Current Assessment and Future Perspectives on Phytoremediation of Heavy Metals
Abstract
1. Introduction
1.1. What Are Heavy Metals?
1.2. Sources and Risks of Heavy Metals
1.3. Effect of Heavy Metal on Plants
1.4. What Is Phytoremediation?
1.5. Methodology of the Review
2. Phytoremediation: An Overview
2.1. Advantages of Phytoremediation
2.2. Phytoremediation Systems
3. Heavy Metal Phytoremediation
3.1. Mechanism of Heavy Metal Phytoremediation
3.2. What Are Hyperaccumulators?
3.3. Factors That Influence Phytoremediation
4. Selecting an Ideal Candidate for Heavy Metal Phytoremediation
4.1. Plant Ideotype
4.2. Herbaceous Plants Used in Heavy Metal Phytoremediation
4.3. Woody Plants Used in Heavy Metal Phytoremediation
4.4. Microalgae and Circular Economy
4.5. Use of Biotechnology in Phytoremediation
5. Recent Field Studies
6. Challenges and Future Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, H.; Khan, E. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicol. Environ. Chem. 2018, 100, 6–19. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Zarcinas, B.A.; Stevens, D.P.; Cook, N. Soil testing for heavy metals. Commun. Soil Sci. Plant Anal. 2000, 31, 1661–1700. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 133–164. [Google Scholar]
- Keshavarzi, B.; Tazarvi, Z.; Rajabzadeh, M.A.; Najmeddin, A. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmos. Environ. 2015, 119, 1–10. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Missimer, T.M.; Teaf, C.M.; Beeson, W.T.; Maliva, R.G.; Woolschlager, J.; Covert, D.J. Natural background and anthropogenic arsenic enrichment in Florida soils, surface water, and groundwater: A review with a discussion on public health risk. Int. J. Environ. Res. Public Health 2018, 15, 2278. [Google Scholar] [CrossRef]
- Masindi, V.; Muedi, K.L. Environmental contamination by heavy metals. Heavy Met. 2018, 10, 115–132. [Google Scholar]
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Front. Plant Sci. 2018, 9, 1476. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Hembrom, S.; Singh, B.; Gupta, S.K.; Nema, A.K. A comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: A global perspective. In Contemporary Environmental Issues and Challenges in Era of Climate Change; Springer: Singapore, 2020; pp. 33–63. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1353–1376. [Google Scholar] [CrossRef]
- Fasani, E.; Manara, A.; Martini, F.; Furini, A.; DalCorso, G. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ. 2018, 41, 1201–1232. [Google Scholar] [CrossRef]
- Seth, C.S. A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot. Rev. 2012, 78, 32–62. [Google Scholar] [CrossRef]
- Cempel, M.; Nikel, G.J.P.J.S. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Appenroth, K.J. Definition of “heavy metals” and their role in biological systems. In Soil Heavy Metals; Springer: Berlin/Heidelberg, Germany, 2010; pp. 19–29. [Google Scholar]
- Asati, A.; Pichhode, M.; Nikhil, K. Effect of heavy metals on plants: An overview. Int. J. Appl. Innov. Eng. Manag. 2016, 5, 56–66. [Google Scholar]
- Popova, L.P.; Maslenkova, L.T.; Yordanova, R.Y.; Ivanova, A.P.; Krantev, A.P.; Szalai, G.; Janda, T. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol. Biochem. 2009, 47, 224–231. [Google Scholar] [CrossRef]
- Xu, J.; Yin, H.; Li, X. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep. 2009, 28, 325–333. [Google Scholar] [CrossRef]
- Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Arsenov, D.; Zupunski, M.; Borisev, M.; Nikolic, N.; Orlovic, S.; Pilipovic, A.; Pajevic, S. Exogenously applied citric acid enhances antioxidant defense and phytoextraction of cadmium by willows (Salix spp.). Water Air Soil Pollut. 2017, 228, 221. [Google Scholar] [CrossRef]
- Nguyen, C.C.; Hugie, C.N.; Kile, M.L.; Navab-Daneshmand, T. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review. Front. Environ. Sci. Eng. 2019, 13, 46. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Simal-Gandara, J. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Bellido-Pedraza, C.M.; Torres, M.J.; Llamas, A. The microalgae Chlamydomonas for bioremediation and bioproduct production. Cells 2024, 13, 1137. [Google Scholar] [CrossRef] [PubMed]
- Cameselle, C.; Gouveia, S.; Urréjola, S. Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals. Chemosphere 2019, 229, 481–488. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef]
- Wan, X.; Lei, M.; Chen, T. Cost—Benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total Environ. 2016, 563, 796–802. [Google Scholar] [CrossRef]
- Jacobs, A.; De Brabandere, L.; Drouet, T.; Sterckeman, T.; Noret, N. Phytoextraction of Cd and Zn with Noccaea caerulescens for urban soil remediation: Influence of nitrogen fertilization and planting density. Ecol. Eng. 2018, 116, 178–187. [Google Scholar] [CrossRef]
- Sas-Nowosielska, A.; Galimska-Stypa, R.; Kucharski, R.; Zielonka, U.; Małkowski, E.; Gray, L. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environ. Monit. Assess. 2008, 137, 101–109. [Google Scholar] [CrossRef]
- Adeoye, A.O.; Adebayo, I.A.; Afodun, A.M.; Ajijolakewu, K.A. Benefits and limitations of phytoremediation: Heavy metal remediation review. In Phytoremediation; Academic Press: Cambridge, MA, USA, 2022; pp. 227–238. [Google Scholar]
- Sun, H.; Ding, Y.; Wang, Z.; Luo, J.; Wang, N. Identification of a root-specific expression promoter in poplar and its application in genetic engineering for cadmium phytoremediation. Plant Cell Rep. 2025, 44, 89. [Google Scholar] [CrossRef]
- Nedjimi, B. Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Appl. Sci. 2021, 3, 286. [Google Scholar] [CrossRef]
- Bhat, S.A.; Bashir, O.; Haq, S.A.U.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef]
- Sytar, O.; Ghosh, S.; Malinska, H.; Zivcak, M.; Brestic, M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiol. Plant. 2021, 173, 148–166. [Google Scholar] [CrossRef]
- Gul, I.; Manzoor, M.; Ahmad, I.; Kallerhoff, J.; Arshad, M. Phytoaccumulation of cadmium by Pelargonium × hortorum—Tolerance and metal recovery. Environ. Sci. Pollut. Res. 2023, 30, 32673–32682. [Google Scholar] [CrossRef]
- Sinha, R.; Singh, A.K.; Bauddh, K.; Sharma, T.R.; Sharma, P. Phytomining: A sustainable approach for recovery and extraction of valuable metals. In Phytorestoration of Abandoned Mining and Oil Drilling Sites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 487–506. [Google Scholar]
- Pang, Y.L.; Quek, Y.Y.; Lim, S.; Shuit, S.H. Review on Phytoremediation Potential of Floating Aquatic Plants for Heavy Metals: A Promising Approach. Sustainability 2023, 15, 1290. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.; Yao, L.; Meng, Y.; Ma, X.; Si, E.; Ren, P.; Yang, K.; Shang, X.; Wang, H. Halophyte Halogeton glomeratus, a promising candidate for phytoremediation of heavy metal-contaminated saline soils. Plant Soil 2019, 442, 323–331. [Google Scholar] [CrossRef]
- Rai, G.K.; Bhat, B.A.; Mushtaq, M.; Tariq, L.; Rai, P.K.; Basu, U.; Dar, A.A.; Islam, S.T.; Dar, T.U.H.; Bhat, J.A. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies. Physiol. Plant. 2021, 173, 287–304. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, J.C.; Liu, F.; He, S.; Zhou, W. Selenium removal and biotransformation in a floating-leaved macrophyte system. Environ. Pollut. 2019, 245, 941–949. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Li, K.; Wan, Y.; Wang, Q.; Zhuang, Z.; Guo, Y.; Li, H. Uptake, translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza sativa L.). J. Nanobiotechnol. 2020, 18, 103. [Google Scholar] [CrossRef]
- Chlebek, D.; Hupert-Kocurek, K. Endophytic bacteria in the phytodegradation of persistent organic pollutants. Postępy Mikrobiol.-Adv. Microbiol. 2019, 58, 70–79. [Google Scholar] [CrossRef]
- Liu, H.; Tang, X.; Tam, N.F.Y.; Li, Q.; Ruan, W.; Xu, X.; Gao, Y.; Yan, Q.; Zhang, X.; Yang, Y.; et al. Phytodegradation of neonicotinoids in Cyperus papyrus from enzymatic and transcriptomic perspectives. J. Hazard. Mater. 2024, 462, 132715. [Google Scholar] [CrossRef] [PubMed]
- Pilon-Smits, E.A.; Banuelos, G.S.; Parker, D.R. Uptake, metabolism, and volatilization of selenium by terrestrial plants. In Salinity and Drainage in San Joaquin Valley, California: Science, Technology, and Policy; Springer: Berlin/Heidelberg, Germany, 2014; pp. 147–164. [Google Scholar]
- Zayed, A.; Pilon-Smits, E.; deSouza, M.; Lin, Z.Q.; Terry, N. Remediation of selenium-polluted soils and waters by phytovolatilization. In Phytoremediation of Contaminated Soil and Water; CRC Press: Boca Raton, FL, USA, 2020; pp. 61–83. [Google Scholar]
- Leonard, T.L.; Taylor, G.E., Jr.; Gustin, M.S.; Fernandez, G.C. Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environ. Toxicol. Chem. Int. J. 1998, 17, 2063–2071. [Google Scholar] [CrossRef]
- Ruiz, O.N.; Daniell, H. Genetic engineering to enhance mercury phytoremediation. Curr. Opin. Biotechnol. 2009, 20, 213–219. [Google Scholar] [CrossRef]
- Wang, J.; Feng, X.; Anderson, C.W.; Xing, Y.; Shang, L. Remediation of mercury contaminated sites—A review. J. Hazard. Mater. 2012, 221, 1–18. [Google Scholar] [CrossRef]
- Agathokleous, E.; Calabrese, E.J.; Veresoglou, S.D. The microbiome orchestrates contaminant low-dose phytostimulation. Trends Plant Sci. 2025, 30, 515–525. [Google Scholar] [CrossRef]
- Bartucca, M.L.; Cerri, M.; Del Buono, D.; Forni, C. Use of biostimulants as a new approach for the improvement of phytoremediation performance—A Review. Plants 2022, 11, 1946. [Google Scholar] [CrossRef]
- Kushwaha, A.; Hans, N.; Kumar, S.; Rani, R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [Google Scholar] [CrossRef]
- Awa, S.H.; Hadibarata, T. Removal of heavy metals in contaminated soil by phytoremediation mechanism: A review. Water Air Soil Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Arsenov, D.; Župunski, M.; Borišev, M.; Nikolić, N.; Pilipovic, A.; Orlovic, S.; Kebert, M.; Pajevic, S. Citric acid as soil amendment in cadmium removal by Salix viminalis L.; alterations on biometric attributes and photosynthesis. Int. J. Phytoremediat. 2020, 22, 29–39. [Google Scholar] [CrossRef]
- You, Y.; Dou, J.; Xue, Y.; Jin, N.; Yang, K. Chelating Agents in Assisting Phytoremediation of Uranium-Contaminated Soils: A Review. Sustainability 2022, 14, 6379. [Google Scholar] [CrossRef]
- Török, A.; Gulyás, Z.; Szalai, G.; Kocsy, G.; Majdik, C. Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. J. Hazard. Mater. 2015, 299, 371–378. [Google Scholar] [CrossRef]
- Sharma, J.K.; Kumar, N.; Singh, N.P.; Santal, A.R. Phytoremediation technologies and its mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front. Plant Sci. 2023, 14, 1076876. [Google Scholar] [CrossRef] [PubMed]
- Pilon-Smits, E.; Pilon, M. Phytoremediation of metals using transgenic plants. Crit. Rev. Plant Sci. 2002, 21, 439–456. [Google Scholar] [CrossRef]
- Narayanan, M.; Ma, Y. Metal tolerance mechanisms in plants and microbe-mediated bioremediation. Environ. Res. 2023, 222, 115413. [Google Scholar] [CrossRef]
- Thakuria, A.; Singh, K.K.; Dutta, A.; Corton, E.; Stom, D.; Barbora, L.; Goswami, P. Phytoremediation of toxic chemicals in aquatic environment with special emphasis on duckweed mediated approaches. Int. J. Phytoremediat. 2023, 25, 1699–1713. [Google Scholar] [CrossRef]
- Guo, J.; Dai, X.; Xu, W.; Ma, M. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 2008, 72, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Goldsbrough, P. Metal tolerance in plants: The role of phytochelatins and metallothioneins. In Phytoremediation of contaminated Soil and Water; CRC Press: Boca Raton, FL, USA, 2020; pp. 221–233. [Google Scholar]
- Misra, S.; Gedamu, L. Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor. Appl. Genet. 1989, 78, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.M.; Gatehouse, J.A.; Lindsay, W.P.; Shi, J.; Tommey, A.M.; Robinson, N.J. Expression of the pea metallothionein-like gene PsMT A in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMT A function. Plant Mol. Biol. 1992, 20, 1019–1028. [Google Scholar] [CrossRef]
- Pan, A.; Yang, M.; Tie, F.; Li, L.; Chen, Z.; Ru, B. Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol. Biol. 1994, 24, 341–351. [Google Scholar] [CrossRef]
- Joshi, R.; Pareek, A.; Singla-Pareek, S.L. Plant metallothioneins: Classification, distribution, function, and regulation. In Plant Metal Interaction; Elsevier: Amsterdam, The Netherlands, 2016; pp. 239–261. [Google Scholar]
- Zou, T.; Pu, L.; Lin, R.; Mo, H.; Wang, Z.; Jian, S.; Zhang, M. Roles of Canavalia rosea metallothioneins in metal tolerance and extreme environmental adaptation to tropical coral reefs. J. Plant Physiol. 2022, 268, 153559. [Google Scholar] [CrossRef]
- Chatterjee, S.; Kumari, S.; Rath, S.; Priyadarshanee, M.; Das, S. Diversity, structure and regulation of microbial metallothionein: Metal resistance and possible applications in sequestration of toxic metals. Metallomics 2020, 12, 1637–1655. [Google Scholar] [CrossRef]
- Chia, J.C. Phytochelatin synthase in heavy metal detoxification and xenobiotic metabolism. In Biodegradation Technology of Organic and Inorganic Pollutants; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Cobbett, C.S. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 2000, 3, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Ovečka, M.; Takáč, T. Managing heavy metal toxicity stress in plants: Biological and biotechnological tools. Biotechnol. Adv. 2014, 32, 73–86. [Google Scholar] [CrossRef]
- Ezaki, B.; Katsuhara, M.; Kawamura, M.; Matsumoto, H. Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol. 2001, 127, 918–927. [Google Scholar] [CrossRef]
- Maughan, S.; Foyer, C.H. Engineering and genetic approaches to modulating the glutathione network in plants. Physiol. Plant. 2006, 126, 382–397. [Google Scholar] [CrossRef]
- Tiwari, J.; Ma, Y.; Bauddh, K. Arbuscular mycorrhizal fungi: An ecological accelerator of phytoremediation of metal contaminated soils. Arch. Agron. Soil Sci. 2022, 68, 283–296. [Google Scholar] [CrossRef]
- Vestergaard, M.D.; Matsumoto, S.; Nishikori, S.; Shiraki, K.; Hirata, K.; Takagi, M. Chelation of cadmium ions by phytochelatin synthase: Role of the cystein-rich C-terminal. Anal. Sci. 2008, 24, 277–281. [Google Scholar] [CrossRef]
- Puschenreiter, M.; Gruber, B.; Wenzel, W.W.; Schindlegger, Y.; Hann, S.; Spangl, B.; Schenkeveld, W.D.; Kraemer, S.M.; Oburger, E. Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils. Environ. Exp. Bot. 2017, 138, 67–76. [Google Scholar] [CrossRef]
- Gulzar, A.B.M.; Mazumder, P.B. Helping plants to deal with heavy metal stress: The role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Environ. Sci. Pollut. Res. 2022, 29, 40319–40341. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, S.; Li, D.; Xu, X.; Li, C. Genome-wide analysis of the ZRT, IRT-Like protein (ZIP) family and their responses to metal stress in Populus trichocarpa. Plant Mol. Biol. Report. 2017, 35, 534–549. [Google Scholar] [CrossRef]
- Tian, W.; He, G.; Qin, L.; Li, D.; Meng, L.; Huang, Y.; He, T. Genome-wide analysis of the NRAMP gene family in potato (Solanum tuberosum): Identification, expression analysis and response to five heavy metals stress. Ecotoxicol. Environ. Saf. 2021, 208, 111661. [Google Scholar] [CrossRef]
- Yang, X.; Huang, J.; Jiang, Y.; Zhang, H.S. Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol. Biol. Rep. 2009, 36, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, X.; Luo, L. The major gene families related to cadmium absorption and transportation in plants. Genom. Appl. Biol. 2013, 32, 127–134. [Google Scholar]
- Yang, M.; Li, Y.; Liu, Z.; Tian, J.; Liang, L.; Qiu, Y.; Wang, G.; Du, Q.; Cheng, D.; Lian, X.; et al. A high activity zinc transporter OsZIP9 mediates zinc uptake in rice. Plant J. 2020, 103, 1695–1709. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, H.J.; Kim, S.A.; Lee, J.; Guerinot, M.L.; An, G. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol. Biol. 2010, 73, 507–517. [Google Scholar] [CrossRef]
- Ye, X.; Liu, C.; Yan, H.; Wan, Y.; Wu, Q.; Wu, X.; Zhao, G.; Zou, L.; Xiang, D. Genome-wide identification and transcriptome analysis of the heavy metal-associated (HMA) gene family in Tartary buckwheat and their regulatory roles under cadmium stress. Gene 2022, 847, 146884. [Google Scholar] [CrossRef]
- Shu, H.; Zhang, J.; Liu, F.; Bian, C.; Liang, J.; Liang, J.; Liang, W.; Lin, Z.; Shu, W.; Liao, B.; et al. Comparative transcriptomic studies on a cadmium hyperaccumulator Viola baoshanensis and its non-tolerant counterpart V. inconspicua. Int. J. Mol. Sci. 2019, 20, 1906. [Google Scholar] [CrossRef]
- Ali, W.; Isner, J.C.; Isayenkov, S.V.; Liu, W.; Zhao, F.J.; Maathuis, F.J. Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol. 2012, 194, 716–723. [Google Scholar] [CrossRef]
- Yan, H.; Xu, W.; Zhang, T.; Feng, L.; Liu, R.; Wang, L.; Wu, L.; Zhang, H.; Zhang, X.; He, Z.; et al. Characterization of a novel arsenite long-distance transporter from arsenic hyperaccumulator fern Pteris vittata. New Phytol. 2022, 233, 2488–2502. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Feng, H.; Li, X.; Ai, H.; Sun, S.; Chen, Y.; Xu, G.; Rathinasabapathi, B.; Cao, Y.; Ma, L.Q. Expression of new Pteris vittata phosphate transporter PvPht1; 4 reduces arsenic translocation from the roots to shoots in tobacco plants. Environ. Sci. Technol. 2019, 54, 1045–1053. [Google Scholar] [CrossRef]
- García de la Torre, V.S.; Majorel-Loulergue, C.; Rigaill, G.J.; Alfonso-González, D.; Soubigou-Taconnat, L.; Pillon, Y.; Barreau, L.; Thomine, S.; Fogliani, B.; Merlot, S.; et al. Wide cross-species RNA-Seq comparison reveals convergent molecular mechanisms involved in nickel hyperaccumulation across dicotyledons. New Phytol. 2021, 229, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Nishida, S.; Tanikawa, R.; Ishida, S.; Yoshida, J.; Mizuno, T.; Nakanishi, H.; Furuta, N. Elevated expression of vacuolar nickel transporter gene IREG2 is associated with reduced root-to-shoot nickel translocation in Noccaea japonica. Front. Plant Sci. 2020, 11, 610. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Takahashi, R.; Bashir, K.; Shimo, H.; Senoura, T.; Sugimoto, K.; Ono, K.; Yano, M.; Ishikawa, S.; Nishizawa, N.K.; et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci. Rep. 2012, 2, 286. [Google Scholar] [CrossRef] [PubMed]
- Ueno, D.; Sasaki, A.; Yamaji, N.; Miyaji, T.; Fujii, Y.; Takemoto, Y.; Moriyama, S.; Che, J.; Moriyama, Y.; Ma, J.F.; et al. A polarly localized transporter for efficient manganese uptake in rice. Nat. Plants 2015, 1, 15170. [Google Scholar] [CrossRef]
- Hu, S.; Yu, Y.; Chen, Q.; Mu, G.; Shen, Z.; Zheng, L. OsMYB45 plays an important role in rice resistance to cadmium stress. Plant Sci. 2017, 264, 1–8. [Google Scholar] [CrossRef]
- Huang, X.Y.; Hu, D.W.; Zhao, F.J. Molybdenum: Mo re than an essential element. J. Exp. Bot. 2022, 73, 1766–1774. [Google Scholar] [CrossRef] [PubMed]
- Mulet, J.M.; Campos, F.; Yenush, L. Ion homeostasis in plant stress and development. Front. Plant Sci. 2020, 11, 618273. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xie, J.; Li, J.; Zhang, J.; Zhang, X.; Yao, Y.; Wang, C.; Niu, T.; Bakpa, E.P. Trehalose alleviates salt tolerance by improving photosynthetic performance and maintaining mineral ion homeostasis in tomato plants. Front. Plant Sci. 2022, 13, 974507. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, I. Nutrient cycling is an important mechanism for homeostasis in plant cells. Plant Physiol. 2021, 187, 2246–2261. [Google Scholar] [CrossRef]
- Leitenmaier, B.; Küpper, H. Compartmentation and complexation of metals in hyperaccumulator plants. Front. Plant Sci. 2013, 4, 374. [Google Scholar] [CrossRef]
- Krämer, U. Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef]
- Wu, F.Y.; Leung, H.M.; Wu, S.C.; Ye, Z.H.; Wong, M.H. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of Pteris vittata L. from China. Environ. Pollut. 2009, 157, 2394–2404. [Google Scholar] [CrossRef]
- Wu, F.Y.; Ye, Z.H.; Wu, S.C.; Wong, M.H. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 2007, 226, 1363–1378. [Google Scholar] [CrossRef]
- Favas, P.J.; Pratas, J.; Prasad, M.N.V. Accumulation of arsenic by aquatic plants in large-scale field conditions: Opportunities for phytoremediation and bioindication. Sci. Total Environ. 2012, 433, 390–397. [Google Scholar] [CrossRef]
- Liu, X.; Peng, K.; Wang, A.; Lian, C.; Shen, Z. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 2010, 78, 1136–1141. [Google Scholar] [CrossRef] [PubMed]
- Madanan, M.T.; Shah, I.K.; Varghese, G.K.; Kaushal, R.K. Application of Aztec Marigold (Tagetes erecta L.) for phytoremediation of heavy metal polluted lateritic soil. Environ. Chem. Ecotoxicol. 2021, 3, 17–22. [Google Scholar] [CrossRef]
- Yang, Y.; Ge, Y.; Tu, P.; Zeng, H.; Zhou, X.; Zou, D.; Wang, K.; Zeng, Q. Phytoextraction of Cd from a contaminated soil by tobacco and safe use of its metal-enriched biomass. J. Hazard. Mater. 2019, 363, 385–393. [Google Scholar] [CrossRef] [PubMed]
- McLeod, K.W.; Ciravolo, T.G. Cobalt uptake by Nyssa aquatica, N. sylvatica var. biflora, and Taxodium distichum seedlings. Wetlands 2007, 27, 40–43. [Google Scholar] [CrossRef]
- Ullah, S.; Mahmood, S.; Ali, R.; Khan, M.R.; Akhtar, K.; Depar, N. Comparing chromium phyto-assessment in Brachiaria mutica and Leptochloa fusca growing on chromium polluted soil. Chemosphere 2021, 269, 128728. [Google Scholar] [CrossRef] [PubMed]
- Covre, W.P.; da Silveira Pereira, W.V.; Gonçalves, D.A.M.; Teixeira, O.M.M.; do Amarante, C.B.; Fernandes, A.R. Phytoremediation potential of Khaya ivorensis and Cedrela fissilis in copper contaminated soil. J. Environ. Manag. 2020, 268, 110733. [Google Scholar] [CrossRef]
- Wang, H.; Shan, X.Q.; Wen, B.; Zhang, S.; Wang, Z.J. Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commelina communis. Arch. Environ. Contam. Toxicol. 2004, 47, 185–192. [Google Scholar] [CrossRef]
- Skinner, K.; Wright, N.; Porter-Goff, E. Mercury uptake and accumulation by four species of aquatic plants. Environ. Pollut. 2007, 145, 234–237. [Google Scholar] [CrossRef]
- Yang, S.X.; Deng, H.; Li, M.S. Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ. 2008, 54, 441–446. [Google Scholar] [CrossRef]
- Islam, M.S.; Hosen, M.M.L.; Uddin, M.N. Phytodesalination of saline water using Ipomoea aquatica, Alternanthera philoxeroides and Ludwigia adscendens. Int. J. Environ. Sci. Technol. 2019, 16, 965–972. [Google Scholar] [CrossRef]
- Tumi, A.F.; Mihailović, N.; Gajić, B.A.; Niketić, M.; Tomović, G. Comparative study of hyperaccumulation of nickel by Alyssum murale sl populations from the ultramafics of Serbia. Pol. J. Environ. Stud. 2012, 21, 1855–1866. [Google Scholar]
- Liu, X.; Mao, Y.; Zhang, X.; Gu, P.; Niu, Y.; Chen, X. Effects of PASP/NTA and TS on the phytoremediation of pyrene-nickel contaminated soil by Bidens pilosa L. Chemosphere 2019, 237, 124502. Chemosphere 2019, 237, 124502. [Google Scholar] [CrossRef] [PubMed]
- Pardo, T.; Rodríguez-Garrido, B.; Saad, R.F.; Soto-Vázquez, J.L.; Loureiro-Viñas, M.; Prieto-Fernández, Á.; Echevarria, G.; Benizri, E.; Kidd, P.S. Assessing the agromining potential of Mediterranean nickel-hyperaccumulating plant species at field-scale in ultramafic soils under humid-temperate climate. Sci. Total Environ. 2018, 630, 275–286. [Google Scholar] [CrossRef]
- He, B.; Yang, X.E.; Ni, W.Z.; Wei, Y.Z.; Ye, H.B. Pb uptake, accumulation, subcellular distribution in a Pb-accumulating ecotype of Sedum alfredii (Hance). J. Zhejiang Univ.-Sci. A 2003, 4, 474–479. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, S.; Li, Y.; Li, X.; Luo, Z.; Song, H.; Chen, Q. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicol. Environ. Saf. 2019, 170, 502–512. [Google Scholar] [CrossRef]
- Küpper, H.; Jie Zhao, F.; McGrath, S.P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 1999, 119, 305–312. [Google Scholar] [CrossRef]
- Sidhu, G.P.S.; Bali, A.S.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Insights into the tolerance and phytoremediation potential of Coronopus didymus L.(Sm) grown under zinc stress. Chemosphere 2020, 244, 125350. [Google Scholar] [CrossRef] [PubMed]
- Salt, D.E.; Smith, R.D.; Raskin, I. Phytoremediation. Annu. Rev. Plant Biol. 1998, 49, 643–668. [Google Scholar] [CrossRef]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 1995, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Dalvi, A.A.; Bhalerao, S.A. Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism. Ann. Plant Sci. 2013, 2, 362–368. [Google Scholar]
- Bolan, N.S.; Park, J.H.; Robinson, B.; Naidu, R.; Huh, K.Y. Phytostabilization: A green approach to contaminant containment. Adv. Agron. 2011, 112, 145–204. [Google Scholar]
- Sperdouli, I. Heavy metal toxicity effects on plants. Toxics 2022, 10, 715. [Google Scholar] [CrossRef]
- Zunaidi, A.A.; Lim, L.H.; Metali, F. Heavy metal tolerance and accumulation in the Brassica species (Brassica chinensis var. parachinensis and Brassica rapa L.): A pot experiment. Heliyon 2024, 10, e29528. [Google Scholar] [CrossRef]
- Razmi, B.; Ghasemi-Fasaei, R.; Ronaghi, A.; Mostowfizadeh-Ghalamfarsa, R. Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization. Ecotoxicol. Environ. Saf. 2021, 207, 111315. [Google Scholar] [CrossRef]
- Tan, H.W.; Pang, Y.L.; Lim, S.; Chong, W.C. A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environ. Technol. Innov. 2023, 30, 103043. [Google Scholar] [CrossRef]
- Anton, A.; Mathe-Gaspar, G. Factors affecting heavy metal uptake in plant selection for phytoremediation. Z Naturforsch C 2005, 60, 244–246. [Google Scholar]
- Shi, L.; Li, J.; Palansooriya, K.N.; Chen, Y.; Hou, D.; Meers, E.; Tsang, D.C.; Wang, X.; Ok, Y.S. Modeling phytoremediation of heavy metal contaminated soils through machine learning. J. Hazard. Mater. 2023, 441, 659–665. [Google Scholar] [CrossRef]
- Chen, X.C.; Huang, L.; Chang, T.H.A.; Ong, B.L.; Ong, S.L.; Hu, J. Plant traits for phytoremediation in the tropics. Engineering 2019, 5, 841–848. [Google Scholar] [CrossRef]
- Oniosun, S.; Harbottle, M.; Tripathy, S.; Cleall, P. Plant growth, root distribution and non-aqueous phase liquid phytoremediation at the pore-scale. J. Environ. Manag. 2019, 249, 109378. [Google Scholar] [CrossRef] [PubMed]
- Pulford, I.D.; Watson, C. Phytoremediation of heavy metal-contaminated land by trees—A review. Environ. Int. 2003, 29, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Aguiar, A.A.; Ferreira, I.M. Influence of soil chemistry and plant physiology in the phytoremediation of Cu, Mn, and Zn. Crit. Rev. Plant Sci. 2014, 33, 351–373. [Google Scholar] [CrossRef]
- Akhtar, F.Z.; Archana, K.M.; Krishnaswamy, V.G.; Rajagopal, R. Remediation of heavy metals (Cr, Zn) using physical, chemical and biological methods: A novel approach. SN Appl. Sci. 2020, 2, 267. [Google Scholar] [CrossRef]
- Rostami, S.; Azhdarpoor, A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere 2019, 220, 818–827. [Google Scholar] [CrossRef]
- Alford, É.R.; Pilon-Smits, E.A.; Paschke, M.W. Metallophytes—A view from the rhizosphere. Plant Soil 2010, 337, 33–50. [Google Scholar] [CrossRef]
- Van der Ent, A.; Baker, A.J.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Bañuelos, G.S. Overview and prospects of selenium phytoremediation approaches. In Selenium Plants Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects; Springer: Berlin/Heidelberg, Germany, 2017; pp. 277–321. [Google Scholar]
- Zhao, F.; Han, Y.; Shi, H.; Wang, G.; Zhou, M.; Chen, Y. Arsenic in the hyperaccumulator Pteris vittata: A review of benefits, toxicity, and metabolism. Sci. Total Environ. 2023, 896, 165232. [Google Scholar] [CrossRef] [PubMed]
- Bello, M.O.; Bello, O.M.; Ogbesejana, A.B. Bioremediation Potential of Helianthus annuus. In Bioremediation and Phytoremediation Technologies in Sustainable Soil Management Apple; Academic Press: Palm Bay, FL, USA, 2022; pp. 47–74. [Google Scholar]
- Pescatore, A.; Grassi, C.; Rizzo, A.M.; Orlandini, S.; Napoli, M. Effects of biochar on berseem clover (Trifolium alexandrinum, L.) growth and heavy metal (Cd, Cr, Cu, Ni, Pb, and Zn) accumulation. Chemosphere 2022, 287, 131986. [Google Scholar] [CrossRef]
- Alhaji, S.N.; Umar, S.A.; Abdullahi, S.M.; Kasimu, S.; Aliyu, S. Phytoremediation of nickel, lead and manganese in simulated waste water using algae, water hyacinth and water lettuce. Int. J. Miner. Process. Extr. Metall. 2020, 5, 30–36. [Google Scholar]
- Echiegu, E.A.; Ezimah, C.O.; Okechukwu, M.E.; Nwoke, O.A. Phytoremediation of emulsion paint wastewater using Azolla pinnata, Eichhornia crassipes and Lemna minor. Niger. J. Technol. 2021, 40, 550–557. [Google Scholar] [CrossRef]
- Pollard, A.J.; Reeves, R.D.; Baker, A.J. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 2014, 217, 8–17. [Google Scholar] [CrossRef]
- Baker, A.J.; McGrath, S.P.; Reeves, R.D.; Smith, J.A.C. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In Phytoremediation of Contaminated Soil and Water; CRC Press: Boca Raton, FL, USA, 2020; pp. 85–107. [Google Scholar]
- Reeves, R.D.; van Der Ent, A.; Echevarria, G.; Isnard, S.; Baker, A.J. Global distribution and ecology of hyperaccumulator plants. In Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants; Springer: Berlin/Heidelberg, Germany, 2021; pp. 133–154. [Google Scholar]
- Nikolić, N.P.; Borišev, M.K.; Pajević, S.P.; Arsenov, D.D.; Župunski, M.D.; Orlović, S.S.; Pilipović, A.R. Photosynthetic response and tolerance of three willow species to cadmium exposure in hydroponic culture. Arch. Biol. Sci. 2015, 67, 1411–1420. [Google Scholar] [CrossRef]
- Borišev, M.; Pajević, S.; Nikolić, N.; Orlović, S.; Župunski, M.; Pilipović, A.; Kebert, M. Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L. Int. J. Phytoremediat. 2016, 18, 164–170. [Google Scholar] [CrossRef]
- Župunski, M.; Borišev, M.; Orlović, S.; Arsenov, D.; Nikolić, N.; Pilipović, A.; Pajević, S. Hydroponic screening of black locust families for heavy metal tolerance and accumulation. Int. J. Phytoremediat. 2016, 18, 583–591. [Google Scholar] [CrossRef]
- Katanić, M.; Kovačević, B.; Đorđević, B.; Kebert, M.; Pilipović, A.; Klašnja, B.; Pekeč, S.M. Nickel phytoremediation potential of white poplar clones grown in vitro. Rom. Biotechnol. Lett. 2015, 20, 10085–10096. [Google Scholar]
- PILIPOVIć, A.; ORLOVIć, S.; Rončević, S.; Nikolić, N.; Župunski, M.; Spasojević, J. Results of selection of poplars and willows for water and sediment phytoremediation. Agric. For. 2015, 61, 205–211. [Google Scholar] [CrossRef]
- Pilipović, A.; Zalesny, R.S., Jr.; Rončević, S.; Nikolić, N.; Orlović, S.; Beljin, J.; Katanić, M. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. J. Environ. Manag. 2019, 239, 352–365. [Google Scholar] [CrossRef]
- Trudić, B.; Kebert, M.; Popović, B.M.; Štajner, D.; Orlović, S.; Galović, V.; Pilipović, A. The effect of heavy metal pollution in soil on Serbian poplar clones. Šumarski List 2013, 137, 287–295. [Google Scholar]
- Nikolić, N.; Zorić, L.; Cvetković, I.; Pajević, S.; Borišev, M.; Orlović, S.; Pilipović, A. Assessment of cadmium tolerance and phytoextraction ability in young Populus deltoides L. and Populus × euramericana plants through morpho-anatomical and physiological responses to growth in cadmium enriched soil. iFor.-Biogeosci. For. 2017, 10, 635. [Google Scholar] [CrossRef]
- Malletzidou, L.; Kyratzopoulou, E.; Kyzaki, N.; Nerantzis, E.; Kazakis, N.A. Towards the sustainable removal of heavy metals from wastewater using Arthrospira platensis: A laboratory-scale approach in the context of a green circular economy. Appl. Sci. 2025, 15, 791. [Google Scholar] [CrossRef]
- Tatarová, D.; Galanda, D.; Kuruc, J.; Gaálová, B. Phytoremediation of 137Cs, 60Co, 241Am, and 239Pu from aquatic solutions using Chlamydomonas reinhardtii, Scenedesmus obliquus, and Chlorella vulgaris. Int. J. Phytoremediat. 2021, 23, 1376–1381. [Google Scholar] [CrossRef]
- Ciani, M.; Adessi, A. Cyanoremediation and phyconanotechnology: Cyanobacteria for metal biosorption toward a circular economy. Front. Microbiol. 2023, 14, 1166612. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Sahoo, D.; Pandey, A. Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: A circular bioeconomy approach. Environ. Sci. Pollut. Res. 2021, 28, 58837–58856. [Google Scholar] [CrossRef] [PubMed]
- Haoujar, I.; Senhaji, N.S.; Altemimi, A.B.; Abrini, J.; Cacciola, F. Phytoremediation of heavy metals by microalgae: A mini review. Int. Aquat. Res. 2025, 17, 17–29. [Google Scholar] [CrossRef]
- Renganathan, P.; Gaysina, L.A.; Holguín-Peña, R.J.; Sainz-Hernández, J.C.; Ortega-García, J.; Rueda-Puente, E.O. Phycoremediated microalgae and cyanobacteria biomass as biofertilizer for sustainable agriculture: A holistic biorefinery approach to promote circular bioeconomy. Biomass 2024, 4, 1047–1077. [Google Scholar] [CrossRef]
- Qiu, J.; Vadiveloo, A.; Mao, B.D.; Zhou, J.L.; Gao, F. Phytohormones as a novel strategy for promoting phytoremediation in microalgae: Progress and prospects. J. Environ. Manag. 2025, 373, 123593. [Google Scholar] [CrossRef]
- Rifna, E.J.; Rajauria, G.; Dwivedi, M.; Tiwari, B.K. Circular economy approaches for the production of high-value polysaccharides from microalgal biomass grown on industrial fish processing wastewater: A review. Int. J. Biol. Macromol. 2024, 254, 126887. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Venegas-Rioseco, J.; Ginocchio, R.; Ortiz-Calderón, C. Increase in phytoextraction potential by genome editing and transformation: A review. Plants 2021, 11, 86. [Google Scholar] [CrossRef]
- Koźmińska, A.; Wiszniewska, A.; Hanus-Fajerska, E.; Muszyńska, E. Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol. Rep. 2018, 12, 1–14. [Google Scholar] [CrossRef]
- Talukder, P.; Saha, A.; Roy, S.; Ghosh, G.; Roy, D.D.; Barua, S. Role of mi RNA in phytoremediation of heavy metals and metal induced stress alleviation. Appl. Biochem. Biotechnol. 2023, 195, 5712–5729. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Xue, S.; Zhang, Z.; Xu, G.; Zhang, Y.; Shi, Y.; Xing, M.; Zhang, W. Physiological changes and antioxidative mechanisms of Alternanthera philoxeroides in Phytoremediation of Cadmium. Environ. Health. 2023, 1, 90–101. [Google Scholar] [CrossRef]
- Tang, L.; Mao, B.; Li, Y.; Lv, Q.; Zhang, L.; Chen, C.; He, H.; Wang, W.; Zeng, X.; Zhao, B.; et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci. Rep. 2017, 7, 14438. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, N.; Anand, U.; Kumar, R.; Ghorai, M.; Aftab, T.; Jha, N.K.; Rajapaksha, A.U.; Bundschuh, J.; Bontempi, E.; Dey, A. Phytoremediation and sequestration of soil metals using the CRISPR/Cas9 technology to modify plants: A review. Environ. Chem. Lett. 2023, 21, 429–445. [Google Scholar] [CrossRef]
- Deng, X.; Yuan, X.; Chen, L.; Chen, Y.; Rong, X.; Zeng, Q.; Yang, Y. Field-scale remediation of cadmium-contaminated farmland soil by Cichorium intybus L.: Planting density, repeated harvests, and safe use of its Cd-enriched biomass for protein feed. Ind. Crops Prod. 2022, 188, 115604. [Google Scholar] [CrossRef]
- Deng, X.; Wu, S.; Yang, Y.; Qin, Y.; Huang, Q.; Wu, W.; Rong, X.; Zeng, Q. A rice—Chicory rotation pattern ensures safe grain production and phytoremediation of cadmium-contaminated paddy fields: A four-year field experiment in southern China. Chemosphere 2023, 322, 138192. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Y.; Qin, Y.; Deng, X.; Zhang, Q.; Zou, D.; Zeng, Q. Cichorium intybus L. is a potential Cd-accumulator for phytoremediation of agricultural soil with strong tolerance and detoxification to Cd. J. Hazard. Mater. 2023, 451, 131182. [Google Scholar] [CrossRef]
- Kang, Z.; Gong, M.; Li, Y.; Chen, W.; Yang, Y.; Qin, J.; Li, H. Low Cd-accumulating rice intercropping with Sesbania cannabina L. reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. Sci. Total Environ. 2021, 800, 149600. [Google Scholar] [CrossRef]
- Guo, J.; Yang, J.; Yang, J.; Zheng, G.; Chen, T.; Huang, J.; Bian, J.; Meng, X. Water-soluble chitosan enhances phytoremediation efficiency of cadmium by Hylotelephium spectabile in contaminated soils. Carbohydr. Polym. 2020, 246, 116559. [Google Scholar] [CrossRef]
- Luo, F.; Hu, X.F.; Oh, K.; Yan, L.J.; Lu, X.Z.; Zhang, W.J.; Yonekura, T.; Yonemochi, S.; Isobe, Y. Using profitable chrysanthemums for phytoremediation of Cd-and Zn-contaminated soils in the suburb of Shanghai. J. Soils Sediments 2020, 20, 4011–4022. [Google Scholar] [CrossRef]
- Gurajala, H.K.; Cao, X.; Tang, L.; Ramesh, T.M.; Lu, M.; Yang, X. Comparative assessment of Indian mustard (Brassica juncea L.) genotypes for phytoremediation of Cd and Pb contaminated soils. Environ. Pollut. 2019, 254, 113085. [Google Scholar] [CrossRef]
- Xu, L.; Xing, X.; Liang, J.; Peng, J.; Zhou, J. In situ phytoremediation of copper and cadmium in a co-contaminated soil and its biological and physical effects. RSC Adv. 2019, 9, 993–1003. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, L.H.; Peng, L.; Luo, S.; Zeng, Q.R. Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use. Chemosphere 2020, 247, 125856. [Google Scholar] [CrossRef]
- Eissa, M.A.; Almaroai, Y.A. Phytoremediation capacity of some forage plants grown on a metals-contaminated soil. Soil Sediment Contam. Int. J. 2019, 28, 569–581. [Google Scholar] [CrossRef]
- Andrejić, G.; Šinžar-Sekulić, J.; Prica, M.; Dželetović, Ž.; Rakić, T. Phytoremediation potential and physiological response of Miscanthus × giganteus cultivated on fertilized and non-fertilized flotation tailings. Environ. Sci. Pollut. Res. 2019, 26, 34658–34669. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Shapoval, P.; Zgorelec, Ž.; Stefanovska, T.; Zhukov, O. Multiyear phytoremediation and dynamic of foliar metal (loid) s concentration during application of Miscanthus × giganteus Greef et Deu to polluted soil from Bakar, Croatia. Environ. Sci. Pollut. Res. 2020, 27, 31446–31457. [Google Scholar] [CrossRef]
- Cantamessa, S.; Massa, N.; Gamalero, E.; Berta, G. Phytoremediation of a highly arsenic polluted site, using Pteris vittata L. and arbuscular mycorrhizal fungi. Plants 2020, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. Imran. Using biochar, compost, and dry-based organic amendments in combination with mycorrhizae for mitigating heavy metal contamination in soil. Int. J. Phytoremediat. 2025, 1502–1513. [Google Scholar] [CrossRef]
- Dagher, D.J.; Pitre, F.E.; Hijri, M. Ectomycorrhizal fungal inoculation of Sphaerosporella brunnea significantly increased stem biomass of Salix miyabeana and decreased lead, tin, and zinc, soil concentrations during the phytoremediation of an industrial landfill. J. Fungi 2020, 6, 87. [Google Scholar] [CrossRef] [PubMed]
- Kafil, M.; Boroomand Nasab, S.; Moazed, H.; Bhatnagar, A. Phytoremediation potential of vetiver grass irrigated with wastewater for treatment of metal contaminated soil. Int. J. Phytoremediat. 2019, 21, 92–100. [Google Scholar] [CrossRef]
- Sukumaran, D. Phytoremediation of heavy metals from industrial effluent using constructed wetland technology. Appl. Ecol. Environ. Sci. 2013, 1, 92–97. [Google Scholar] [CrossRef]
- Herath, I.; Vithanage, M. Phytoremediation in constructed wetlands. Phytoremediat. Manag. Environ. Contam. 2015, 2, 243–263. [Google Scholar]
- Sharma, P.; Singh, S.P.; Tong, Y.W. Phytoremediation employing constructed wetlands. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 93–108. [Google Scholar]
- Zalesny, R.S., Jr.; Pilipović, A.; Rogers, E.R.; Burken, J.G.; Hallett, R.A.; Lin, C.H.; McMahon, B.G.; Nelson, N.D.; Adam, H.; Vinhal, R.A.; et al. Establishment of regional phytoremediation buffer systems for ecological restoration in the great lakes basin, USA. I. Genotype × environment interactions. Forests 2021, 12, 430. [Google Scholar] [CrossRef]
- Pilipović, A.; Zalesny, R.S., Jr.; Rogers, E.R.; McMahon, B.G.; Nelson, N.D.; Burken, J.G.; Hallett, R.A.; Lin, C.H. Establishment of regional phytoremediation buffer systems for ecological restoration in the Great Lakes Basin, USA. II. New clones show exceptional promise. Forests 2021, 12, 474. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Stärk, H.J.; Wennrich, R.; Levizou, E.; Merbach, I.; Rinklebe, J. Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environ. Int. 2021, 146, 106233. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, A.K.; Udayan, A.; Kumar, S. Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresour. Technol. 2021, 326, 124750. [Google Scholar] [CrossRef]
- Huang, L.; Fan, Z.; Hu, Z.; Li, Z.; Fu, Y.; Wang, Q.; Lin, X.; Feng, Y. Synthetic communities derived from the core endophytic microbiome of hyperaccumulators and their role in cadmium phytoremediation. Microbiome 2024, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Ernst, W.H.O.; Schat, H.; Verkleij, J.A.C. Evolutionary biology of metal resistance in Silene vulgaris. Evol. Trends Plants 1990, 4, 45–51. [Google Scholar]
- Agarwal, P.; Giri, B.S.; Rani, R. Unravelling the role of rhizospheric plant-microbe synergy in phytoremediation: A genomic perspective. Curr. Genom. 2020, 21, 334–342. [Google Scholar] [CrossRef]
- Sinha, N.; Rushing, B.R.; Acharya, A.; Ganapathi Shanmugam, S. Effect of integrated crop—Livestock systems on soil properties and microbial diversity in soybean Production. Appl. Biosci. 2024, 3, 484–502. [Google Scholar] [CrossRef]
- Jovanović, P.; Rachmilevitch, S.; Roitman, N.; Erel, R. Strontium as a tracer for calcium: Uptake, transport and partitioning within tomato plants. Plant Soil 2021, 466, 303–316. [Google Scholar] [CrossRef]
- D’Hertefeldt, T.; Falkengren-Grerup, U. Extensive physiological integration in Carex arenaria and Carex disticha in relation to potassium and water availability. New Phytol. 2002, 156, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Pesacreta, T.C.; Hasenstein, K.H. Tissue accumulation patterns and concentrations of potassium, phosphorus, and carboxyfluorescein translocated from pine seed to the root. Planta 2018, 248, 393–407. [Google Scholar] [CrossRef]
- Pesacreta, T.C.; Acharya, A.; Hasenstein, K.H. Endogenous nutrients are concentrated in specific tissues in the Zea mays seedling. Protoplasma 2021, 258, 863–878. [Google Scholar] [CrossRef]
- Acharya, A.; Pesacreta, T.C. Localization of seed-derived and externally supplied nutrients in peanut seedling root. Theor. Exp. Plant Physiol. 2021, 34, 37–51. [Google Scholar] [CrossRef]
- Acharya, A.; Pesacreta, T.C. P-ring: The conserved nature of phosphorus enriched cells in seedling roots of distantly related species. Plant Signal. Behav. 2023, 18, 2217389. [Google Scholar] [CrossRef] [PubMed]
- Acharya, A. Tissue Specific Nutrient Localization in the Arachis hypogaea Seedling Root. Ph.D. Thesis, University of Louisiana, Lafayette, LA, USA, 2021. Available online: https://www.proquest.com/docview/2551215170?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 1 September 2025).
- Acharya, A. DELLA proteins and CBL-CIPK signaling pathway are emerging players in plant biotechnology. Theor. Exp. Plant Physiol. 2024, 36, 113–121. [Google Scholar] [CrossRef]
- Kiss, J.Z.; Wolverton, C.; Wyatt, S.E.; Hasenstein, K.H.; van Loon, J.J. Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front. Plant Sci. 2019, 10, 1577. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.L.; Elardo, S.M.; Ferl, R. Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Commun. Biol. 2022, 5, 382. [Google Scholar] [CrossRef]
- Kumar, N.; Pathak, L.; Shah, K. Exploring the contribution of non-edible plants in phytoremediation and biofuel production in India. Environ. Sustain. 2025, 8, 31–44. [Google Scholar] [CrossRef]
- Marmiroli, M.; Pietrini, F.; Maestri, E.; Zacchini, M.; Marmiroli, N.; Massacci, A. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol. 2011, 31, 1319–1334. [Google Scholar] [CrossRef]
- Wang, Y.H.; Acharya, A.; Burrell, A.M.; Klein, R.R.; Klein, P.E.; Hasenstein, K.H. Mapping and candidate genes associated with saccharification yield in sorghum. Genome 2013, 56, 659–665. [Google Scholar] [CrossRef]
- de Boon, A.; Sandström, C.; Rose, D.C. Governing agricultural innovation: A comprehensive framework to underpin sustainable transitions. J. Rural Stud. 2022, 89, 407–422. [Google Scholar] [CrossRef]
- Acharya, A. SMART—A Prototype Design for Sustainable Method of Agriculture Using Root Transition; Research Square: Durham, NC, USA, 2022. [Google Scholar] [CrossRef]
- Acharya, A Out of sight, out of mind. Crop Sci. 2023, 63, 1699–1700. [CrossRef]
- Acharya, A. Global agriculture management system. Crop Sci. 2021, 61, 2861–2862. [Google Scholar] [CrossRef]
- Mandal, A.; Majumder, A.; Dhaliwal, S.S.; Toor, A.S.; Mani, P.K.; Naresh, R.K.; Gupta, R.K.; Mitran, T. Impact of agricultural management practices on soil carbon sequestration and its monitoring through simulation models and remote sensing techniques: A review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1–49. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, Z.; Zhang, F.; Yang, X. Optimizing cultivars and agricultural management practices can enhance soybean yield in Northeast China. Sci. Total Environ. 2023, 857, 159456. [Google Scholar] [CrossRef] [PubMed]
Different Sources of Heavy Metals | Common Heavy Metal Candidates | Phytoremediation Categories | Factors Influencing Phytoremediation |
---|---|---|---|
Mining of ores Fossil fuel Volcanic activity Weathering of rocks Industrial waste Fertilizers Herbicides Pesticides Agriculture Anthropogenic activity | As; Ag; Au Cr; Co; Cd Cu; Fe; Hg Mn; Ni; Pb Se; Zn | Phytoaccumulation Phytomining Phytofiltration Rhizofiltration Phytodesalination Phytostabilization Phytovolatalization Phytodegradation Phytotransformation | Robust root system Bioavailability of elements Heavy metal tolerance capacity Growth rate of plant Biomass accumulation Ease of cultivation Maintenance of plants Ease of harvesting Ease of extraction of heavy metal from plant parts Pathogens that can damage the plant Herbivores that can consume the plant parts |
Elements | Plants | Concentrations of Heavy Metals Recovered from Plant Tissues | Mechanism | Type | References |
---|---|---|---|---|---|
As | Pteris vittata | 1639 mg kg−1 | Rhizofiltration | Hydroponic | [98] |
As | Pteris vittata | 1373 mg kg−1 | Phytoextraction | Field | [99] |
As | Azolla caroliniana | 397 mg kg−1 | Rhizofiltration | Field | [100] |
Cd | Phytolacca americana | 637 mg kg−1 | Rhizofiltration | Hydroponic | [101] |
Cd | Tagetes erecta | 346 mg kg−1 | Phytoextraction | Pot | [102] |
Cd | Nicotiana tabacum | 23 mg kg−1 | Phytoextraction | Field | [103] |
Co | Nyssa sylvatica | 438 mg kg−1 | Phytoextraction | Pot | [104] |
Cr | Leptochloa fusca | 93 mg kg−1 | Phytostabilization | Pot | [105] |
Cr | Brachiaria mutica | 18 mg kg−1 | Phytostabilization | Pot | [105] |
Cu | Khaya ivorensis | 329 mg kg−1 | Phytoextraction | Pot | [106] |
Cu | Commelina communis | 1119 mg kg−1 | Rhizofiltration | Hydroponic | [107] |
Hg | Helianthus tuberosus | 1 mg kg−1 | Phytostabilization | Pot | [28] |
Hg | Pistia stratiotes | 83 mg kg−1 | Rhizofiltration | Hydroponic | [108] |
Mn | Schima superba | 62,412 mg kg−1 | Phytoextraction | Pot | [109] |
Na | Alternanthera philoxeroides | 145,000 mg kg−1 | Rhizofiltration | Hydroponic | [110] |
Ni | Alyssum murale | 443 mg kg−1 | Phytoextraction | Field | [111] |
Ni | Bidens pilosa | 305 mg kg−1 | Phytostimulation | Pot | [112] |
Ni | Leptoplax emarginata | 7864 mg kg−1 | Phytoextraction | Field | [113] |
Pb | Sedum alfredii | 915 mg kg−1 | Rhizofiltration | Hydroponic | [114] |
Pb | Arundinaria argenteostriata | 1117 mg kg−1 | Phytostimulation | Pot | [115] |
Zn | Thlaspi caerulescens | 20,000 mg kg−1 | Phytoextraction | Pot | [116] |
Zn | Coronopus didymus | 1848 mg kg−1 | Phytoextraction | Pot | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharya, A.; Bellaloui, N.; Pilipovic, A.; Perez, E.; Maddox-Mandolini, M.; Fuente, H.D.L. Current Assessment and Future Perspectives on Phytoremediation of Heavy Metals. Plants 2025, 14, 2847. https://doi.org/10.3390/plants14182847
Acharya A, Bellaloui N, Pilipovic A, Perez E, Maddox-Mandolini M, Fuente HDL. Current Assessment and Future Perspectives on Phytoremediation of Heavy Metals. Plants. 2025; 14(18):2847. https://doi.org/10.3390/plants14182847
Chicago/Turabian StyleAcharya, Aniruddha, Nacer Bellaloui, Andrej Pilipovic, Enrique Perez, Miller Maddox-Mandolini, and Hania De La Fuente. 2025. "Current Assessment and Future Perspectives on Phytoremediation of Heavy Metals" Plants 14, no. 18: 2847. https://doi.org/10.3390/plants14182847
APA StyleAcharya, A., Bellaloui, N., Pilipovic, A., Perez, E., Maddox-Mandolini, M., & Fuente, H. D. L. (2025). Current Assessment and Future Perspectives on Phytoremediation of Heavy Metals. Plants, 14(18), 2847. https://doi.org/10.3390/plants14182847