Mechanism of Impatiens glandulifera Royle Allelopathy to Sinapis alba L. and Raphanus sativus L. Germination Is Through Oxidative Stress
Abstract
1. Introduction
2. Results
2.1. Level of NQs in Plant Extract
2.2. Germination
2.2.1. Effect of I. glandulifera Leaf Extract on Germination of White Mustard and Radish Seeds
2.2.2. Effect of 2-MNQ on Germination of White Mustard and Radish Seeds
2.3. Oxidative Stress Parameters
2.3.1. Effect of I. glandulifera Leaf Extract on Oxidative Stress Parameters of White Mustard and Radish Seedlings
2.3.2. Effect of 2-MNQ on Oxidative Stress Parameters of White Mustard and Radish Seedlings
2.4. Total Polyphenols
2.4.1. Effect of I. glandulifera Leaf Extract on Level of Polyphenols in White Mustard and Radish Seedlings
2.4.2. Effect of 2-MNQ on Level of Polyphenols in White Mustard and Radish Seedlings
3. Discussion
4. Materials and Methods
4.1. Chemicals and Standards Preparation
4.2. Collection of Plant Material and Extract Preparation
4.3. Quantification of 2-HNQ and 2-MNQ
4.4. Germination Assay
4.4.1. I. glandulifera Leaf Extract Germination Assay
4.4.2. 2-MNQ Germination Assay
4.5. Preparation of Seedlings Homogenate
4.6. Determination of Oxidative Stress Parameters
4.7. Determination of Total Polyphenols
4.8. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bieberich, J.; Lauerer, M.; Drachsler, M.; Heinrichs, J.; Muller, S.; Feldhaar, H. Species- and developmental stage-specific effects of allelopathy and competition of invasive Impatiens glandulifera on co-occurring plants. PLoS ONE 2018, 13, e0205843. [Google Scholar] [CrossRef]
- Vrchotova, N.; Šera, B.; Krejčova, J. Allelopathic activity of extracts from Impatiens species. Plant Soil Environ. 2011, 57, 57–60. [Google Scholar] [CrossRef]
- Block, A.K.; Yakubova, E.; Widhalm, J.R. Specialized naphthoquinones present in Impatiens glandulifera nectaries inhibit the growth of fungal nectar microbes. Plant Direct 2019, 3, e00132. [Google Scholar] [CrossRef] [PubMed]
- Ruckli, R.; Hesse, K.; Glauser, G.; Rusterholz, H.-P.; Baur, B. Inhibitory potential of naphthoquinones leached from leaves and exuded from roots of the invasive plant Impatiens glandulifera. J. Chem. Ecol. 2014, 40, 371–378. [Google Scholar] [CrossRef]
- Coakley, S.; Petti, C. Impacts of the invasive Impatiens glandulifera: Lessons learned from one of Europe’s top invasive species. Biology 2021, 10, 619. [Google Scholar] [CrossRef] [PubMed]
- Ab Razak, N.; Gange, A.C.; Sutton, B.C.; Mansor, A. The invasive plant Impatiens glandulifera manipulates microbial associates of competing native species. Plants 2023, 12, 1552. [Google Scholar] [CrossRef]
- Lobstein, A.; Brenne, X.; Feist, E.; Metz, N.; Weniger, B.; Anton, R. Quantitative Determination of Naphthoquinones of Impatiens Species. Phytochem. Anal. 2001, 12, 202–205. [Google Scholar] [CrossRef]
- Triska, J.; Vrchotova, N.; Sykora, J.; Moos, M. Separation and Identification of 1,2,4-Trihydroxynaphthalene-1-O-glucoside in Impatiens glandulifera Royle. Molecules 2013, 18, 8429–8439. [Google Scholar] [CrossRef] [PubMed]
- Maleš, Ž.; Domijan, A.-M.; Duka, I.; Marić, T.; Bojić, M.; Rimac, H.; Mitić, B.; Hruševar, D.; Barišić, K.; Verbanac, D. Determination of naphthoquinones in invasive alien plants Impatiens glandulifera Royle and I. balfourii Hook.f. from Croatia. Croat. Chem. Acta 2022, 95, 1–5. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Chang, C.; Wang, B.; Shi, L.; Li, Y.; Duo, L.; Zhang, W. Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate. J. Plant Physiol. 2010, 167, 1152–1156. [Google Scholar] [CrossRef]
- OECD Guidelines for the Testing of Chemicals. Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test; OECD: Paris, France, 2006. [Google Scholar]
- Alemayehu, Y.; Chimdesa, M.; Yusuf, Z. Allelopathic Effects of Lantana camara L. Leaf Aqueous Extracts on Germination and Seedling Growth of Capsicum annuum L. and Daucus carota L. Scientifica 2024, 2024, 9557081. [Google Scholar] [CrossRef]
- Amirul Alam, M.; Hakim, M.A.; Shukor Juraimi, A.; Rafii, M.Y.; Hasan, M.M.; Aslani, F. Potential allelopathic effects of rice plant aqueous extracts on germination and seedling growth of some rice field common weeds. Ital. J. Agron. 2018, 13, 1066. [Google Scholar] [CrossRef]
- Erhatić, R.; Horvat, D.; Zorić, Z.; Repajić, M.; Jović, T.; Herceg, M.; Habuš, M.; Srečec, S. Aqueous Extracts of Four Medicinal Plants and Their Allelopathic Effects on Germination and Seedlings: Their Morphometric Characteristics of Three Horticultural Plant Species. Appl. Sci. 2023, 13, 2258. [Google Scholar] [CrossRef]
- Janusauskaite, D. The Allelopathic Activity of Aqueous Extracts of Helianthus annuus L., Grown in Boreal Conditions, on Germination, Development, and Physiological Indices of Pisum sativum L. Plants 2023, 12, 1920. [Google Scholar] [CrossRef] [PubMed]
- Mamude, C.; Asfaw, Z. Allelopathic effects of Oldeania alpina (K. Schum.) Stapleton leaf aqueous extract on seed germination and initial seedling growth of two selected crops. Adv. Bamboo Sci. 2023, 4, 100034. [Google Scholar] [CrossRef]
- Moh, S.M.; Kurisawa, N.; Suenaga, K.; Kato-Noguchi, H. Allelopathic Potential of Marsdenia tenacissima (Roxb.) Moon against Four Test Plants and the Biological Activity of Its Allelopathic Novel Compound, 8-Dehydroxy-11b-OAcetyl-12b-O-Tigloyl-17b-Marsdenin. Plants 2023, 12, 1663. [Google Scholar] [CrossRef]
- Wang, K.; Wang, T.; Ren, C.; Dou, P.; Miao, Z.; Liu, X.; Huang, D.; Wang, K. Aqueous Extracts of Three Herbs Allelopathically Inhibit Lettuce Germination but Promote Seedling Growth at Low Concentrations. Plants 2022, 11, 486. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, Y.; Wei, S.; Yu, X. Isolation of Allelochemicals from Rhododendron capitatum and Their Allelopathy on Three Perennial Herbaceous Plants. Plants 2024, 13, 2585. [Google Scholar] [CrossRef]
- Purmalis, O.; Klavins, L.; Niedrite, E.; Mezulis, M.; Klavins, M. Invasive Plants as a Source of Polyphenols with High Radical Scavenging Activity. Plants 2025, 14, 467. [Google Scholar] [CrossRef] [PubMed]
- Haghpanah, M.; Hashemipetroudi, S.; Arzani, A.; Araniti, F. Drought Tolerance in Plants: Physiological and Molecular Responses. Plants 2024, 13, 2962. [Google Scholar] [CrossRef]
- Mohan, V.R.; MacDonald, M.T.; Abbey, L. Impact of Water Deficit Stress on Brassica Crops: Growth and Yield, Physiological and Biochemical Responses. Plants 2025, 14, 1942. [Google Scholar] [CrossRef]
- Panda, S.K.; Gupta, D.; Patel, M.; Vyver, C.V.D.; Koyama, H. Functionality of Reactive Oxygen Species (ROS) in Plants: Toxicity and Control in Poaceae Crops Exposed to Abiotic Stress. Plants 2024, 13, 2071. [Google Scholar] [CrossRef]
- Segura-Aguilar, J.; Hakman, I.; Rydstrom, J. The effect of 5OH-1,4-naphthoquinone on Norway spruce seeds during germination. Plant Physiol. 1992, 100, 1955–1961. [Google Scholar] [CrossRef]
- Rudnicka, M.; Ludynia, M.; Karcz, W. A comparison of the effects of 1,4-naphthoquinone and 2-hydroxy-1,4-naphthoquinone (lawsone) on indole-3-acetic acid (IAA)-induced growth of maize coleoptile cells. Plant Growth Regul. 2018, 84, 107–122. [Google Scholar] [CrossRef]
- Klotz, L.O.; Hou, X.; Jacob, C. 1,4-Naphthoquinones: From oxidative damage to cellular and inter-cellular signaling. Molecules 2014, 19, 12902–14918. [Google Scholar] [CrossRef]
- Domijan, A.-M.; Ralić, J.; Radić Brkanac, S.; Rumora, L.; Žanić-Grubišić, T. Quantification of malondialdehyde by HPLC-FL—Application to various biological samples. Biomed. Chromat. 2015, 29, 41–46. [Google Scholar] [CrossRef]
- Glavaš Ljubimir, K.; Domijan, A.-M.; Radić Brkanac, S. Phytotoxic Action of Silver Nanoparticles on Lemna minor: Multi-Parameter Analysis of Different Physiological Processes. Plants 2023, 12, 343. [Google Scholar] [CrossRef] [PubMed]
- Duka, I.; Gerić, M.; Gajski, G.; Friščić, M.; Maleš, Ž.; Domijan, A.-M.; Turčić, P. Optimization of a fast screening method for the assessment of low molecular weight thiols in human blood and plasma suitable for biomonitoring studies. J. Environ. Sci. Health Part A 2019, 55, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Juszczak, A.M.; Marijan, M.; Jakupović, L.; Tomczykowa, M.; Tomczyk, M.; Zovko Končić, M. Glycerol and Natural Deep Eutectic Solvents Extraction for Preparation of Luteolin-Rich Jasione montana Extracts with Cosmeceutical Activity. Metabolites 2023, 13, 32. [Google Scholar] [CrossRef] [PubMed]
Treatment | S. alba Fresh Weight (g) | R. sativus Fresh Weight (g) |
---|---|---|
Negative control (d-water) | 0.61 ± 0.03 a | 0.68 ± 0.07 a |
1.5 mL | 0.42 ± 0.04 b | 0.64 ± 0.04 a |
3 mL | 0.39 ± 0.05 bc | 0.58 ± 0.08 a |
6 mL | 0.28 ± 0.08 c | 0.56 ± 0.02 a |
Positive control (0.02 M CuSO4) | 0.27± 0.03 c | 0.35 ± 0.05 b |
Treatment | S. alba Fresh Weight (g) | R. sativus Fresh Weight (g) |
---|---|---|
Negative control (d-water) | 0.34 ± 0.04 a | 0.44 ± 0.03 a |
1 µg/mL | 0.31 ± 0.03 a | 0.45 ± 0.02 a |
5 µg/mL | 0.29 ± 0.02 ab | 0.41 ± 0.05 a |
10 µg/mL | 0.28 ± 0.07 b | 0.39 ± 0.05 ab |
20 µg/mL | 0.28 ± 0.05 b | 0.44 ± 0.03 a |
30 µg/mL | 0.27 ± 0.08 bc | 0.43 ± 0.04 a |
Positive control (0.02 M CuSO4) | 0.26± 0.06 bc | 0.34 ± 0.02 b |
Treatment | S. alba TP Level (µg/mL) | R. sativus TP Level (µg/mL) |
---|---|---|
Control (d-water) | 342.3 ± 21.9 d | 373.9 ± 21.9 c |
1.5 mL | 350.1 ± 26.6 cd | 405.3 ± 22.9 bc |
3 mL | 397.3 ± 12.7 c | 420.7 ± 19.7 bc |
6 mL | 467.3 ± 18.9 b | 424.3 ± 24.0 b |
PC (0.02M CuSO4) | 589 ± 12.1 a | 547.8 ± 14.9 a |
Treatment | S. alba TP Level (µg/mL) | R. sativus TP Level (µg/mL) |
---|---|---|
Control (d-water) | 351 ± 15.7 d | 372 ± 18.0 c |
1 µg/mL | 344.3 ± 14.8 d | 395 ± 12.2 c |
5 µg/mL | 396.7 ± 10.8 c | 402 ± 11.5 c |
10 µg/mL | 416 ± 9.6 c | 442.3 ± 9.3 b |
20 µg/mL | 475.3 ± 10.1 b | 465.7 ± 21.0 b |
30 µg/mL | 510.3± 10.5 a | 506 ± 7.9 a |
PC (0.02 M CuSO4) | 525.7 ± 14.1 a | 522.7 ± 15.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domijan, A.-M.; Bival Štefan, M.; Duka, I.; Marić, T.; Friščić, M.; Maleš, Ž.; Mitić, B.; Hruševar, D. Mechanism of Impatiens glandulifera Royle Allelopathy to Sinapis alba L. and Raphanus sativus L. Germination Is Through Oxidative Stress. Plants 2025, 14, 2901. https://doi.org/10.3390/plants14182901
Domijan A-M, Bival Štefan M, Duka I, Marić T, Friščić M, Maleš Ž, Mitić B, Hruševar D. Mechanism of Impatiens glandulifera Royle Allelopathy to Sinapis alba L. and Raphanus sativus L. Germination Is Through Oxidative Stress. Plants. 2025; 14(18):2901. https://doi.org/10.3390/plants14182901
Chicago/Turabian StyleDomijan, Ana-Marija, Maja Bival Štefan, Ivan Duka, Tihana Marić, Maja Friščić, Željan Maleš, Božena Mitić, and Dario Hruševar. 2025. "Mechanism of Impatiens glandulifera Royle Allelopathy to Sinapis alba L. and Raphanus sativus L. Germination Is Through Oxidative Stress" Plants 14, no. 18: 2901. https://doi.org/10.3390/plants14182901
APA StyleDomijan, A.-M., Bival Štefan, M., Duka, I., Marić, T., Friščić, M., Maleš, Ž., Mitić, B., & Hruševar, D. (2025). Mechanism of Impatiens glandulifera Royle Allelopathy to Sinapis alba L. and Raphanus sativus L. Germination Is Through Oxidative Stress. Plants, 14(18), 2901. https://doi.org/10.3390/plants14182901