]
- Amaducci, S.; Scordia, D.; Liu, F.; Zhang, Q.; Guo, H.; Testa, G.; Cosentino, S. Key cultivation techniques for hemp in Europe and China. Ind. Crop. Prod. 2015, 68, 2–16. [Google Scholar] [CrossRef]
- Bifulco, M.; Pisanti, S. Medicinal use of cannabis in Europe. EMBO Rep. 2015, 16, 130–132. [Google Scholar] [CrossRef]
- Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agriculture 2020, 10, 129. [Google Scholar] [CrossRef]
- Johnson, R. Cannabis as an Agricultural Commodity; Congressional Research Service: Washington, DC, USA, 2014. [Google Scholar]
- Wang, S. Diagnosing Hemp and Cannabis Crop Diseases; CAB International: Wallingford, UK, 2021. [Google Scholar]
- Bernard, E.C.; Chaffin, A.G.; Gwinn, K.D. Review of nematode interactions with hemp (Cannabis sativa). J. Nematol. 2022, 54, 20220002. [Google Scholar]
- Boehnke, K.F.; Dean, O.; Haffajee, R.L.; Hosanagar, A.U.S. trends in registration for medical Cannabis and reasons for use from 2016 to 2020: An Observational Study. Ann Intern Med. 2022, 175, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Rhee, T.G.; Rosenheck, R.A. Increasing use of Cannabis for medical purposes Among U.S. Residents, 2013-2020. Am. J. Prev. Med. 2023, 65, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.Q.; Cheng, F.X.; Zhang, D.Y.; Liu, Y.; Chen, X.W. First report of Meloidogyne javanica infecting hemp (Cannabis sativa) in China. Plant Dis. 2017, 101, 842. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, X.; Luan, M.; Guo, B.; Song, Z. First report of Meloidogyne enterolobii on industrial hemp (Cannabis sativa) in China. Plant Dis. 2021, 105, 230. [Google Scholar] [CrossRef]
- Desaeger, J.; Coburn, J.; Freeman, J.; Brym, Z. Plant-parasitic nematodes associated with Cannabis sativa in Florida. J. Nematol. 2023, 55, 20230018. [Google Scholar] [CrossRef]
- Lawaju, B.R.; Groover, W.; Kelton, J.; Conner, K.; Sikora, E.; Lawrence, K.S. First report of Meloidogyne incognita infecting Cannabis sativa in Alabama. J Nematol. 2021, 53, e2021-52. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sevilla-Morán, B.; Sandín-España, P.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2014, 70, 2–5. [Google Scholar] [CrossRef]
- Nyczepir, A.P.; Thomas, S.H. Current and future management strategies in intensive crop production systems. In Root-KnotNematodes; Perry, R.N., Moens, M., Starr, J.L., Eds.; CABI: Wallingford, UK, 2009; pp. 412–443. [Google Scholar]
- Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant EOs in agriculture, industry and consumer products. Phytochem. Rev. 2011, 10, 197–204. [Google Scholar] [CrossRef]
- Nasiou, E.; Giannakou, I.O. Nematicidal potential of thymol against Meloidogyne javanica (Treub) Chitwood. Plants 2023, 12, 1851. [Google Scholar] [CrossRef]
- Kayani, M.Z.; Mukhtar, T.; Hussain, M.A. Evaluation of nematicidal effects of Cannabis sativa L. and Zanthoxylum alatum Roxb. against root-knot nematodes, Meloidogyne incognita. Crop Prot. 2012, 39, 52–56. [Google Scholar] [CrossRef]
- Mojumder, V.; Mishra, S.D.; Haque, M.M.; Goswami, B.K. Nematicidal efficacy of some wild plants against pigeon pea cyst nematode, Heterodera cajani. Int. Nematol. Netw. Newsl. 1989, 6, 21–24. [Google Scholar]
- McPartland, J.M. A review of Cannabis diseases. J. Int. Hemp Assoc. 1996, 3, 19–23. [Google Scholar]
- Kotcon, J.; Wheeler, K.; Cline, R.H.; Carter, S. Susceptibility and yield loss relationships of Meloidogyne hapla and M. incognita infecting Cannabis sativa. J. Nematol. 2018, 50, 644. [Google Scholar]
- Bernard, E.C.; Chaffin, A.G. Hemp cultivar susceptibility to the southern root-knot nematode, Meloidogyne incognita. J. Nematol. 2020, 52, 1–2. [Google Scholar]
- Nasresfahani, M.; Karimpourfard, H.; Ahmadi, A.R. Studies on the infection of medicinal plants to root-knot nematodes in Esfahan Province: Brief report. Iran. J. Plant Pathol. 2008, 44, 24–25. [Google Scholar]
- Pofu, M.K.; van Biljon, R.E.; Mashela, W.P.; Shimelis, A.H. Responses of selected hemp cultivars to Meloidogyne incognita under greenhouse conditions. Am. Eurasian J. Agric. Environ. Sci. 2010, 9, 509–513. [Google Scholar]
- Coburn, J.; Desaeger, J. Host status and susceptibility of different hemp (Cannabis sativa L.) cultivars for root-knot nematode (Meloidogyne javanica). J. Nematol. 2019, 51, 6. [Google Scholar]
- Coburn, J.; Desaeger, J. Host status and susceptibility of Cannabis sativa cultivars to root-knot nematodes. J. Nematol. 2024, 56, 20240003. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, X.; Li, Y.; Ridout, K.; Serrano-Serrano, M.L.; Yang, Y.; Liu, A.; Ravikanth, G.; Nawaz, M.A.; Mumtaz, A.S.; et al. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci. Adv. 2021, 7, eabg2286. [Google Scholar] [CrossRef]
- Nasiou, E.; Giannakou, I.O. The potential use of carvacrol for the control of Meloidogyne javanica. Eur. J. Plant Pathol. 2017, 149, 415–424. [Google Scholar] [CrossRef]
- Tyler, J. Development of the root-knot nematode as affected by temperature. Hilgardia 1933, 7, 389–415. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Radwan, M.M.; Chandra, S.; Gul, S.; ElSohly, M.A. Cannabinoids, phenolics, terpenes and alkaloids of cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef]
- McPartland, J.M. Cannabis as repellent and pesticide. J. Int. Hemp Assoc. 1997, 4, 87–92. [Google Scholar]
- McPartland, J.M. Pathogenicity of Phomopsis ganjae on Cannabis sativa and the fungistatic effect of cannabinoids produced by the host. Mycopathologia 1984, 87, 149–153. [Google Scholar] [CrossRef]
- Saleemi, M.A.; Yahaya, N.; Zain, N.N.M.; Raoov, M.; Yong, Y.K.; Noor, N.S.; Lim, V. Antimicrobial and Cytotoxic Effects of Cannabinoids: An Updated Review with Future Perspectives and Current Challenges. Pharmaceuticals 2022, 15, 1228. [Google Scholar] [CrossRef]
- McPartland, J.M.; Glass, M. Nematicidal effects of hemp (Cannabis sativa) may not be mediated by cannabinoid receptors. New Zeal. J. Crop Hort. Sci. 2001, 29, 301–307. [Google Scholar] [CrossRef]
- Oakes, M.D.; Law, W.J.; Clark, T.; Bamber, B.A.; Komuniecki, R. Cannabinoids activate monoaminergic signaling to modulate key C. elegans behaviors. J. Neurosci. 2017, 37, 2859–2869. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, P.; Xie, Y.; Chen, X.; Solowij, N.; Green, K.; Chew, Y.L.; Huang, X.-F. Cannabidiol regulates CB1-pSTAT3 signaling for neurite outgrowth, prolongs lifespan, and improves health span in Caenorhabditis elegans of Aβ pathology models. FASEB J. 2020, 35, e21537. [Google Scholar] [CrossRef]
- Hussey, R.S.; Barker, K.R. A comparison of methods of collecting inocula of Meloidogyne species, including a new technique. Plant Dis. Rep. 1973, 57, 1025–1028. [Google Scholar]
- Byrd, D.W., Jr.; Kirkpatrick, T.; Barker, K.R. An improved technique for clearing and staining tissues for detection of nematodes. J. Nematol. 1983, 15, 142–143. [Google Scholar]
Plant Variety | Nematode Species | ||||||
---|---|---|---|---|---|---|---|
M. javanica | M. incognita | M. arenaria | M. hapla | M. luci | Control | Mean | |
Shoot Weight (g) | |||||||
Fedora 17 | 3.71 | 5.44 | 4.19 | 3.43 | 2.94 | 5.86 | 4.26 d |
Ferimon 12 | 4.07 | 4.99 | 4.89 | 4.26 | 4.38 | 5.90 | 4.75 cd |
Futura 75 | 4.83 | 6.29 | 6.74 | 3.73 | 5.92 | 7.48 | 5.83 a |
Santhica 27 | 4.68 | 6.50 | 5.08 | 5.75 | 4.78 | 6.92 | 5.62 ab |
Santhica 70 | 5.91 | 7.46 | 5.06 | 4.34 | 4.70 | 7.67 | 5.86 a |
KC Dora | 5.67 | 4.88 | 5.59 | 5.98 | 4.58 | 6.65 | 5.56 ab |
KC Zuzana | 3.49 | 4.22 | 6.59 | 5.95 | 3.05 | 7.14 | 5.07 bc |
Zenit | 5.07 | 4.27 | 4.04 | 5.21 | 3.86 | 5.81 | 4.71 cd |
USO 31 | 4.42 | 4.19 | 6.24 | 6.54 | 6.57 | 6.73 | 5.78 a |
Mean | 4.65 CD | 5.36 B | 5.38 B | 5.02 BC | 4.53 D | 6.68 A | |
Source of Variation | |||||||
Source | df | F-Ratio | p-Value | LSD5% | |||
Plant Variety | 8 | 7.84 | 0.0001 *** | 0.299 | |||
Nematode Species | 5 | 19.82 | 0.0001 *** | 0.244 | |||
Plant Variety × Nematode Species | 40 | 3.04 | 0.0001 *** | 0.732 |
Plant Variety | Nematode Species | ||||||
---|---|---|---|---|---|---|---|
M. javanica | M. incognita | M. arenaria | M. hapla | M. luci | Control | Mean | |
Root Weight (g) | |||||||
Fedora 17 | 1.39 | 2.00 | 1.25 | 0.95 | 1.41 | 2.20 | 1.53 c |
Ferimon 12 | 2.19 | 1.54 | 1.83 | 1.42 | 2.12 | 2.61 | 1.95 b |
Futura 75 | 1.67 | 2.18 | 2.65 | 1.50 | 2.47 | 3.29 | 2.29 a |
Santhica 27 | 1.76 | 2.51 | 1.74 | 1.78 | 2.11 | 2.99 | 2.15 ab |
Santhica 70 | 2.40 | 2.59 | 2.13 | 1.69 | 1.37 | 2.88 | 2.18 ab |
KC Dora | 2.03 | 1.47 | 2.74 | 2.78 | 1.45 | 2.94 | 2.24 ab |
KC Zuzana | 1.40 | 1.08 | 2.73 | 1.92 | 1.45 | 2.83 | 1.90 b |
Zenit | 2.47 | 1.19 | 1.54 | 2.21 | 1.47 | 2.74 | 1.94 b |
USO 31 | 1.22 | 0.93 | 1.97 | 2.07 | 2.94 | 3.27 | 2.07 ab |
Mean | 1.84 BC | 1.72 C | 2.06 B | 1.81 BC | 1.87 BC | 2.86 A | |
Source of Variation | |||||||
Source | df | F Ratio | p-Value | LSD5% | |||
Plant Variety | 8 | 3.58 | 0.0005 *** | 0.172 | |||
Nematode Species | 5 | 18.24 | 0.0001 *** | 0.140 | |||
Plant Variety × Nematode Species | 40 | 2.88 | 0.0001 *** | 0.421 |
Plant Variety | Nematode Species | |||||
---|---|---|---|---|---|---|
M. javanica | M. incognita | M. arenaria | M. hapla | M. luci | Mean | |
Females Per Gram of Root | ||||||
Fedora 17 | 46.82 | 23.02 | 23.61 | 12.90 | 26.07 | 26.48 ab |
Ferimon 12 | 32.97 | 22.75 | 17.17 | 8.90 | 26.50 | 21.66 bcd |
Futura 75 | 16.62 | 10.71 | 11.20 | 6.74 | 8.03 | 10.66 fg |
Santhica 27 | 26.20 | 16.85 | 10.31 | 9.99 | 24.17 | 17.50 cde |
Santhica 70 | 21.87 | 24.57 | 23.75 | 14.63 | 34.02 | 23.77 abc |
KC Dora | 20.82 | 15.24 | 10.00 | 2.78 | 18.23 | 13.41 ef |
KC Zuzana | 25.39 | 25.07 | 4.88 | 7.07 | 26.57 | 17.79 cde |
Zenit | 33.34 | 29.46 | 13.45 | 2.21 | 16.49 | 18.99 cde |
USO 31 | 53.84 | 35.81 | 22.36 | 7.01 | 25.83 | 28.97 a |
Mean | 30.87 A | 22.60 B | 15.19 C | 8.02 D | 20.42 B | |
Source of Variation | ||||||
Source | df | F-Ratio | p-Value | LSD5% | ||
Plant Variety | 8 | 11.29 | 0.0001 *** | 5.221 | ||
Nematode Species | 4 | 40.61 | 0.0001 *** | 5.046 | ||
Plant Variety × Nematode Species | 32 | 1.84 | 0.002 ** | 11.233 |
Plant Variety | Nematode Species | |||||
---|---|---|---|---|---|---|
M. javanica | M. incognita | M. arenaria | M. hapla | M. luci | Mean | |
Number of Egg Masses per Gram of Root | ||||||
Fedora 17 | 36.69 | 9.95 | 4.15 | 4.15 | 11.02 | 13.19 b |
Ferimon 12 | 24.28 | 11.26 | 7.10 | 2.33 | 9.80 | 10.95 bcd |
Futura 75 | 13.44 | 5.73 | 1.04 | 1.71 | 1.58 | 4.70 fg |
Santhica 27 | 18.54 | 6.68 | 2.20 | 3.88 | 11.93 | 8.64 cde |
Santhica 70 | 17.68 | 13.55 | 5.82 | 4.21 | 18.60 | 11.97 bc |
KC Dora | 14.70 | 6.16 | 2.88 | 3.55 | 5.55 | 6.57 efg |
KC Zuzana | 18.44 | 11.75 | 0.13 | 2.25 | 7.34 | 7.98 def |
Zenit | 25.71 | 14.07 | 10.00 | 8.38 | 6.85 | 13.00 b |
USO 31 | 43.36 | 19.04 | 5.82 | 2.60 | 11.33 | 16.43 a |
Mean | 23.65 A | 10.91 B | 4.34 C | 3.67 C | 9.33 B | |
Source of Variation | ||||||
Source | df | F-Ratio | p-Value | LSD5% | ||
Plant Variety | 8 | 9.72 | 0.0001 *** | 2.343 | ||
Nematode Species | 4 | 90.82 | 0.0001 *** | 4.647 | ||
Plant Variety × Nematode Species | 32 | 2.66 | 0.0001 *** | 5.136 |
Plant Variety | Nematode Species | |||||
---|---|---|---|---|---|---|
M. javanica | M. incognita | M. arenaria | M. hapla | M. luci | Mean | |
Fecundity (Number of Eggs per Egg Mass) | ||||||
Fedora 17 | 80.56 | 43.79 | 18.02 | 31.24 | 42.01 | 43.12 abc |
Ferimon 12 | 74.08 | 48.08 | 47.00 | 17.57 | 36.80 | 44.71 abc |
Futura 75 | 71.43 | 44.34 | 7.67 | 26.30 | 18.66 | 33.68 d |
Santhica 27 | 67.18 | 46.24 | 13.03 | 29.44 | 49.09 | 41.00 bcd |
Santhica 70 | 80.60 | 54.18 | 25.18 | 28.96 | 54.57 | 48.70 ab |
KC Dora | 74.35 | 41.21 | 24.98 | 24.25 | 31.24 | 39.21 cd |
KC Zuzana | 69.64 | 40.94 | 1.67 | 29.39 | 42.79 | 36.89 cd |
Zenit | 76.13 | 41.13 | 20.99 | 42.59 | 41.97 | 44.56 abc |
USO 31 | 72.99 | 43.56 | 44.29 | 46.74 | 43.52 | 50.22 a |
Mean | 74.11 A | 44.83 B | 22.54 D | 30.72 C | 40.07 B | |
Source of Variation | ||||||
Source | df | F-Ratio | p-Value | LSD5% | ||
Plant Variety | 8 | 8.35 | 0.0001 *** | 7.234 | ||
Nematode Species | 4 | 107.95 | 0.0001 *** | 8.163 | ||
Plant Variety × Nematode Species | 32 | 2.09 | 0.0002 *** | 9.732 |
Cultivar | Origin | Sexual Type | Vegetative Cycle |
---|---|---|---|
Fedora 17 | France | Monoecious | Early (<125 days) |
Ferimon 12 | France | Monoecious | Early (<125 days) |
Futura 75 | France | Monoecious | Late (<145 days) |
Santhica 27 | France | Monoecious | Medium (<135 days) |
Santhica 70 | France | Monoecious | Late (<145 days) |
KC Dora | Hungary | Monoecious | Late (<145 days) |
KC Zuzana | Hungary | Monoecious | Early (<125 days) |
Zenit | Romania | Monoecious | Early (<125 days) |
USO 31 | Ukraine | Monoecious | Early (<125 days) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntinokas, D.; Roussis, I.; Mavroeidis, A.; Stavropoulos, P.; Folina, A.; Kakabouki, I.; Tzortzakakis, E.A.; Bilalis, D.; Giannakou, I.O. Virulence of Five Root-Knot Nematodes (Meloidogyne spp.) on Nine Industrial Hemp (Cannabis sativa L.) Varieties and Nematicidal Potential of Hemp Seed Extracts Against Meloidogyne javanica. Plants 2025, 14, 227. https://doi.org/10.3390/plants14020227
Ntinokas D, Roussis I, Mavroeidis A, Stavropoulos P, Folina A, Kakabouki I, Tzortzakakis EA, Bilalis D, Giannakou IO. Virulence of Five Root-Knot Nematodes (Meloidogyne spp.) on Nine Industrial Hemp (Cannabis sativa L.) Varieties and Nematicidal Potential of Hemp Seed Extracts Against Meloidogyne javanica. Plants. 2025; 14(2):227. https://doi.org/10.3390/plants14020227
Chicago/Turabian StyleNtinokas, Dionysios, Ioannis Roussis, Antonios Mavroeidis, Panteleimon Stavropoulos, Antigolena Folina, Ioanna Kakabouki, Emmanuel A. Tzortzakakis, Dimitrios Bilalis, and Ioannis O. Giannakou. 2025. "Virulence of Five Root-Knot Nematodes (Meloidogyne spp.) on Nine Industrial Hemp (Cannabis sativa L.) Varieties and Nematicidal Potential of Hemp Seed Extracts Against Meloidogyne javanica" Plants 14, no. 2: 227. https://doi.org/10.3390/plants14020227
APA StyleNtinokas, D., Roussis, I., Mavroeidis, A., Stavropoulos, P., Folina, A., Kakabouki, I., Tzortzakakis, E. A., Bilalis, D., & Giannakou, I. O. (2025). Virulence of Five Root-Knot Nematodes (Meloidogyne spp.) on Nine Industrial Hemp (Cannabis sativa L.) Varieties and Nematicidal Potential of Hemp Seed Extracts Against Meloidogyne javanica. Plants, 14(2), 227. https://doi.org/10.3390/plants14020227